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SUMMARY. The structural protein elastin endows large arteries with unique biological functionality
and mechanical integrity, hence its disorganization, fragmentation, or degradation can have impor-
tant consequences on the progression and treatment of vascular diseases. There is, therefore, a need
in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for
the wall to those that account for separate contributions ofthe primary structural constituents. In this
paper, we employ a recently proposed constrained mixture model of the arterial wall and show that
highly prestretched elastin contributes significantly to both the retraction of arteries that is observed
upon transection and the opening angle that follows the introduction of a radial cut in an unloaded
segment. We also show that the transmural distributions of elastin and collagen, compressive stiff-
ness of collagen, and smooth muscle tone play complementaryroles.

1 INTRODUCTION
Observations in the 1960s revealed that arteries retract when transected, thus suggesting the exis-

tence of an axial prestretch that defines the preferred length in vivo. Subsequent studies by [1], using
elastase and collagenase to selectively remove structuralcomponents from the wall, demonstrated
that nearly all axial prestretch in healthy arteries is due to the presence of intramural elastin, not
collagen.

Findings in the 1960s revealed further that there exists “some degree of stress even when there
is no distending pressure” in an artery [2]. Independent observations [3] confirmed the existence of
residual stresses in arteries, which appear to arise from nonuniform growth and remodeling processes
during development and can change in responses to disease orinjury in maturity [4]. Experiments
[5] using elastase, collagenase, and rapid freezing to selectively remove the three dominant structural
constituents from the wall, showed that these residual stresses depend primarily on intramural elastin,
not collagen or smooth muscle. Related to this finding, Zeller [6] suggested that net residual stresses
in the wall likely depend on different residual stresses within individual constituents, with elastin
having a residual tension and collagen a residual compression.

The existence of residual stress in an intact but traction-free excised arterial segment suggests a
net compressive stress in the inner wall and a net tensile stress in the outer wall, which is captured
easily by both standard stress analyses [7] and computational models of arterial growth [8]. Such
models have been based on materially uniform, phenomenological, constitutive relations, however,
and thus have not been capable of assessing the potential roles of individual constituents or how they
are formed during development or maturity. The goal of this paper, therefore, is to employ a recently
proposed materially nonuniform, structurally motivated,constrained mixture model of the arterial
wall to study the means by which elastin plays such an important role in the development of axial
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prestress and residual stress in the normal arterial wall, two key factors in mechanical homeostasis.1

We submit further that the constrained mixture model employed herein can be used to build residual
stresses into patient-specific computational models without the need to define spatially and tem-
porally changing opened configurations [9] which could be particularly advantageous in modeling
complex geometries.

2 METHODS
2.1 Theoretical Framework
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Figure 1: Schema of the constrained mixture model of an arterial segment consisting of elastin, multiple families
of collagen fibers, and smooth muscle.

In contrast to usual formulations, which use the “stress-free” configuration as a reference [9],
we use the current, stressed configuration as a computational reference. Hence, we prescribe the
kinematics for an idealized axisymmetric artery via two successive motions (Figure 1): mappings
of material points from thein vivo configurationβ0 (r, θ, z), associated with the finite extension
and inflation of an intact cylindrical segment, to an intact but traction-free excised configurationβ1

(ρ, ϑ, ζ) and then to a nearly stress-free, radially-cut configuration β2 (R,Θ, Z). The deformation
gradients for these motions are given by

F1 = diag

[

∂ρ

∂r
,
ρ

r
,
1

λ

]

, F2 = diag

[

∂R

∂ρ
,
(π − Φ0) R

πρ
,
1

Λ

]

, (1)

with Φ0 andΛ the residual stress related opening angle and axial stretch, respectively, andλ the
additional axial stretch related primarily to thein vivo “prestretch”. The total deformation gradient
is thus computed viaF = F2F1 and incompressibility is assumed to hold during transient motions,
hencedetF = 1 herein. The Cauchy stressσ associated with either the first(F = F1 with F2 = I)
or the total(F = F2F1) motion can be computed via

divσ = 0, σ = −pI +
∂W

∂F
F

T + σ
act, (2)

wherep is a Lagrange multiplier that enforces incompressibility,W is the net strain energy function
for the passive behavior of the wall, andσ

act accounts for smooth muscle activity. Consistent with

1By prestress, we mean stress in a body under a normal state of loading in the absence of what might be thought of
as additional, perturbing loads. By residual stress, we meanstresses that exist independent of applied loads, which must
self-equilibrate by definition.
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[10], we employ a rule-of-mixtures constitutive relation for the passive response, namely

W = φeW e (Fe) +

4
∑

c=1

φcW c (λc) + φmWm (λm) , (3)

whereφi are mass fractions for each structurally significant constituent andW i are individual strain
energy functions (i = e for amorphous elastin,i = c = 1, 2, 3, 4 for four fibers of collagen fibers,
andi = m for circumferentially oriented passive smooth muscle). Inequation (3)Fe, λc, andλm

represent the elastin deformation gradient, the collagen fiber stretch and the smooth muscle stretch
respectively. These quantities are defined with respect to individual stress-free configurations (see
Figure 1). The active smooth muscle contribution is given by[11]

σ
act = TM

(

1 − eC2
)

λm

[

1 −

(

λM − λm

λM − λ0

)2
]

eθ ⊗ eθ, (4)

whereTM, λM, andλ0 are the maximum (mass averaged) stress, the stretch at whichthe active force
generation is maximum, and the stretch at which the active force generation is zero, respectively.
Clearly, therefore, the active stress depends on a constrictor concentrationC and the muscle fiber
stretch. Whereas elastin is assumed to be distributed isotropically, families of parallel collagen
fibers are assumed to be oriented axially, circumferentially, and diagonally [12], and the smooth
muscle cells are assumed to be oriented circumferentially (cf. Figure 1), the constituent stretch
ratios in appropriate directionsλi are computed based on individual stress-free configurations for
each constituent and the constrained mixture theory is employed to relate their kinematics to overall
vessel motion [13, 10].

The key observation, consistent with what suggested in [6],is that elastin is produced during the
perinatal period and is normally stable thereafter [14, 15], thus it undergoes large multiaxial stretches
as the artery grows to the adult configurationβ0. On the other hand, collagen and smooth muscle
turn over continuously throughout life [15] and we assume that they are deposited at a preferred
stretch during maturity. These assumptions result in higher “prestretches” in elastin than in collagen
and smooth muscle in maturity.

Equilibrium of thein vivo configurationβ0, both local and global (integral) forms, requires

ra
∫

ri

(σθθ − σrr)
d̺

̺
= P, 2π

ra
∫

ri

σzz̺d̺ = f, (5)

whereri andra denote intimal and adventitial radii inβ0 andP andf are thein vivo luminal pressure
and axial force, respectively. In order to ensure radial equilibrium, with the givenin vivo luminal
pressureP , equation (5)1 is solved for the adventitial radiusra while the axial forcef is computed
explicitly from equation (5)2. In this way, in all the simulations, the material parameters, the intimal
radius, and the luminal pressure can be kept constant regardless the features of the distribution
of constituents prestretches and mass fractions, while a slight variation in the outer radius (less
than 0.1% of the reference value reported in Table 1 for the cases simulated) preserves the radial
equilibrium.

Equilibrium of the unloaded configurationβ1 similarly requires

ρa
∫

ρi

(σϑϑ − σρρ)
d̺

̺
= 0,

ρa
∫

ρi

σζζ̺d̺ = 0, (6)

3



Table 1: Parameter values used for the normal human basilar artery [10].

Prestretches and Elastic Parameters

Ge

hθ
= Ge

hz
= 1.4, Ge

hr
= 1/

`

Ge

hθ
Ge

hz

´♣, Gm

h
= 1.2, Gc

h
= 1.08

ce
= 237.6 kPa,cm

2
= 36.5 kPa,cc

2
= 560.4 kPa,cm

3
= 3.5, cc

3
= 22.0

Mass Fractions (dry weight)
φe

= 0.02, φm
= 0.76, φc

= 0.22
Muscle Activation Parameters

TM = 150 kPa×φm, λM = 1.1, λ0 = 0.4, CB = 0.68
In Vivo Geometry

ri = 1.42 mm,ra ≈ 1.60 mm♠

♣uniform elastin prestretches for the reference case, used if not specified otherwise.
♠slightly dependent on the distribution of constituents massfraction and prestretch, this reference
value corresponds to uniform distribution of constituentsandGe

hθ
= Ge

hz
= 1.4.

whereρi andρa denote intimal and adventitial radii inβ1. The two global equations can be solved to
determine the inner radiusρi and the netin vivo axial prestretchλ for prescribed material properties
and distribution of constituents prestretch and mass fraction.

Finally equilibrium of the radially-cut configurationβ2 can be satisfied via the following [8]

Ra
∫

Ri

(σΘΘ − σRR)
d̺

̺
= 0,

Ra
∫

Ri

σZZ̺d̺ = 0,

Ra
∫

Ri

σΘΘ̺d̺ = 0, (7)

whereRi andRa denote intimal and adventitial radii inβ2. Note that the additional global equilib-
rium equation enforces zero applied moments on the radially-cut section. The three global equations
can be solved to determine the inner radiusRi, the netin vivo axial prestretchΛλ, givenλ from
above, and the residual stress related opening angleΦ0 for prescribed material properties and distri-
bution of constituents prestretch and mass fraction.

2.2 Simulation Strategy
For illustrative purposes, we let the mechanical behavior of the elastin-dominated amorphous

matrix be isotropic and described by a neo-Hookean strain energy density function [16, 17]

W e =
ce

2

(

(λe
r)

2
+ (λe

θ)
2

+ (λe
z)

2
− 3

)

, (8)

wherec1 is a material parameter (Table 1) andλe
i (with i = r, θ, z) are the principal stretches of

the elastin, whose deformation gradient is given byF
e = FG

e
h (cf. equation 3).Fe = G

e
h in the

normal configuration (i.e., we do not delineate deposition stretches during development for elastin
and its subsequent stretch due to normal growth). Similarly, let the behavior of the passive smooth
muscle and collagen fibers be described by exponential forms[18]

Wm =
cm
2

4cm
3

[

ecm

3 ((λm)2−1)
2

− 1
]

, W c =
cc
2

4cc
3

[

ecc

3((λ
c)2−1)

2

− 1
]

, (9)

wherecm
2 , cm

3 , cc
2, cc

3 are material parameters (Table 1).
A fundamental assumption is that each structurally significant constituent can possess a unique

natural configuration. That is, individual constituents need not be unstressed when the overall tissue
is unstressed. It can be shown [13] that constituent-level stretches (e.g.,λe

r, λe
θ, λe

z, λc, λm) can be
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Figure 2: (a) Overall axial stretch from the intact, unloaded configuration and (b) opening angle due to a radial
cut, each for elastin prestretches distributed linearly through the thickness. Solid surfaces are for the intact
vessel whereas gray and black framed surfaces show results for inner and outer rings, respectively.

related to the tissue-level stretches (e.g.,λr, λθ, λz) via homeostatic deposition stretch (e.g.,Ge
hr,

Ge
hθ, Ge

hz, Gc
h, Gm

h ).
Equations (5)1, (6), and (7) were solved using a Newton-Raphson method to determine the yet

unknown kinematic parameters (i.e.,ra in β0, λ andρi in β1, andΦ0, Λλ, andRi in β2).

3 RESULTS
Henceforth, we focus on the basilar artery, one of the primary arteries suppling blood to the brain.

3.1 Uniform versus Linear Distributions of Elastin Prestretches
Recall, that elastin is produced primarily during the late prenatal and early postnatal periods,

starting in the inner layer of the wall and moving outward, and it is very stable [14, 15]. Hence, it is
reasonable to assume that elastin deposited earlier (innerlayers) experiences higher prestretches in
the finalin vivo configuration since it “remembers” a smaller original configuration and is stretched
more during arterial enlargement compared to the elastin deposited later (outer layers).

Given this hypothesis, we compared a uniform versus a lineardistribution of elastin prestretches
for different mean valuesG

e

h ≡ G
e

hθ ≡ G
e

hz or for differences∆Ge
h between the highest prestretch

at the inner wallGe
h(ri) = Ge

hθ(ri) = Ge
hz(ri) and the lowest one at the outer wallGe

h(ra) =
Ge

hθ(ra) = Ge
hz(ra) (i.e., ∆Ge

h = Ge
h(ri) − Ge

h(ra)). Figure 2 shows the predicted overall axial
prestretch and opening angle as a function of assumed valuesfor bothG

e

h and∆Ge
h for the intact

vessel (solid surfaces) as well as for inner (gray frame) andouter (black frame) rings obtained via
a circumferential cut at the mid-wall in thein vivo configuration [19]. As is evident from Figure
2(a), the unloaded length decreased with increases in the mean value of elastin prestretchesG

e

h but
was nearly insensitive to transmural differences∆Ge

h. This result is explained easily by noting
that the unloaded length is dictated by an equilibrium between compression of collagen and smooth
muscle and tension in the elastin; increasing the mean elastin prestretch shifted the equilibrium
towards a greater compression of collagen and muscle and thus towards a shorter unloaded length.
The unloaded length for the inner and outer rings increased and decreased, respectively, with∆Ge

h

because the mean elastin prestretch increased in the inner and decreased in the outer ring when the
magnitude of the distribution increased.

Figure 2(b) shows that the opening angle depended strongly on both the mean value and the
transmural distribution of elastin prestretches, but it was more sensitive to the latter. For∆Ge

h = 0
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Figure 3: Residual stresses in the intact, unloaded configurationβ1 of the whole vessel for uniformly distributed
prestretch of elastin:G

e

h = 1.55 (dashed),G
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h = 1.40 (solid), andG
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h = 1.25 (dotted).

−5.0

−3.0

−1.0

1.0

3.0

5.0

σ
ϑ
ϑ
 [

k
P

a]

−4.0

−2.0

0.0

2.0

4.0

σ
ζ
ζ
 [

k
P

a]

0.0 0.2 0.4 0.6 0.8 1.0
−0.3

−0.2

−0.1

0.0

0.1

normalized radial position

σ
ρ
ρ
 [

k
P

a]

(a)

(b)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

normalized radial position
0.0 0.2 0.4 0.6 0.8 1.0

normalized radial position

Figure 4: Residual stresses in the intact, unloaded configurationβ1 of the whole vessel for a fixed mean elastin
prestretchG

e

h = 1.40, but different linear transmural distribution in prestretches:∆Ge

h = 0.0 (solid),∆Ge

h =
0.1 (dashed),∆Ge

h = 0.2 (dash-dotted),∆Ge

h = 0.3 (dotted),∆Ge

h = 0.4 (+), and∆Ge

h = 0.5 (◦).

(i.e., a homogeneous material), both the whole vessel and each ring obtained from the circumferential
cut opened to the same angle because the unloaded radially-cut, configuration was stress free and
the circumferential cut had no further effect. For nonuniform prestretches(∆Ge

h > 0), however,
the inner (outer) ring experienced larger (smaller) opening angles because the mean prestretch was
higher (lower) than in the intact vessel; this is consistentwith reports by [19] and [5].

As is evident from Figure 3(a), larger opening angles for a whole vessel having greater mean
elastin prestretches can be explained by the increased circumferential residual stress in the intact
unloaded configuration, which leads to a larger opening moment – see equation (7)3. Figure 3 also
shows that increasing the mean elastin prestretches increased the residual stresses in the unloaded
configuration, but these residual stresses were not influenced qualitatively by the value ofG

e

h. In
contrast, Figure 4 shows that the magnitude of the transmural distribution in prestretch∆Ge

h influ-
enced the transmural distribution of the residual stressesqualitatively. Comparison of Figures 3 and
4 shows that variations in∆Ge

h influence the residual stresses in the intact unloaded configuration
much more thanG

e

h.
Consistent with the unloaded configuration depending mainly on the mean prestretch of elastin,

not its transmural distribution, increasing∆Ge
h led to less compression of inner layers and less

tension in outer layers, and thus a strong reduction of the opening angle. For high values of∆Ge
h,

the opening moment actually changed sign (Figure 4(a)) the vessel closed on itself after introducing
the radial cut (Figure 2(b)). Uniform distributions of prestretches never led to negative opening
angles, yet such results have been observed in arteries [20].

Figure 5 shows that introducing a single radial cut was sufficient to release all residual stresses
only if the material was homogeneous, otherwise the vessel was not stress free in the radially-cut,
unloaded configuration.
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hθ for different values ofK as given by equation (10) for
Ge

h(ri) = 1.55 andGe

h(ra) = 1.25. (b) Overall axial stretch and (c) opening angle as functions ofK.

3.2 Nonlinear Distribution of Elastin Prestretches
The assumption of a linear distribution of elastin prestretches through the wall implies that the

“rate of deposition” is somehow synchronized with arterialdevelopment. To study different hy-
potheses for the rate of deposition of elastin, we considered the following distributions of prestretch
in the axial and circumferential directions

Ge
h (r) = Ge

h (ri) + [Ge
h (ra) − Ge

h (ri)]

(

r − ri

ra − ri

)K

, (10)

whereK is a parameter governing the “deposition rate”.K > 1 models consequences of a higher
rate of deposition in early stages of development such that all inner layers experience similar elastin
prestretches in maturity (Figure 6(a)).K < 1 models a slower rate in early development such that
the inner layers experience a strong gradient in elastin prestretch while the outer layers vary less.
K = 1 recovers the linear distribution. We studied potential consequences of the rate of deposition
by fixing the prestretches in theintima (Ge

h(ri) = 1.55) andadventitia (Ge
h(ra) = 1.25) and varying

the rate parameterK.
The net unloaded axial stretch and the opening of the two rings obtained from both circumfer-

ential and radial cuts are shown in panels 6(b,c) as a function of K. The unloaded length decreased
monotonically withK for the whole vessel and both rings. This is consistent with our other findings
because increasingK leads to an increased mean prestretch and thus an increased retraction upon
unloading. Moreover, the orderλin < λ < λout was preserved regardless of the value ofK because
the mean elastin prestretch was higher in the inner ring thanin the whole vessel and it was higher in
the whole vessel than in the outer ring.

Figure 6(c) shows that the opening angle for the intact vessel was smallest forK = 1 and those
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for the inner and outer rings differed most whenK ≥ 1. K > 1 led, consistently with the aforemen-
tioned observations for linearly distributed prestretches, to larger opening angles compared to the
whole vessel. In contrast, the outer layers experienced a large transmural variation of prestretch with
radial position, which led to a negative opening angle (suchangles have been reported for different
arteries in [20]). ForK < 1 the high level of inhomogeneity within the inner ring overwhelmed
the effect of mean elastin prestretch, thus the inner ring opened less than the whole vessel while
the small inhomogeneity in the outer layer dominated the effect of the small mean prestretch and its
opening angle was larger compared to the whole vessel. The opening angles for both inner and outer
rings reinforce the finding, shown in Figure 2, that the distribution of elastin prestretch dominates the
effect of its mean value.K ≥ 1 are the most realistic results, predicting higher opening angles for
the inner ring compared to the outer ring [19]. Moreover, considering that most layers of elastin are
deposited and cross-linked during early development, the distribution of elastin prestretches given
by K ≥ 1 could be the most representative.

3.3 Brief Summary
Based on results presented thus far, it appears that a nonuniform distribution of elastin prestretch

with ∆Ge
h > 0 andK ≥ 1 is the most realistic – it yields a nearly uniform stress distribution through

the thickness at any pressure during the cardiac cycle (not shown) and it gives a larger opening angle
for the inner ring than the outer ring following a circumferential cut (Figure 6(c)). Moreover this type
of distribution could find its explanation in the developmental process as discussed earlier. For these
reasons we assumeGe

h(ri) = 1.55, Ge
h(ra) = 1.25, andK = 3 (see panel 6(a)) in the remaining

simulations.

3.4 Effect of Smooth Muscle Tone
All prior computations for both the intact and the radially-cut unloaded configurations were per-
formed with no smooth muscle tone (i.e., passive). Nevertheless, muscle tone can influence the
opening angle because it modifies the distributions of bothin vivo and residual stresses. Figure 7
shows that an increased smooth muscle tone increased the opening angle, consistent with data for
rat aorta reported by [21] and [22] as well as with simulations in [11]. Moreover, our simulations
showed that the opening angle of the inner (outer) ring is more (less) sensitive to smooth muscle
contraction than that for the whole vessel.
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Figure 8: Effect of one aspect of aging on the opening angle withGe
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3.5 Aging
It is reported in [23] that transmural gradients of elastin and collagen mass fractions reverse with age
in human aorta. In particular, the amount of elastin decreases and that of collagen increases from
the intima to theadventitia in young individuals; conversely, in aging the amount of intimal elastin
decreases while that of collagen increases and adventitialelastin increases while collagen decreases,
all without significantly changing total scleroprotein through the wall (i.e., the sum of elastin plus
collagen was reported to be nearly uniform and not a functionof age). Later studies on human aortas
[24] showed further that there is an increase in the opening angle with age.

We simulated effects of the redistribution of collagen and elastin in the wall reported in [23] by
assuming the linear distributions depicted in Figure 8 while keeping uniform the total mass fraction
of the scleroprotein (i.e.,ϕe(r) + ϕc(r) = 0.24 ∀r ∈ [ri, ra]). The simulations confirmed that a
gradual reversal in the gradients of elastin and collagen (as in aging) causes a monotonic increase in
opening angle.
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