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SUMMARY. In this paper we present the results of a linear stability analysis applied to an incom-
pressible flow in a three dimensional lid-driven cavity. Theprincipal goal is the evaluation of the
critical value of the Reynolds number and the main characteristics of the flow instability.

1 INTRODUCTION
The analysis of an incompressible flow in a squared lid-driven cavity is classical in fluid me-

chanics. In spite of the fact that is one of the most studied problem in this discipline, it is still an
interesting and challenging task if the three dimensional case is considered.

Starting from about 1960 [1, 3, 4], the interest of the researchers focused on the main character-
istics of the two-dimensional cavity. In particular, the effect of the Reynolds number on the size of
the principal vortex and the rise and development of the secondary eddies were considered in a great
number of published papers. The review article [5] reports the state of the art about the physics of
the cavity flow up to the end of the century. Moreover the complexity of the phenomenon pushed
many authors to adopt this problem as a test for numerical algorithm and to produce benchmark
solution. Among the others, those published by Ghia et al. and then by Schreiber at al. [6, 7], in the
two dimensional geometry, are still referenced.

Questions about the stationarity and/or uniqueness of the flow, as well as the development of
instabilities have been approached quite recently.

Following a linear approach to the stability problem, the three-dimensional instability of a two
dimensional base flow has been studied by several authors [8,9, 10] by means of the normal modes
hypothesis. The critical values of the Reynolds number was evaluated correctly by Albensoeder et
al. [10] as about 786, with a corresponding spanwise wave number equal to15.8.

When both the base flow and the perturbation field are two-dimensional, the critical Reynolds
number is higher and has been calculated by Auteri et al. [11]in the range [8017.6,8018.8].

The interest on the three-dimensional flow arose around 1970(i.e. [12]) and several papers de-
scribed the topology of the flow in cavities with different aspect ratio (see [13, 14, 15] for example).

By marching in time the nonlinear 3D Navier-Stokes equations in a cubic cavity, Iwatsu et al.
[16] observed unsteady flows for Reynolds numbers above 2000, but their results were not conclusive
about the onset of an instability. According to their numerical results they observed a change in the
behavior of the flow in the quite wide range 2000-3000.

The stability of the three-dimensional base flow was recently studied numerically by Kuhlmann
et al. [17] who considered both periodic and no-slip boundary conditions in the spanwise direction.
In particular, the case of no-slip boundaries was investigated only for an aspect ratio equal to 6.55
and the results were compared against experimental data andthe 3D stability analysis performed on
a 2D base flow.
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At the best of the authors knowledge the stability of the caseof a cubic cavity with rigid walls has
not been solved yet. For this reason the main goal of this paper is to evaluate, in the framework of
the linear stability theory, the critical value of the Reynolds number and to investigate the behavior
of the most important modes as a function of the Reynolds number.

In the next section the problem and the corresponding equations are formulated. Then the numer-
ical approach that has been adopted is described pointing out the main differences with the previous
numerical technique. In the last section the main properties of the base flow and the perturbation
field are shown and discussed.

2 PROBLEM FORMULATION
We consider an incompressible Newtonian fluid, with constant dynamic viscosityµ, in a cubic

cavity of sizesL × L × L, in thex, y, z-space. The flow is driven by the motion of the wall located
aty = L with constant velocityV = V ex.

In such hypotheses, the Navier-Stokes equations, governing the flow motion, are

∂v

∂t
+ ∇ · (vv) = −∇p +

1

Re
∇2

v, (1)

∇ · v = 0.

The definition of the Reynolds numberRe = ρV L/µ, whereρ is the constant density of the
fluid, completes the formulation of the problem.

The linear stability analysis is obtained by the decomposition of the flow field in a base, sta-
tionary and three-dimensional flow (v̄, p̄) and a small amplitude, time dependent, three-dimensional
perturbation (v′, p′).

The base flow (̄v, p̄) satisfies the steady version of equations (1), with the following boundary
conditions:

v̄(x = 0) = 0 , v̄(x = L) = 0

v̄(y = 0) = 0 , v̄(y = L) = V ex

v̄(z = 0) = 0 , v̄(z = L) = 0

The perturbation field (v′, p′) is governed by the following set of linearized Navier-Stokes equa-
tion,

∂v
′

∂t
+ v̄ · ∇v

′ + v
′ · ∇v̄ + ∇p′ =

1

Re
∇2

v
′ (2)

∇ · v′ = 0

with homogeneous boundary conditions.
Solutions of the Eq.(2) are searched as normal modes

[v′(x, y, z, t), p′(x, y, z, t)] = [v̂(x, y, z), p̂(x, y, z)] exp[σt] + c.c. (3)

whereσ ∈ C is the eigenvalue andc.c. means the complex conjugate of the preceding expression.
The real part ofσ gives the growth or decay rate of the mode, while the imaginary part describes the
oscillating nature of the mode.

Both the base flow and the stability equations, both written in a conservative form, are discretized
by mean of a second order centered finite-difference scheme on a smoothly varying staggered grid.
In order to capture the boundary layers forming at high Reynolds number, points are clustered near
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the walls by using a quadratic mapping: in this way the grid spacing in the center of the cavity is
approximately 8-10 times larger than in the wall regions.

The base flow calculations are performed with a multigrid solver employing FAS and the classical
DGS Vanka smoother. In order to achieve fast convergence a first order upwind discretization for
the convective terms is needed in the smoother, while a deferred correction outer iteration is used
to drive the residual of the second order discretization to machine precision. For smaller grids, the
results were validated with the solutions obtained by a direct approach in which a classical Newton-
Raphson procedure and a sparse LU-solver (UMFPACK) was usedto solve the nonlinear algebraic
equations derived by the discretization.

Once the base-flow was calculated, the stability analysis was performed by marching the lin-
earized equations in time and using the ARPACK library in order to determine the leading Floquet
multipliers of the system. In particular, a Crank-Nicholson scheme was adopted for the time dis-
cretization, leading at each time step to a linear set of equations which was solved with a multigrid
scheme similar to that used for the base-flow calculations. Since the convective terms were treated
implicitly, no stability restriction on the temporal time steps had to be imposed. This is an impor-
tant point, especially when a stretched grid is adopted. In order to validate the results, a different
approach was also used. In particular, a new algorithm basedon a subspace iteration coupled with
a multigrid solver and a SIMPLE smoother was adopted to extract the leading modes of the system.
Details of the algorithm can be found in ([2]). For the drivencavity case this last procedure was
slightly faster than the approach based on a time-marching scheme and the ARPACK library. Fi-
nally on the smaller grids, the results obtained by the two iterative schemes were also validated by
using a classical inverse-iteration algorithm, were at each iteration a large sparse matrix was inverted
with the UMFPACK LU solver.

Figure 1: Streamlines of the base flow in the symmetry planez = 0.5 andRe = 1000.
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Figure 2: Velocity profiles of the base flow on the centerlinesof the cavity. (a): (x, 0.5, 0.5),
(b):(0.5, y, 0.5), (c):(0.5, 0.5, z). Re = 1000

3 RESULTS

3.1 Base Flow
Calculations were performed for several Reynolds numbers using two different grids: a smaller

one containing32×32×32 points and a larger one with64×64×64 points. The results obtained at
different resolutions do not show any appreciable difference. For all the Reynolds numbers investi-
gated the base-flow shows a complex 3D structure with a symmetry plane located atz = 0.5, where
the spanwise velocity componentw is zero.

As an example, Figure 1 shows the streamlines in the plane of symmetry forRe = 1000. The
solution consists of a primary main 3D vortex located in the center of the cavity, together with two
smaller eddies arising in the corners of the stationary walls. As the Reynolds number is further
increased a third eddy emerges close to the upper part of the left vertical wall.

A comparison with the two-dimensional case (see for example[6]) shows that close to the sym-
metry plane the 3D flow has qualitatively the same behavior asthe 2D solution. Quantitative differ-
ences however exist and are due to the spanwise distributionof thew velocity component. Large
qualitative deviations from the 2D solution, instead, are observed close to the two vertical walls
parallel to the symmetry plane. In these regions, in fact, the no-slip conditions force the velocity
components to vanish.

Figures 2 and 3 report the profiles of the three velocity components, as well as its modulus, on
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Figure 3: Velocity profiles of the base flow on the centerlinesof the cavity. (a): (x, 0.5, 0.5),
(b):(0.5, y, 0.5), (c):(0.5, 0.5, z). Re = 2000

the centerlines of the cavity, in the two casesRe = 1000 andRe = 2000. Due to the symmetry at
z = 0.5 ((a) and (b) of Figs.2,3) thew component is identically zero in these pictures, while on the
centerline (0.5, 0.5, z) normal to the symmetry plane the distributions is symmetrical for u andv,
and anti-symmetrical forw.

On Fig. 2 we also reported, as small circles, the results of [18] where accurate numerical calcu-
lations have been carried out for the base flow atRe = 1000. The agreement between the two set of
data is very satisfactory.

3.2 Stability
The stability analysis was performed for different values of the Reynolds numbers by using

the iterative algorithms described in the introduction. Inparticular, the first10 dominant modes
were computed for values ofRe equals to10, 100, 500 800 1000, 1250, 1500, 1750, 2000 and
2100. According to the stability analysis, the steady symmetricbase-flow described in the previous
section becomes unstable forRe > 2000. This result was also confirmed by marching in time the
nonlinear 3D Navier-Stokes equations and checking for which Re the flow reached a steady state.
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Figure 4: Eigenvalues distribution in the complex plane. Top: Re = 1000. Middle: Re = 2000.
Bottom:Re = 2100.
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Figure 5: Contour surfaces of|v′| of the first unstable modes.Re = 2100. Top:σr = 0.040, σi = 0.
Middle: σr = 0.022, σi = 0.417. Bottom:σr = 0.0042, σi = 0.44.

Simulations were started using as initial condition a smallrandom fluctuation superposed to the
steady solution previously computed. The stability characteristics of the flow can be easily inferred
by looking at the spectra for different Reynolds numbers. Asan example, Fig. 4 shows the results
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Figure 6: Profiles of the real and imaginary part of the velocity of the first unstable modes on the
centerlines.Re = 2100. Top: σr = 0.040, σi = 0. Middle:σr = 0.022, σi = 0.417. Bottom:
σr = 0.0042, σi = 0.44.
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for Re = 1000, 2000, 2100. As noticed also in [16], where the flow in a 3D cubic lid-driven cavity
was investigated, in the neighborhood ofRe = 2000 the flow changes its behavior. According to our
stability analysis the least damped mode (a stationary mode), in fact becomes unstable just above
Re ≈ 2000.

Note that for all the Reynolds numbers considered in our analysis, both stationary and oscillating
modes were found and, atRe = 2100, the most unstable one is stationary. In order to better under-
stand the spatial structure of these modes, the iso-surfacecontours of the modulus of the velocity are
shown in Fig.4. In particular the first picture (Top of Fig.5)refers to the unstable stationary mode,
while the other two graphics refer to to the oscillating unstable modes. In all cases, the perturbation
field is localized around the planez = 0.5 (plane of symmetry for the base flow) in proximity of the
secondary eddy near the corner. The the fluctuating perturbations related to third unstable mode are
less localized and show a more complex spatial structure.

While the distributions reported in Fig.5, concerning the modulus of the velocity, show a sym-
metrical behavior, the profiles of the individual components of both the real and imaginary parts of
the velocity reveal the symmetric or anti-symmetric natureof the instabilities. Fig.6 (Top) refers
to the stationary mode and shows that thew component is symmetrical with respect to the plane
z = 0.5 and theu andv components are anti-symmetric. This behavior is opposite to what we
observed for the base-flow. Thus, the appearance of such instability is also associated with a loss of
symmetry of the steady solution. Similar spatial characteristics are observed for the second mode
(Fig. 6 Middle) where both the real and the imaginary parts are reported while an opposite behavior
can be noticed for the third mode (Fig.6 Bottom).
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