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SUMMARY. In medical terms and referring to aortic arterial damage, dissection is the separation of
intra-medial tissue induced by a radial tear cutting the intima and a portion of the underling media.
Pressurized blood pervading the tear usually progresses the intramural process of dissection and may
later induces formation of clots. The purpose of this study is to setup a mechanical model of arterial
dissection, based on cohesive theories of fracture, able to detect the critical mechanical conditions
leading to the tissue damage.

1 INTRODUCTION
The arterial wall consists of three concentric layers of a laminated-like tissue, reinforced by col-

lagen fibers: the intima (inner layer), the media, and the adventitia (outer layer). Arterial dissection
is a pathological state which refers to the separation of two layers along their interface or to the
delamination within a layer of the arterial wall.
Dissections may cause narrowing of the vessel channel (stenosis) and even its entire closure, de-
creasing the blood flow to vital organs. Dissection also weakens the artery wall and may lead to their
rupture, or to the formation of a balloon-like expansion known as aneurysm.
In the aorta, dissection is characterized by the formation of a tear in the intima. Due to the lami-
nated structure of arterial wall, intimal tears often have sharp edges and are oriented transversally
or vertically in relation to the long axis of the artery. In the dissection, the pressurized blood enters
at the site of the tear and splits the middle layer (media) of the artery. Following the material lam-
inated microstructure, the tear expands parallel to the original vessel lumen, both circumferentially
and longitudinally, creating an additional passage called false lumen [1, 2]. The false lumen varies
from a few millimeters to the larger classic false lumen of several centimeters, with an associated
flap or septum. A combination of transverse and longitudinal dissections may produce T or cross
shaped tears. In some circumstances, adjacent elastin lamellae may converge and fuse together,
offering a barrier to dissection. Thus, interlamellar material and fused lamellae may prevent the ini-
tiation of dissection, or may contrast its propagation within the media [3]. Less common intramural
hematoma-type dissections of the aortic wall have been identified, in which dissection is filled with
blood clot without a detectable intimal tear.
Unlike aortic dissection, spontaneous coronary artery dissection is often not associated with an in-
timal tear. The coronaries are muscular arteries and do not contain a relevant amount of elastic
laminae. The preferential surface of dissection for coronary arteries lies therefore between the ad-
ventitia and the media.

The purpose of this research is to study the process of dissection in the artery walls from the
mechanical point of view, by using a finite element model, where the tissue damage is treated by
using cohesive theories of fracture. The knowledge of the mechanical factors that affect and drive
the arterial dissection may provide important information and useful data for the design of prevention
or treatment systems. The present analyses focus on the influence of the cohesive strength and of
the mesh size on the dissection evolution process. The cohesive strength, difficult to evaluate and to
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measure in medical experiments, is the most important parameter controlling the dissection process.

2 THE NUMERICAL MODEL
Under physiological conditions, arteries are regarded as nearly incompressible solids. Healthy

arteries behave as highly deformable composite structures and exhibit a nonlinear stress-strain re-
sponse with a typical stiffening at the physiological strain level. The mechanical properties are
controlled by proteins such as the rubber-like elastin and the leather-like collagen, in addition to
smooth muscle cells. In the aortic media, these constituents are present in thin layers that are ar-
ranged in repeating lamellar units, each of which is about 10 µm thick and form a clear laminated
structure [4]. The laminated structure confers high strength to the media and explains how the media
determines the mechanical properties of the whole vessel. Unfortunately, laminated structures are
prone to split, creating a cleavage plane between lamellae (dissection).

The anisotropic properties of the composite structure of the vessel walls have been evidenced
in several experiments conducted in canine and porcine arteries. In particular, the arterial wall ex-
hibits anisotropic behavior with different elastic constants in the radial, circumferential, and axial
directions [7].

A few studies have been done to investigate the role of factors in the propagation of arterial
dissections [5, 3, 6]. It is well known that in composite materials the failure mechanism is both
related to the strength of the components and to their organization in the tissue. This is also the
case of failure in structured biological tissues. The recent peeling experiments of Sommer et al.
[8] indicated that the dissection failure response of the human aortic media is anisotropic. In the
aortic media, the smooth muscle cells are oriented mostly circumferentially and may provide a more
pronounced resistance to the dissection in the axial direction. In particular, the peeling in the axial
direction creates a remarkably rougher dissection surface compared to that generated by peeling
in the circumferential one. Contrariwise, circular-shaped dissection area obtained by an infusion
technique by Carson et al. [3] suggest isotropic properties of the media.

In view of modeling the dissection process with finite elements, is here assumed that the material
of the artery walls is hyperelastic, and the rupture of the tissues (tearing or dissection) is described
through the insertion of cohesive interfaces, which account for all the tissue degenerations [15, 16,
17].

2.1 A material model for the artery walls
According to the histological evidence, in the media layer it is possible to identify two main

families of fibers of equivalent stiffness and strength, inclined of a constant angle γ with respect to
the circumferential direction. The resulting material structure is thus orthotropic.
Following Holzapfel et al. [9], the strain energy function of an anisotropic material with a double
set of reinforcing fibers may be decomposed into the sum of a volumetric part Ψvol function of the
volumetric deformation J = det F , an isotropic part Ψiso, representing the behavior of the ground
matrix and of the uniformly dispersed fibers, and of an anisotropic part Ψaniso, which is totally due
to the alignment of two embedded families of fibers:

Ψ = Ψvol (J) + Ψiso

(
I1

)
+ Ψaniso

(
I4, I6

)
, (1)

where I1 is the first invariant of the modified right Cauchy-Green tensor C = J−2/3C, whereas I4

and I6 are the two pseudo-invariants measuring the square of the stretch in the direction of the fibers
[10].
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The expression of the strain energy functions here assumed are [17]:

Ψvol (J) =
K

2
ln J, (2)

where K is the bulk modulus of the material,

Ψiso

(
I1

)
=

µ

2
(
I1 − 3

)
, (3)

where µ is the shear modulus of the matrix, and

Ψaniso

(
I4, I6

)
=

k2

2k

(
exp

[
k

(
I4 − 1

)2
]
− 1

)

+
k4

2k

(
exp

[
k

(
I6 − 1

)2
]
− 1

)
, (4)

where k is a dimensionless constant and k2, k4 are the stiffness moduli related to the collagen fiber
sets. The specific form of the derived constitutive equation requires the definition of five material
parameters K, µ, k, k2, and k4, whose interpretations can be partially based on the underlying
histological structure.

2.2 The cohesive model
Cohesive models have been used for the analysis of fracture in biological tissues [11, 12, 17].

Anisotropic (i.e. transversally isotropic) cohesive fracture has been considered in the numerical
analysis of dynamic propagation of cracks by Yu el al. [13].

Cohesive theories see the fracture as the progressive process of separation between two surfaces
originally coincident. The separation, measured as a displacement jump ∆, is resisted by cohesive
tractions T along the process zone, ahead of the crack tip. The experimental evidence on crack
propagation, even in isotropic materials, shows that the cohesive behavior is different for opening
mode (I) and sliding modes (II and III). It is therefore necessary to keep track of the orientation of
the crack in order to distinguish the contribution of the normal and tangential components of the
displacement jump.

In order to model the dissection process, we adopt the approach proposed by Ortiz and Pandolfi
[15], combined with the automatic fragmentation procedure described in [16]. The extension to
anisotropy implies the definition of: i) an anisotropic cohesive law, able to distinguish the behavior
of the cohesive response along the different directions of the cohesive surface; ii) an anisotropic
fracture criterion.

In cohesive theories, the displacement jump across a cohesive surface ∆ plays the role of a
deformation measure, while the tractions T furnish the work-conjugate stress measure. In order to
derive the anisotropic cohesive law, we postulate the existence of a free energy density Φ(∆) per
unit undeformed area, that acts as a potential for the cohesive tractions, which are computed as:

T =
∂Φ
∂∆

. (5)

Restricting our analysis to isothermal processes, we consider a special form of energy which depends
only on the effective opening displacement δ and on one or more internal variable q (to keep track
of the evolution history and account for irreversibility):

Φ = Φ(δ, q). (6)
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with
δ =

√
β2

[
(δ1)2 + α2(δ2)2

]
+ (δn)2, (7)

where α and β are material parameters that account for anisotropy [15, 17].
In eq. (7) the quantities δi are the contravariant components of the displacement jump respect to

the dual basis {mi}i=1,2,3 on the cohesive surface. The covariant basis {mi}i=1,2,3 is defined by
the orientation of the three principal anisotropy axes {M i}i=1,2,3 under change of the configuration
of the body due to a motion. It is worth noting that the principal anisotropy directions define an
orthonormal basis in the reference configuration, but they are described by a general basis under a
generic deformation mapping. Here and in the follows, we assume M3 = N , m3 = n and m3 = n
where N and n are the reference and the actual normal to the cohesive surface. The differentiation
of the free cohesive energy density (6) with respect to ∆i leads to an anisotropic cohesive law of the
form:

T =
∂Φ
∂δ

∂δ

∂∆
=

t

δ

[
β2

(
m1 ⊗m1 + α2m2 ⊗m2

)
+ n⊗ n

]
∆. (8)

In order to define an anisotropic fracture criterion, we notice that the orthotropic structure of
the material assigns a different resistance to each direction. Thus, we generalize the anisotropic
model used in Yu et al. [13] and introduce an ellipsoidal resistance surface, see Figure 1. At each

1
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G

Figure 1: Resistance surface in the reference configuration. The minimum resistance is on the direction normal
to the fiber plane, G3 .

principal material direction is associated in general a different tensile resistance, i.e. σc 1 ≥ σc 2 ≥
σc 3. We assume that the corresponding critical energy release rates are Gc 1 ≥ Gc 2 ≥ Gc 3. The
material resistance σc(N) in the direction N is given by the solution of the system that represents
the intersection of such direction N and the resistance ellipsoid. It can expressed as [17]:

σc(N) =
[
M2

1

σ2
c1

+
M2

2

σ2
c2

+
M2

3

σ2
c3

]−1/2

. (9)

The test concerning the insertion of a cohesive surface is performed at the end of each loading step.
At every interelement surface, an “effective” traction T is computed and compared with the material
resistance associated to the normal:

T =
√

(Tn)2 + β−2 [(T 1)2 + α−2(T 2)2] ≤ σc(N) (10)
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If the criterion is violated, the topology of the mesh is updated with the insertion of a new surface
with the algorithm described in [16].

The value of the normal strength σc(N) it then adopted to define the cohesive properties of the
cohesive surface newly inserted. The corresponding anisotropic cohesive law is characterized by a
scaling dependent on the direction of the axis, see Figure 2.
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Figure 2: Set of cohesive laws considered in the present model. Both cohesive strengths and critical energy
release rates are scaling proportionally. The maximum opening displacement ∆c does not change with the
orientation.

3 NUMERICAL RESULTS
Numerical analyses of arterial dissection have been carried out by using a finite element code

equipped with explicit fracture algorithm, able to deal with anisotropic materials and anisotropic
cohesive resistance according to the previous definitions [17].

The experimental results presented in [8], concerning a program of dissection tests on media layer
of human arteries, are the basis of the present study. Finite element simulations of the experiments
have been presented by Gasser et al. [18] by using the X-fem approach and a transversally isotropic
cohesive model. The numerical simulations in [18] have been replicated here, considering an equal
length, equal cross area specimen, and adopting the same material properties, in order to provide a
reference analysis.
The material properties adopted in the reference simulation are listed in Table 1 [18].

Table 1: Elastic and cohesive material properties for the two-fiber reinforced
material adopted in the simulation of the dissection in the aortic media.

K (kPa) µ (kPa) k1 (kPa) k2 (−) γ (◦) Gc (N/mm) Tc (kPa)

1.66 0.0162 0.0981 10 5 0.049 140

The specimen of human media is a rectangular strip 4.0 mm long, 0.6 mm wide, and 0.15 mm
thick, with 0.2 mm precrack. Plane strain conditions are assumed. The specimen is fully constrained
on the right side, while the two arms at the left side are pulled apart by applying a transversal
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Figure 3: Finite element mesh adopted for the reference analysis of dissection in an aortic media.

displacement normal to the strip axis. The displacement, 4 mm, is imposed at all the nodes belonging
to the free end of each arm, and is applied trough small quasi-static increments.
The mesh adopted for the reference analysis is reported in Fig. 3. It consists of 2529 nodes and
996 tetrahedral elements. The mesh size is h = 0.025 mm (fine mesh). Fig. 4(a) shows the final
configuration of the reference specimen. The applied displacement does not cause the full opening
of the specimen.

To evaluate the sensitivity of the numerical model to the mesh size, two additional calculations
have been carried out, with h = 0.05 mm (medium mesh) and h = 0.1 mm (coarse mesh). The
comparison is done in terms of pulling force, i.e. the numerical value of the nodal reactions divided
by the specimen width, versus the total separation of the two arms, see Fig. 5. It is evident the mesh
dependency of the model. In fact, the coarse mesh is not able to resolve the cohesive zone and the
average stress on the interface surface does not satisfy the fracturing condition (10). The medium
and the fine meshes are able to capture a response which in the average is close to the experimental
value reported in [8], 23 N/m, with a very nice correspondence for the fine mesh.

The way the cracks propagate depends mainly on the cohesive properties, i.e. the cohesive
strength and the fracture energy. The sensitivity of the model to the cohesive traction has been
investigated through a second set of numerical analyses with constant fracture energy Gc = 0.049
N/mm. The chosen values for the cohesive strength are reported in Table 2, together with the maxi-
mum and the average pulling force obtained from the numerical calculations. Fig. 6 reports the plots
of the force/width versus displacement gap. It is evident that a smaller cohesive strength provides a
smaller average pulling force. The reduced pulling forces corresponds to a reduced stretching and
thinning of the specimen, see Fig. 4(b) for the case Tc = 14.01 kPa.

The influence of energy fracture on the fracture initiation has been investigated by reducing the

Table 2: Effects of the cohesive strength Tc on the
average force/width response of the dissection.

Tc (kPa) Force/Width (mN/mm)

max value average value

(a) 14.01 6.09 5.20
(b) 56.04 12.38 10.32
(c) 112.08 19.98 16.00
(d) 140.01 23.95 18.45
(e) 168.12 28.11 20.70
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Figure 4: Deformed configurations of the aorta specimen after the application of the whole displace-
ment. Contour levels refer to the Cauchy stress component in the vertical direction, expressed in
MPa. (a) Reference case, Tc = 140 kPa. (b) Alternative case with reduced cohesive strength Tc = 14
kPa.
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Figure 5: Force/width versus gap displacement in the numerical analyses of the media dissection.
Effects of the mesh size (Tc =140.1 kPa).
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Figure 6: Force/width versus gap displacement in the numerical analyses of the media dissection.
Effects of the cohesive strength (fine mesh).
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cohesive energy from 1.4 N/mm [19] to 0.16 N/mm [3]. No remarkable differences on the crack
initiation and peeling force have been observed with respect to the reference cases.

4 CONCLUSIONS
A recently developed finite element model of anisotropic fragmentation, based on cohesive the-

ories [17], has been applied to the analysis of dissection of the media layer of a human artery.
A program of numerical analysis have been performed with the aim to investigate the influence of
the mesh discretization and of cohesive parameters on the separation process.
Additional sensitivity analyses are needed, which involve the elastic constants of the model and the
microstructure of the reinforcing fibers. In particular, it would be interesting to explore the effects
of the fiber orientation and dispersion.
This study represents a contribution to the development of a reliable model of the human artery able
to describe important damaging events like plaque ruptures and intramedial dissections.
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