Linear stability analysis of three-dimensional lid-dmnveavity flow
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SUMMARY. In this paper we present the results of a linear ifitgtanalysis applied to an incom-
pressible flow in a three dimensional lid-driven cavity. Tgrécipal goal is the evaluation of the
critical value of the Reynolds number and the main charesties of the flow instability.

1 INTRODUCTION

The analysis of an incompressible flow in a squared lid-drivavity is classical in fluid me-
chanics. In spite of the fact that is one of the most studiedblem in this discipline, it is still an
interesting and challenging task if the three dimensioaakds considered.

Starting from about 1960 [1, 3, 4], the interest of the reslears focused on the main character-
istics of the two-dimensional cavity. In particular, théeet of the Reynolds number on the size of
the principal vortex and the rise and development of thersgaxy eddies were considered in a great
number of published papers. The review article [5] repdrésstate of the art about the physics of
the cavity flow up to the end of the century. Moreover the caxity of the phenomenon pushed
many authors to adopt this problem as a test for numericalithgn and to produce benchmark
solution. Among the others, those published by Ghia et al.then by Schreiber at al. [6, 7], in the
two dimensional geometry, are still referenced.

Questions about the stationarity and/or uniqueness of twg #s well as the development of
instabilities have been approached quite recently.

Following a linear approach to the stability problem, theetidimensional instability of a two
dimensional base flow has been studied by several authds 18] by means of the normal modes
hypothesis. The critical values of the Reynolds number watuated correctly by Albensoeder et
al. [10] as about 786, with a corresponding spanwise wavebeuequal tol5.8.

When both the base flow and the perturbation field are two-dgmaal, the critical Reynolds
number is higher and has been calculated by Auteri et al.ifilthle range [8017.6,8018.8].

The interest on the three-dimensional flow arose around i9¥.0{12]) and several papers de-
scribed the topology of the flow in cavities with differenpast ratio (see [13, 14, 15] for example).

By marching in time the nonlinear 3D Navier-Stokes equatimna cubic cavity, Iwatsu et al.
[16] observed unsteady flows for Reynolds numbers above, 20@their results were not conclusive
about the onset of an instability. According to their nuroakrresults they observed a change in the
behavior of the flow in the quite wide range 2000-3000.

The stability of the three-dimensional base flow was regesitidied numerically by Kuhlmann
et al. [17] who considered both periodic and no-slip boupdanditions in the spanwise direction.
In particular, the case of no-slip boundaries was investjanly for an aspect ratio equal to 6.55
and the results were compared against experimental dathead stability analysis performed on
a 2D base flow.



At the best of the authors knowledge the stability of the cdigecubic cavity with rigid walls has
not been solved yet. For this reason the main goal of thisrdage evaluate, in the framework of
the linear stability theory, the critical value of the Reldeonumber and to investigate the behavior
of the most important modes as a function of the Reynolds mumb

In the next section the problem and the corresponding empssire formulated. Then the numer-
ical approach that has been adopted is described pointirth@wmain differences with the previous
numerical technique. In the last section the main propedfehe base flow and the perturbation
field are shown and discussed.

2 PROBLEM FORMULATION

We consider an incompressible Newtonian fluid, with cortstignamic viscosityu, in a cubic
cavity of sizesl. x L x L, inthex,y, z-space. The flow is driven by the motion of the wall located
aty = L with constant velocityV = Ve.

In such hypotheses, the Navier-Stokes equations, gogtinéiflow motion, are

ov 1,
EﬁLV'(VV)—*VpﬁL EV v, (1)

V-v=0.

The definition of the Reynolds numb&e = pV L/u, wherep is the constant density of the
fluid, completes the formulation of the problem.

The linear stability analysis is obtained by the decompmsiof the flow field in a base, sta-
tionary and three-dimensional flow (p) and a small amplitude, time dependent, three-dimensional
perturbationy’, p’).

The base flow<, p) satisfies the steady version of equations (1), with the¥dahg boundary
conditions:

V(z=0)=0 ,v(z=L)=0

The perturbation fieldw’, p’) is governed by the following set of linearized Navier-Sislequa-
tion,
ov'

1
§+\7~VV'+V'~V\7+Vp':§V2V/ 2)

V-v =0

with homogeneous boundary conditions.
Solutions of the Eq.(2) are searched as normal modes

[V'(x,y,z,t),p'(m,y,z,t)] = [V(x,y,z),ﬁ(x,y,z)] exp[at] +cc (3)

whereo € C is the eigenvalue andc. means the complex conjugate of the preceding expression.
The real part ob gives the growth or decay rate of the mode, while the imagipart describes the
oscillating nature of the mode.

Both the base flow and the stability equations, both writteséonservative form, are discretized
by mean of a second order centered finite-difference schenaesmoothly varying staggered grid.
In order to capture the boundary layers forming at high R&gumber, points are clustered near



the walls by using a quadratic mapping: in this way the gridcspg in the center of the cavity is
approximately 8-10 times larger than in the wall regions.

The base flow calculations are performed with a multigrid#gsoémploying FAS and the classical
DGS Vanka smoother. In order to achieve fast convergencsteofider upwind discretization for
the convective terms is needed in the smoother, while a idefenrrection outer iteration is used
to drive the residual of the second order discretization &zmme precision. For smaller grids, the
results were validated with the solutions obtained by actis@proach in which a classical Newton-
Raphson procedure and a sparse LU-solver (UMFPACK) was tassalve the nonlinear algebraic
equations derived by the discretization.

Once the base-flow was calculated, the stability analyss peaformed by marching the lin-
earized equations in time and using the ARPACK library ineorth determine the leading Floquet
multipliers of the system. In particular, a Crank-Nichalsscheme was adopted for the time dis-
cretization, leading at each time step to a linear set of timpuswhich was solved with a multigrid
scheme similar to that used for the base-flow calculatiorceShe convective terms were treated
implicitly, no stability restriction on the temporal timéeps had to be imposed. This is an impor-
tant point, especially when a stretched grid is adopted.rdieioto validate the results, a different
approach was also used. In particular, a new algorithm basedsubspace iteration coupled with
a multigrid solver and a SIMPLE smoother was adopted to ekthee leading modes of the system.
Details of the algorithm can be found in ([2]). For the driveavity case this last procedure was
slightly faster than the approach based on a time-marclihgrse and the ARPACK library. Fi-
nally on the smaller grids, the results obtained by the t@miive schemes were also validated by
using a classical inverse-iteration algorithm, were ahéi@cation a large sparse matrix was inverted
with the UMFPACK LU solver.
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Figure 1: Streamlines of the base flow in the symmetry ptase0.5 and Re = 1000.
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Figute RESEIbE®y profiles of the base flow on the centerliogéghe cavity. (a): ¢,0.5,0.5),
(b):(0.5,4,0.5), (c):(0.5,0.5, z). Re = 1000
3.1 Base Flow

Calculations were performed for several Reynolds numb&rgyuwo different grids: a smaller
one containin@2 x 32 x 32 points and a larger one withl x 64 x 64 points. The results obtained at
different resolutions do not show any appreciable diffeeerf-or all the Reynolds numbers investi-
gated the base-flow shows a complex 3D structure with a symimpletne located at = 0.5, where
the spanwise velocity componentis zero.

As an example, Figure 1 shows the streamlines in the plangnofetry for Re = 1000. The
solution consists of a primary main 3D vortex located in theter of the cavity, together with two
smaller eddies arising in the corners of the stationaryswafls the Reynolds number is further
increased a third eddy emerges close to the upper part offthesttical wall.

A comparison with the two-dimensional case (see for exaf@)eshows that close to the sym-
metry plane the 3D flow has qualitatively the same behavith@2D solution. Quantitative differ-
ences however exist and are due to the spanwise distribotitive w velocity component. Large
qualitative deviations from the 2D solution, instead, abseyved close to the two vertical walls
parallel to the symmetry plane. In these regions, in faa,rb-slip conditions force the velocity
components to vanish.

Figures 2 and 3 report the profiles of the three velocity comepts, as well as its modulus, on
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Figure 3: Velocity profiles of the base flow on the centerliogéghe cavity. (a): £,0.5,0.5),
(b):(0.5,y,0.5), (¢):(0.5, 0.5, z). Re = 2000

the centerlines of the cavity, in the two cades = 1000 and Re = 2000. Due to the symmetry at
z = 0.5 ((a) and (b) of Figs.2,3) the component is identically zero in these pictures, while an th
centerline (.5, 0.5, z) normal to the symmetry plane the distributions is symmatrior v andv,
and anti-symmetrical fow.

On Fig. 2 we also reported, as small circles, the results&jfWhere accurate numerical calcu-
lations have been carried out for the base flodRat= 1000. The agreement between the two set of
data is very satisfactory.

3.2 Stability

The stability analysis was performed for different valuéshe Reynolds numbers by using
the iterative algorithms described in the introduction. pharticular, the firstt0 dominant modes
were computed for values dfe equals to10, 100, 500 800 1000, 1250, 1500, 1750, 2000 and
2100. According to the stability analysis, the steady symmdiase-flow described in the previous
section becomes unstable fBe > 2000. This result was also confirmed by marching in time the
nonlinear 3D Navier-Stokes equations and checking for wifle the flow reached a steady state.
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Figure 4: Eigenvalues distribution in the complex planep:TRe = 1000. Middle: Re = 2000.
Bottom: Re = 2100.
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Figure 5: Contour surfaces pf’| of the first unstable mode&e = 2100. Top: o, = 0.040, o; = 0.
Middle: o, = 0.022, ¢; = 0.417. Bottom:o,. = 0.0042, o; = 0.44.

Simulations were started using as initial condition a smatidom fluctuation superposed to the
steady solution previously computed. The stability chinastics of the flow can be easily inferred
by looking at the spectra for different Reynolds numbersaAsxample, Fig. 4 shows the results
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Figure 6: Profiles of the real and imaginary part of the veéjoof the first unstable modes on the
centerlines.Re = 2100. Top: o, = 0.040, o; = 0. Middle:.s,. = 0.022, o; = 0.417. Bottom:
o, = 0.0042, o; = 0.44.



for Re = 1000, 2000, 2100. As noticed also in [16], where the flow in a 3D cubic lid-driveavity
was investigated, in the neighborhoodrd = 2000 the flow changes its behavior. According to our
stability analysis the least damped mode (a stationary nauéact becomes unstable just above
Re =~ 2000.

Note that for all the Reynolds numbers considered in ounaiglboth stationary and oscillating
modes were found and, &e = 2100, the most unstable one is stationary. In order to bettermande
stand the spatial structure of these modes, the iso-swateurs of the modulus of the velocity are
shown in Fig.4. In particular the first picture (Top of Figrgfers to the unstable stationary mode,
while the other two graphics refer to to the oscillating ab$# modes. In all cases, the perturbation
field is localized around the plane= 0.5 (plane of symmetry for the base flow) in proximity of the
secondary eddy near the corner. The the fluctuating pettansarelated to third unstable mode are
less localized and show a more complex spatial structure.

While the distributions reported in Fig.5, concerning thedulus of the velocity, show a sym-
metrical behavior, the profiles of the individual comporsasitboth the real and imaginary parts of
the velocity reveal the symmetric or anti-symmetric natofr¢he instabilities. Fig.6 (Top) refers
to the stationary mode and shows that th&eomponent is symmetrical with respect to the plane
z = 0.5 and theu andv components are anti-symmetric. This behavior is oppositettat we
observed for the base-flow. Thus, the appearance of suabilitstis also associated with a loss of
symmetry of the steady solution. Similar spatial charésties are observed for the second mode
(Fig. 6 Middle) where both the real and the imaginary partsraported while an opposite behavior
can be noticed for the third mode (Fig.6 Bottom).
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