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SUMMARY. First a method is presented to define avelet-based time-dependent spectrum for
arbitrary non-stationary processes. Numericallt®sassessed in terms of statistics depending on
the spectral moments, prove satisfactory. Themtathod is used to estimate the time-dependent
spectrum of single-degree-of-freedom linear sysfems conjunction with an approximate
analytical relation between the input and the ouipavelet transform, already available in the
literature. The validity of such relation is foutaldepend on the system and the input parameters.
Interesting applications are feasible for lineasteyns with viscous dampers, subjected to seismic
input.

1 INTRODUCTION

Non-stationary random processes, such as seisntiomsmr transient loads on structures, play
a crucial role in many engineering applications.anmost general case, both the statistical
moments and the frequency content of the proceasigehin time. Earthquake records, for
instance, decay in time and exhibit a time-depenftequency composition due to the dispersion
of the propagating seismic waves [1]. Capturings¢hdeatures is critical in predicting the
structural response, as shown by a number of stinlihe recent decades [2,3].

The time-dependent frequency content of a signaha@be captured by ordinary Fourier
analysis since the Fourier transform provides dhly average spectral composition of a signal.
Then certain concepts of the traditional spedtabry have been adapted for analyzing non-
stationary processes. For instance, in the Wigrike-mhethod (WVM) a time-dependent spectrum
at timet has been defined as the Fourier transform of stamaneous correlation functid®(7, t),
which corresponds to the standard correlation fand®(7) with time lagz centered at time[4,5].
Alternatively, local information on the frequenogntent has been obtained by the so-called short-
time Fourier transform (STFT), i.e. by applying fheurier transform to “short windowed” data at
various time instants [6]. In this context, a tidependent spectrum is defined as the ensemble
average of the squared amplitude of the STFT ofplexress. However there exist inherent
limitations in the WVM and the STFT. The WVM canmeflect the local behavior of the process
at timet since the variable must be integrated over an infinite range to catmpghe Fourier
transform of the instantaneous correlation functgn t), due to the non-decaying nature of the
harmonic waves. On the other hand, all the STHIriEo coefficients feature the same frequency
bandwidth, that is approximatelyTlif T is the width of the time window.

The inherent limitations of the STFT can be overedwy wavelet analysis [7,8]. The wavelet
transform (WT) provides a time-frequency represimtaof a signal based on a double series of
basis functions named ‘wavelets’, generated byirsgand shifting a single “mother” function.



Scaling allows the time duration of the waveleto® adjusted according to the local frequency
content of the signal. This allows to capture highlow-frequency components with a significant
reduction of the computational effort as compaethe STFT.

Recently, wavelet analysis has been applied tonasti non-stationary spectra [9]. Specifically,
applications have concerned non-stationary prosessdonging to the class of Priestley's
oscillatory processes, for which an exact powercspm is defined [10]. The method, which
applies for arbitrary wavelet bases, has led tsfsatory results for both uniformly-modulated
and fully non-stationary processes.

This paper investigates further, potential appic®t of the method proposed in ref. [9]. It will
be shown that it provides a wavelet-based defimitibtime-dependent spectrum, with a consistent
physical meaning, for arbitrary (non-oscillatorgmstationary processes, that is for processes for
which no exact spectrum is defined. Then the acgucd the proposed wavelet-based spectrum
will be assessed in terms of statistics dependmtinee-dependent spectral moments. As a second
step, the method will be applied to estimate theetdependent power spectrum of single-degree-
of-freedom systems (SDOF), in conjunction with aralgtical relation between the response
spectrum and the mean-square value of the inputbBa8ed on a previous method [11]. The
validity of such relation will be assessed and riggéing applications will be found for linear
systems equipped with dissipative devices and stdgjeto seismic input.

2 WAVELET-BASED POWER SPECTRUM ESTIMATION
The continuous WT of an arbitrary stochastic preég}sis defined as

w(ab=—2 +°°¢,(%j (1) dt (1)

where ((t) is the mother waveleg is the scale anb the shift parameter. K{t) belongs to the
class of Priestley’s oscillatory processes [10kdohon the localization properties of the wavelet
functions, in ref. [9] the following expression Hasen found for the mean square value (m.s.v.) of
the WT

e[ (ay]=2rd |[w(a) $o b o 0

where W (w) = (277)7]/2-[ w(t)e’“dt is the Fourier transform of the mother wavelet Sqab)

is the time-dependent power spectral density (P&Dhe procesé(t). For S wb) the following
analytical form

s@§= 3 6(8]%( gal] ®

has been proposed, whexéb) are time-dependent constants arid the number of scales used to
estimate the sought PSD. The unknown constaiifsare computed by the set of equations
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for k=1,2,..n. In ref. [9] results compared to exact spectrumehlaeen found satisfactory. Also
the method enjoys computational efficiency sinea dbefficient matrix of the solving system (4)
is time independent and then shall be inverted onbe.

It is now of interest to assess whether and, irctwsense, the method proposed in ref. [9] can
be extended to arbitrary (i.e., non-oscillatoryp+stationary processes. To this purpose first note
that, for a given arbitrary non-stationary prockfs the continuous WT at a given scalecan be
approximated as

o2 ol e

whereb; =bz+ g d/2, beingd the support of the mother wavelglt). From Eq.(5),

%J.::W(q,b) & Jlﬁf:{j:w(:k_b) () d} & db

(6)
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where {—b)/a, = 7 and F(ab) is given by
1o~ iat
(wb)_E . f(t)e™ dt. (7)

That is,F(ab) is the Fourier transform as applied to the portid the procesft) spanning the
interval [bg,b;], centred at=b and whose lengthy; - b, = 3, d/2, depends on the scai.

Similarly it can be stated that, for ahybelonging to the intervaﬂb;, b:} , the WTW(a,b) can be
obtained by taking the inverse Fourier transforrthefr.h.s. of Eq.(6), i.e.

W(a.g=Ja| v w ) & @ (8)

In fact recognize that
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Then, based on Eq.(6) and Eq.(8) the identity
waz(ak, b) db= ZHQIJW( @a))|2| F(w, l)1|2 », (10)

can be set, which can be readily derived (detaits amitted for brevity) as the well-known
Parseval’'s identity [10]. Taking the expectationbaoith sides of Eq.(10) and assuming that the
m.s.v. ofW(ay,b) is constant over the time suppayt of the wavelet at scakg, lead to

JjE[Wz(%’ B]do= E W( a pj=27 ka_[7:|‘l’( @) 6o, ba, (11)

where

EU F (@ b)ﬂ |

é(a), b) = ad

(12)

is a time-dependent spectrum describing the frezjuenntent of the portion of the procdgy
spanning the interva[bg,b;] centred att=b. Eq.(11) is formally equivalent to Eq.(2): this

suggests that: (i) when the method in ref. [9]ppleed to arbitrary non-stationary processes, the
obtained wavelet-based spectrum (3) corresponds &stimate of the time-dependent spectrum in
Eq.(12); (ii) in this context, therefore, Eq.(3)ncdke consistently taken as veavelet-based
definition of the time-dependent frequency content of artranyi non-stationary process.

Since no exact spectrum can be defined for anrarpiprocess, the accuracy of the power
spectrum estimate (3) will be performed in termgiofe-dependent statistics depending on the
spectral momentan, [13], such as the instantaneous rate of zero ossorgs (IU), the
instantaneous rate of peaks occurrence (IP), tsritaneous bandwidth (IB) parameter given
respectively by

ab)= ™ N(p)=1 [T )= 1o (13a-c)

Also, the probability distribution that the proceemains below a given leveliin the time interval
(0, T) and the largest peak estimate cast within theméanke formulation
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pT(x)=eXp[_J‘Ta(r) dr} for a(b):%exp{— 2):“)]; E(xl):J.1 p* () du, (14-15)

will be considered.

2.1Numerical results

As a study case, consider the fully non-statiomancess generated according to the method in
ref. [12] and modeled based on the El Centro eaakeg, The m.s.v. of the WT is computed over
200 samples of the process of lengitk 30secand the proposed time-dependent spectrum (3) is
built by solving a set of Eqs.(4) whesg= ¢, for 0= 2 andj = 1,2....8.
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Figures 1-2: Time-dependent power spectrutn=at.5 sec and m.s.v.
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Figures 3-4: Time-dependent IU and IP.

As an example, Figure 1shows the time-dependenepspectrum (3) dt= 1.25 sec. Figure 2
through 8 shows the m.s.v. and the statistics (18)-for the entire duration of the process,
computed based on the spectral moments of the pgpestrum (3) (green line) and based on the
200 generated samples (red line). A substantiad gagreement is found for all the statistics
depending on the"2order spectral moments, while a certain loss ofigry is encountered for
the statistics depending on th8 dpectral moments, more sensitive to the actugbesiud the



spectrum. However, errors can be considered wihgineering margins.
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Figures 7-8: Largest peak estimate and probaluiétysity that the process remain below a level

3 SDOF SYSTEMS

Potential applications of the method proposed in [@ for the estimation of the power
spectrum of SDOF systems are investigated. Congligemotion equation of a SDOF in the form

(1) + 20 x(t) + e x() = (1) (16)

wheref(t) is a fully non-stationary processy is the natural frequency anflis the damping
coefficient. Apply the WT to both sides of the pms equation. It yields [11]

—az\Af;éza Y12 22 Wa(ba D ciw(a9=w (2} (17)

whereW,(a,b) andW(a,b) are the continuous WT of the input and the oupotess respectively,
defined by Eq.(1). Assume that the wavelet basia isittlewood-Paley basis, whose wavelet
functions at different scales feature a non-oveitagp and stepped frequency content
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0 otherwise

The WTW(a,b) in the r.h.s. of Eq.(17), at a given scajanay be then thought of as a stochastic
process of the time parametgrwhose frequency content spans non-overlappirguéecy bands
[a, orfa]. For the WTW(a,b) then holds the following harmonic approximatidi]

W, (a b = V( BSin(« brg) Sin(w, brg,) =
V b (29)
‘ { COE W, b+% %]— Cc{s(w1+w3)b+(on+(og]}

where wy=(0-1)772, wy=(0+1)772; ¢ and g are random variables uniformly-distributed oves th
interval [0,27%; V(b) is an envelope process with time-dependent mgwen by squaring and
averaging both sides of Eq.(19)

4E[W?(a b )= g V(] (20)

Based on harmonic balance over adjacent time iaterand neglecting the effects of the initial
conditions, in ref. [11] the following relation

E[w(a §]=3 € V' ]{gjé} (21)
has been provided between the m.s.\WVgh,b) andWi(a,b), wherek; andk; are
Koy = [‘*’3 - (0 a0, )ZT +[ZZ #2020, )]2 (22)

Based on Eq.(20) and Eq.(21), the time-dependemépspectrum (3) of the response reads

Sella .
where
Q,; =21y J’_:" ooa] ‘ o k; _E E[ij(bﬂ{kl_l+k_l} (24)

In ref. [11] the validity of the input-output relah (21) has not been discussed. This can be
pursued, however, by noting that Eq.(21) can baliealerived if the Duhamel integral is



manipulated as follows

w(a.=] Hor)w(an d=
Vi (b)

b (25)
T_[_mh(b—r){Cos[(a)lj - w, )r+(/§j -9, ]— Co%(a)1 +w, )r+¢ll +¢z]}d7

0

and the effects of the initial conditions are netgd. Based on Eq.(25), therefore, it can be stated
that Eqg.(21) holds true only whenever the impulssponse functiom(t) decays rapidly with
respect to the modulating functisfit). Therefore, in general Eq.(21) holds true depemain the
system parameters and on the input process as well.

To investigate the range of validity of Eq.(21) #rror measure

_ap[EMe(ag)-gw(ab]
o=z, el

max{W: (a.b} |

is introduced, WherW(a,b) is the WT computed based on Eq.(21). Figure 9 shiwe error
measure (26) for a variety of periodsand damping coefficients. The error map features a
resonance peak at the scale vadughat corresponds to a \WW(a,b) whose stepped frequency
band, see Eq.(18), include the natural frequenaph®fSDOF system. However it is evident that,
as { increases, for any periodand for any scale valug the error decreases significantly. This
suggests the potential use of Eq.(21) for strutaystems equipped with viscous dampers.
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Figure 9: Error measure (26) for different systearameters.



3.1Numerical results for systems with viscous dampers

Consider the steel MRF presented in ref. [14], esciigid to an ground motion oscillatory
procesd(t) = A(t)fy(t), with amplitude modulating function and PSD of gtationary part given by

s el -

where =20 rad/sec and=0.40. Following ref. [14], a classic damping is@sed and the
response according to th& node is considered. A comparison is made betweerrdsponses
obtained for the following system parameters:

| T, [sec] | wlradisec] | 2[%]
MRF 2.28 2.76 50
VS1 2.40 2.62 25
VS2 2.43 2.59 2

Table 1: System parameters [14]: MRF = system witliscous dampers; VS1-2 = system with
two different sets of viscous dampers.
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Figures 10-11: Steel MRF and time-dependent mof the response without viscous dampers
(system MRF in Table 1).

Digital simulation is performed by generating 20@mples of the ground motion. Figure 11
through 13 show the m.s.v. of th& tode response computed as spectral momgnif the
response power spectrum (23) (green line), as cardp®@ the m.s.v. of the response computed
over the 200 samples. As expected, very accuragltseare obtained as the damping level
increases.
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Figures 12-13: Time-dependent m.s.v. of the regpofisystems VS1 and VS2.

4 CONCLUSIONS

A wavelet-based time-dependent spectrum has begpoged for non-stationary processes.
Statistics depending on the spectral moments sufieta its validity. Applications to linear
systems, in conjunction with a specific relatiortivieen input and output WT, have been found
satisfactory for systems with viscous dampers usdsmic excitations.
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