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SUMMARY. A novel procedure for the identification of multiple concentrated damages on a 
straight beam, based on the knowledge of the relevant eigen-mode explicit expressions, is 
presented. The special analytical structure of the direct problem solution allows for the 
determination of explicit expressions also for the inverse dynamic damage identification problem. 
Namely the damage intensity and the position of the concentrated cracks may be identified 
through the knowledge of the component of two vibration modes in the cross sections between two 
cracks and the corresponding frequencies. 

1 INTRODUCTION 
Structural health monitoring techinques are often based on dynamic response-based damage 

detection methods. Most of the dynamics-based structural health monitoring techniques rely on 
free vibration of beams with cracks which is a problem extensively studied in the last three 
decades [1-6]. Many crack models have been proposed in the literature to simulate the effect on 
the dynamic behaviour of beams [7]. The most widely adopted model is that based on a local 
flexibility induced by a transverse edge crack which is simulated by an internal hinge endowed 
with a rotational spring at the location of the crack [1]. According to this model, the beam is 
subjected to a slope discontinuity at the location of the crack. 

A common approach to formulate the direct problem for the analysis of the free vibration of a 
beam with multiple cracks is to divide the beam into sub-beams with different modal displacement 
functions for each sub-beam. Therefore, in case of n-cracks in the beam, four boundary conditions 
and 4n continuity conditions have to be employed, and the eigenvalue equation of the problem is 
expressed by a 4(n+1) order determinant equated to zero [1]. Recent studies aimed at finding more 
efficient approaches able to reduce the order of the determinant down to n+2 [2]. However, the 
most interesting approach is that presented by Li [3] proposing a determinant of order two, 
avoiding the fulfillment of the continuity conditions at the crack locations by means of a recursive 
expression.  

In this work an approach to study the free vibration of damaged beams based on modelling the 
cracks by means of distributions (generalised functions), such as the Dirac’s delta, is proposed. For 
the case of a beam with n cracks, the proposed approach leads to explicit expressions for the 
eigenmodes dependent on the intensities and positions of the damages and four integration 
constants, while the eigenvalue equation is obtained in explicit form by the evaluation of a fourth 
order determinant.  

On the basis of the explicit expressions provided for the eigenmodes a novel multiple damage 
identification procedure can be set, once at least the first two eigen-modes, together with the 



respective eigenvalues, are given by free vibration experimental tests. By equating the values of 
the first experimental eigen-mode to the given analytical explicit expression a non-linear set of 
equations is obtained. A suitable increment of variables to be identified leads to a triangular 
structure for the latter set of equations. A convenient closed form solution in cascade for the 
damage intensities under the hypothesis that the concentrated damage locations coincide with the 
measurement positions is obtained. In case the concentrated damages lie in between two 
measurements, the second experimental eigen-mode allows their localization by means of a 
numerical procedure which is however decoupled for each damage. 

2 THE DIRECT PROBLEM 
The differential equation governing the free vibration of a multi-cracked beam may be written 

in the following form: 
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= − −∑  describes a flexural stiffness with n cracks which are 

represented as n Dirac delta distributions ( )oix xδ −  in the flexural stiffness centred at cross-
sections , 1, ,oix i n= … . This model, already applied in static [8,9] and in stability [10], is 
equivalent to consider a straight beam with n massless elastic rotational springs.  By considering 
the non-dimensional coordinate ξ = x/L, the differential Eq. (1) takes the following form: 
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where the property ( ) ( )(1/ )oi oix x Lδ δ ξ ξ− = −  of the Dirac’s delta distribution has been 
exploited, and the dimensionless damage parameters ˆ /i i Lγ γ=  have been introduced. 

The solution of Eq. (2), with the use of separation of variables, can be given the following 
form: 
 ( ) ( ) ( ),u t y tξ φ ξ= . (3) 

Substitution of Eq. (3) in Eq. (2) yields to the following differential equation for modal 
displacements, that, after some simple algebraic manipulation, can be written in the form: 
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where the frequency parameter 4 2 4
o omL E Iα ω=  has been introduced. 

Eq. (4), by performing double differentiation with respect to ξ of the first term containing the 
Dirac’s delta distribution, and after simple algebra, may be given the following form:  
 ( ) ( ) ( )4v Bφ ξ α φ ξ ξ′ − =  (5) 
where the function ( )B ξ  collects all the terms with the Dirac’s deltas and their derivatives as 
follows: 
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The general explicit solution of Eq. (5) has been derived in [11] by making use of generalised 
functions and may be written as follows:    
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where: ( )i oiU ξ ξ− represents the Heaviside unit step function, /(1 )i i iAλ γ γ= − , with A an arbitrary 
constant, are the damage intensity parameters related to iγ , and the terms , , ,i i i iμ ν ζ η  are given by 
the following expressions:  
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The solution  given by Eq. (7) can also be expressed in the following more compact form: 
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where the compact notation ( ) ( )i i oiU Uξ ξ ξ= −  has ben adopted and, for simplicity, the 
following function ( ) ( ) ( ), sin sinhi oi oiS α ξ α ξ ξ α ξ ξ= − + −⎡ ⎤⎣ ⎦  has been defined. 

It is worth noting that the solution expressed by the Eqs. (7) or (9) is valid for the overall beam 
and for any number and positions of cracks, furthermore, it preserves the same analytical structure 
of the undamaged beam. Eqs. (7) or (9) can also be used for analysing the non-linear dynamic 
behaviour of multi-damaged beams with closing cracks [12] as well as for deriving the dynamic 
stiffness matrix of the multi-cracked beam with open cracks.   

3 THE INVERSE CRACK IDENTIFICATION PROCEDURE 
It is worth noting that, due to the analytical structure of Eq. (7), the values of the m-th mode 

shape ( )mφ ξ , except for the integration constants 1 2 3 4, , ,C C C C , depend only on the damages that 
are located at positions iξ ξ< .  

Considering the n+1 beam segments individuated by the cracked cross-sections, as reported in 
Figure 1, the solution for each segment, expressed for the overall beam by Eqs. (7) or (9), may be 
specialised, for each segment, as follows: 
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Figure 1: The beam segments between the ends and the cracked cross-sections.  

From the observation of the analytical structure of the explicit solution emerges that it 
possesses a triangular structure with reference to the intensity and positions of the damages, except 
for the integration constants whose values are influenced by the boundary conditions and by the 
damage intensities and positions as it has been shown in [11]. For the m-th mode shape ( )mφ ξ , the 
triangular structure of the Eq. (7), also maintained by its derivatives, can be highlighted as follows: 
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According to Eq. (11), the generic mode shape ( )ˆ
m oφ ξ  evaluated at abscissa ôξ  located 

between the abscissa 0 and the first cracked cross section ( 1
ˆ0 o oξ ξ< ≤ ) depends only on the 

integration constants 1 2 3 4, , ,C C C C . The value of the mode shape ( )ˆ
m okφ ξ  evaluated at the generic 

abscissa ôkξ  situated between the cracks k and k+1 ( 1
ˆ

ok ok okξ ξ ξ +< ≤ ), besides the integration 
constants, depends only on the previous damages, i.e. the damages collocated at positions  

1
ˆ,...,o ok okξ ξ ξ< . 

This particular analytical structure of the solution suggests two procedures for solving the 
inverse problem based on dynamic tests which are described and discussed in the following. The 
first approach accounts for position of the sensors coincident with the cracked cross-sections and, 
measuring one vibration mode, leads to explicit expressions of the damage intensities to be 
identified. The second procedure is able to provide both the positions and the intensities of the 
damages, based on the measurements of two vibration modes, by means of a numerical procedure. 
In particular the case of a multi-cracked free-free beam is treated and the reliability of the 
proposed procedures will be verified by means of finite element numerical simulations on 
damaged beams modelled by means of two-dimensional shell elements. 



3.1 Evaluation of the damage intensity with measurements at the cracked cross-sections 
The previously described analytical structure of the solution leads to an identification 

procedure which provides explicit expressions of the damage intensities as a function of the values 
of a mode shape (or its derivatives) at the damaged cross-sections, assuming that the 
measurements are taken at the damage positions. According to Eq. (11), the values of the m-th 
mode shape ( )m okφ ξ  at the abscissa okξ of the k-th crack depends linearly on the integration 
constants 1 2 3 4, , ,C C C C  and on the previous damages only 1 1,..., kλ λ −  located at the abscissae 

1 2 1, ,...,o o okξ ξ ξ −  as follows: 
 ( ) ( )1 2 3 4 1 1, , , , ,...,m ok m kC C C Cφ ξ φ λ λ −= . (12) 

If the beam is restrained by means of perfect constraints only two constants are needed to 
represent the corresponding mode shape and Eq. (12)  can be written as:  
 ( ) ( )1 2 1 1, , ,...,m ok m kC Cφ ξ φ λ λ −= . (13) 
Therefore in order to evaluate the n+2 unknowns (n damage intensities and 2 integration 
constants) the corresponding conditions can be obtained by equating the experimental and the 
theoretical results at n+2  cross sections. In order to take advantage of the triangular scheme of the 
solution, firstly it is convenient to identify the integration constants 1 2,C C , and afterwards the 
successive measurements will provide explicit expressions for each damage intensity as a function 
of the previously evaluated unknowns.  
The values of the integration constants can be easily identified considering one measurement of 
the first vibration mode at a position that precedes the first damage cross section 1ô oξ ξ< ,  and a 
further measurement corresponding to the first cracked cross-section 1oξ . By equating the 
experimental values with the theoretical expression, corresponding to the measured first frequency 
parameter 1

exα , the following linear system of two equations is obtained: 
 ( ) ( ) ( ) ( )1 1 1 1 2 1 1 1 1 1 2

ˆ , , , , ,ex th ex ex th ex
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In Eq. (14) the only unknowns are the integration constants 1 2,C C  which can be evaluated in 
closed form. Once the integration constants have been evaluated, the measurement at the second 
cracked cross-section, according to Eq. (13) written at abscissa  2oξ , leads to the evaluation of the 
first damage parameter 1λ , and so on. For the evaluation of the last damage intensity nλ  a further 
measurement located at a position that follows the final damaged cross-section is needed.    

3.2 Evaluation of both the position and the intensity of damages with measurements between 
cracked cross-sections 

If the damage positions are not known the beam may be instrumented with several sensors to 
verify the presence of damage between two measurement points. Assuming perfect constraint 
conditions, the value of the m-th mode shape ( )ˆ

m okφ ξ  at the generic abscissa ôkξ , where the 

sensor is located, depends linearly on two integration constants ( 1 2,C C ) and on the previous 
damage intensities ( 1,..., kλ λ ) and nonlinearly on the corresponding locations represented by the 
abscissae 1 2, ,...,o o okξ ξ ξ . 

Once the integration constants have been identified as in the procedure outlined in section 3.1, 
the n damage intensities and the corresponding positions can be obtained by equating the 
experimental measurements and the theoretical expressions of two vibration modes m,s, for each 
segment of the beam between two subsequent cracks, as follows:  
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and solving with respect to ,k okλ ξ  the nonlinear sistem (15) by means of a suitable numerical 
procedure. Also in this case, in which the damage positions are not known a priori, in order to take 
advantage of the triangular scheme of the solution, it is convenient to evaluate, first, the 
integration constants and than proceed to the evaluation of the damage intensity and location, 
crack by crack, starting from the first crack. 

4 IDENTIFICATION OF MULTIPLE CRACKS ALONG A FREE-FREE BEAM 
In this section the closed-form solution presented in Eq. (9) is adopted to treat the case of a 

Free-Free Euler-Bernoulli beam and the inverse problem will be formulated.  
For a Free-Free beam, the boundary conditions at the left and right ends may be written as 

 ( ) ( ) ( ) ( )0 0; 0 0; 1 0; 1 0;φ φ φ φ′′ ′′′ ′′ ′′′= = = =  (16) 
by means of the conditions (16), the following expressions of the four integration constants for the 
k-th vibration mode can be derived: 
 1 2 3 4; ; ;k kC C C C C C C Cϑ ϑ= = = =  . (17) 

Therefore the explicit expression of the generic vibration mode of a multi-cracked free-free 
beam may be written as.  
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It is worth noting that, due to the analytical structure of Eq. (18), the values ( )kφ ξ  depend only 
on the damages that are located at positions iξ ξ< , namely: 
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According to the procedure described in section 3.1, it is possible to identify the presence and 
quantify the damage at the cross-sections where the measurement sensors are located. The 
procedure is based on the knowledge from experimental tests of at least a frequency 
parameter ex

mα  and the corresponding mode ( )ex
m ξφ . In the following, reference to the first 

frequency 1
exα  and the corresponding vibration mode 1 ( )ex ξφ  is made. It is assumed that at the 



abscissae ô
ξ and 1n̂

ξ
+ , where the first and the last sensors are located, no damage occurs, while the 

other n instruments are located at the cracked cross-sections, 1,...,o onξ ξ , as depicted in Figure 2.     

 

Figure 2: Crack and sensor positions along the beam span.  

Employing the first two measurements of the first eigen-mode 1
ˆ( )ex
oξφ , 1 1( )ex

oξφ , under the 
assumption that 1ô oξ ξ< , and by equating the experimental and the theoretical results, according to 
Eq. (17), the following system of equations is obtained: 
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from which the following values of the constants C and 1ϑ  are derived in explicit form: 
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Equating the measurement at the second cracked cross-section 1 2( )ex
oξφ  at 2ξ to the theoretical 

expression 1 2( )th
oξφ  of the first mode leads to the following equation: 
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in which the only unknown is the extent of first damage 1λ  present at 1oξ . Once the first damage 
has been identified, the second damage intensity 2λ  can be obtained by means of the further 
measurement 1 3( )ex

oξφ  at 3oξ  and so on. The intensity iλ  of the generic damage can be written 
explicitly as follows: 
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If there is no crack at the cross-section oiξ , the identified damage parameter iλ  given by Eq. 
(23) will be zero, indicating the absence of damage.  

On the other hand, in the case the measurement positions are not coincident with the damage 
locations oiξ  (i.e. the sensor are placed at abscissae ôiξ  between damages 1

ˆ
oi oi o iξ ξ ξ +< < ), both 

intensity and damage position are unknown. The measurements of the second frequency and the 
corresponding eigen-mode provide the sufficient additional data, and, according to the procedure 



in section 3.2, Eq. (15) for the case under study, where the first and the second vibration modes are 
given by experimental data, can be written as follows: 
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The nonlinear sistem of equations (24) has to be solved with respect to oiξ , appearing in the 
terms , , ,i i i iμ ς υ η , and to the intensity iλ , by means of a numerical procedure, for each damage in 
cascade starting from the first damage. 

5 APPLICATION 
The damage identification procedure proposed has been tested against a finite element model 

of a cracked Free-Free beam and the results are briefly summarised in this section. 
A steel beam, free at its both ends, of lenght L=1.2 m with a rectangular cross-section (b=19.8 

mm, h=12.2 mm) has been considered for FEM simulation by making use of the code Sap2000®. 
The beam is subjected to 3 damages concentrated at the abscissae 1 0.2oξ = , 2 0.5oξ = , 3 0.7oξ = , 
whose intensities 1 2 30.0175, 0.0334, 0.1586λ λ λ= = = , are related, as described in [10], to the 
ratios of the crack depth to the cross-section heigth 1 / 0.375d h = , 2 / 0.5d h = , 3 / 0.75d h = , 
respectively. For this simulation, 11 measurements placed as in Figure 3 has been considered 
available and 3 of them are coincident with the damage positions according to the hypothesis in 
section 3.1. The beam has been modelled by means of shell elements and the results of the FEM 
modal analysis (natural frequencies and vibration modes) has been considered for the 
identification procedure.     

 
 
 
 
 
 

Figure 3: Crack and sensor positions along the beam span.  

According to the explicit solution proposed in Eq. (23), by making use of the first natural 
frequency and vibration mode, the damage intensity parameters iλ  can be evaluated for each 
measurement position and the results are reported in Figure 4 in terms of the ratio /id h  showing a 
maximum error of 7.8%. Eq. (23) provides zero values for the damage intensities for those 
measurements where the damage is absent.   

The same steel beam has been then considered subjected to 2 damages at 1 0.15oξ = , 
2 0.45oξ =  whose intensities 1 20.0334, 0.1586λ λ= = , correspond to 1 / 0.5d h = , 2 / 0.75d h = , 

respectively. The measurements are placed as in Figure 5 and they are not coincident with the 
damage positions according to the hypothesis in section 3.2. The first and the second natural 



frequencies and vibration modes of the beam, obtained by the FEM modal analysis, have been 
considered for the identification procedure. 

 

 
Figure 4: Identified damage intensity for each measurement position  

 

 

 

Figure 5: Crack and sensor positions along the beam span.  

The system of Eqs. (24) has been solved numerically for each segment of the beam between 
two measurements in order to identify the damage intensity and position of each damage 
separately.  

In particular, the solutions of Eq. (24a) and (24b) in terms of damage intensity iλ  are plotted 
against the damage position oiξ  for each interval; the intersection point between the two solutions 
provides the correct damage intensity and position. The results are shown in Figure 6 in terms of 

iλ  and of the ratio /id h  showing a maximum error of 2.6 % for the identified position and 7.0% 
for the identified intensity. For those intervals where the damage is absent, there is no intersection 
point between the solutions of Eqs. (24a) and (24b).    

6 CONCLUSIONS 
In this work a model for the Euler-Bernoulli beam with multiple concentrated cracks based on 

the generalised functions (distributions) have been adopted. Closed form solutions for the 
vibration modes have been presented in terms of intensities and positions of the damages and 
dependent on four integration constants to be determined by the standard boundary conditions. 
The latter solutions can be efficaciously employed to set an identification procedure for beams 
with multiple damages based on measurements of the mode shapes by vibration tests. In particular 
the advantage of the proposed procedure consists in a sequential identification of single damages 
either coincident with the position of the experimental measurements or lying in the beam 
intervals between two experimental measurements. 



Figure 6: Identified damage intensities between each measurement position 
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