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SUMMARY. An alternative approach for cohesive crack growtielastic media is proposed. Stan-
dard methods resort to the enrichment of displacementdifasmulations to model the cohesive
crack through ad hoc displacement jump interpolations. greposed method is conversely based
on a mixed variational principle that inherently allows fegular traction while discontinuous dis-
placements both in the continuous and discrete form. Ameite of the truly—mixed formulation
for macro—cracked media is herein presented along withwatgralgorithm that is able to cope with
pure mode | and mixed mode propagation in quasi—brittle rizd¢e To assess the capabilities of the
method a few numerical simulations are performed on diffekénds of concrete specimens. The
size effect with respect to three—point bending beams iy/firsrestigated through pure mode | sim-
ulations. Predictions of crack paths in mixed mode growthsatbsequently addressed assessing the
mesh independence of the procedure.

1 INTRODUCTION

An alternative approach for cohesive crack growth in quarditte materials is addressed. Classi-
cal methods move from displacement—based formulationstlanriched to handle discontinuities
in the inherently continuous displacement field (see e gyettiended finite element method XFEM
[1] or the embedded discontinuity [2] approaches).
The herein adopted formulation is conversely based on g-tmiked discretization [3] that has
stresses as main regular variables, while discontinu@apatiements play the role of Lagrangian
multipliers. The approach directly handles the propagatib cohesive cracks in elastic media
through the appropriate inclusion of interface energy tettmat enrich the formulation when a crack
is growing. Notably, no edge element is introduced but syimbé inherent discontinuity of the
displacement field is taken advantage of. Furthermoressstfiix continuity is imposed in an exact
fashion within the formulation and not as an additional wealkstraint, as classically done.
An algorithm capable of solving the variational settinghierefore derived, having the aim of han-
dling the propagation of a discrete crack within a continunedium. The evolution of the cohesive
zone makes the problem nonlinear, thus calling for ad hocqatores that manage numerical simula-
tions. To this purpose the crack length is assumed as theotiord parameter, i.e. a monotonically
increasing function that drives the loading process. Sihealiscontinuity of the displacement field
is only allowed at the mesh edges in the discrete formulaioremeshing technique is proposed
to align the element sides to the evolving crack path. Stége-Wads and growth directions are
computed resorting to the classical MTS (maximum tensikss) criterion [4], that may exploit the
accuracy in the evaluation of the stress field peculiar tdrtig—mixed setting.
A few simulations are provided along with comparisons withmerical results and experimental
data from established literature of the field. Pure mode lyaisare used to assess the capability
of the method to handle the size effect phenomenon. Globadnmnode simulations are therefore
performed to investigate the robustness of the resultstanddpability of the method to deal with



different meshes.

Concerning the ongoing research, reference is made to tredogenent of XFEM-like techniques
to allow crack propagation within the JM element and to theeesion of the presented framework
to the case of elasto—plastic media.

2 THE CONTINUOUS PROBLEM

Section 2.1 reports fundamentals on the truly—mixed fingenent formulation, as modified to
cope with the presence of a cohesive crack. The variatiaraidlation for the isotropic elastic
problem is detailed in [3], while modifications in case ofaited media are also discussed in [5]. To
complete the general framework, Section 2.2 discusseotiesitve constitutive laws as included in
the presented formulation and implemented in the numeaigalrithms.

2.1 Truly—mixed formulation for cohesive—cracked media

As detailed in Section 1, the peculiar benefits of the adoptiba truly—mixed method in the
description of cohesive—cracked media mainly descend themature of the fields involved in the
analysis of the elastic problem.
To introduce the continuous formulation let firstly considee case of a homogeneous domain
Q € R?, with regular boundarg$2, making also the assumption of a linear elastic isotropitenia
whose elasticity tensor is further denotedas As usual 9f2 is made of two complementary parts,

i.e. I'y andI';, where prescribed dlsplacemew and stresseg, are respectively enforced. Let
o denote the unknown stress fields andhe unknown dlsplacement field, whileis the square
integrable vector body load. The “truly—mixed” weak formtibn reads: finde, u) € H x W such
thatg - n |r,= f, and B

C 1o de—i—/leT udx—/ uy - (r-n)ds, Vre€H,
o= T T Q Ty
1)
/ig~gda::f/g~yd:c, Yo € W.
Q = Q-

wheren denotes the normal to the boundary and the relevant furadtapaces? andW may be
derived in a fairly natural way so that the integrals invalvie the above equations make sense. One
has that the stress field is the main variable of the formulation and must belong to régular
space: B

H:H(@;Q):{;ITU:TJ‘Z‘, T,‘jELQ(Q),QQGW}. (2)

Conversely, displacements play the role of Lagrangianiplidts and may also be discontinuous,
since the square—integrability is the only requirementgularity properties of the functionals, i.e.:
2
W =[L*(Q)]". (3)

From a mathematical point of view, the presence of a cohesaek implies that a localized discon-
tinuity arises in the displacement field, while continuifitioe stress—flux is preserved. This means
that two opposite side$;.; andT'.;, must be taken into account when a crack is developing along
T'., while the same - n characterizes both the edges. Due to the continuity of tiesstfield, one
may specialize the right hand side of Eqjh);, thus deriving the following term oR..:

/qu-(;-ﬂ)ds—/rﬂg-(;.Q)ds:/rc[u].(;ﬂ)d& @)
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where[[ - ] denotes the jump of the relevant quantity. Eqn. (4) cledrtys that the displacement
jump is computed as a difference between the values of theaet field on adjacent elements and
does not call for any enrichment of the discretization, sgeXFEM or the embedded discontinuity
approaches. In the framework of cohesive fracture one mexgtbre introduce a (rate—independent)
law, that is a generally nonlinear vector relation betwésndtress flux - n and the displacement
jump vector]u]} i.e. B

o-n=F([u]). (5)

Proceeding on a purely formal ground one may introduce terée of the operatdF and merging
Eqgns. (4) and (5), thus writing:

/rc Tull- (z-n)ds = /F F g n)- (z-n)ds. ©)

Eqgn. (6) turns out to be a complementary energy term thastakte account the presence of a
cohesive crack ofl.. Eqn. (1) may be therefore re—written according to the @aksompact form
of saddle point problems. In the specific case of “truly—rdi¥ermulation for cohesive crack media
one has the generally nonlinear statement: find:) € H x W such that - n |r,= f, and:

alg,7) +b(z,u) = flug.z-n), VIe€H,
(7)

b(g,v) =g(g,v), Vv e W,

where scalar products, -) may be straightforwardly derived from a comparison with E¢fr) that
refers to the uncracked medium. The only modification neédéake into account the complemen-
tary energy in Eqn. (6) affects the bilinear term, that noadse

alg,r)= [ C “lg:rde — Fla-n)- (z-n)ds. (8)
0= T,
Both the bulk elastic law and the nonlinear cohesive crasidige enforced in strong form according
to the above truly—mixed setting, depending on stress aagsstflux, respectively. The bulk integral
takes into account the energy contributions of the elastitenal, while the line one refers to the
cracked path. The presence of both energy contributioisamdl".. is the key to capture size effect
behaviors, see e.g. [4].

2.2 The cohesive law
At least in rate form, one may write the following matrix egpsion, that linearizes the traction—
separation relationship introduced in Eqn. (5):

la-nft | [ Ciu Ci2 [l lo-n|L .
= + , (9)
g nl) Ca Cao [u)y la-nl)
In the above equationg - n |1 is the normal traction anfde - » || the shear stress. The threshold
vector is denoted dso - n |*, whose entries are the the tensile strength of matefiaind the shear
strength of materiat?. [ull, stands for the opening displacement gnd}; denotes the sliding one,

while the entries of the matri® define the softening behavior in case of mode I, mode Il or thixe
mode fracture.



Towards the assessment of an algorithm based on the trutgdnrmulation, the inverse of Eqn.
(9) may be plugged in Eqn. (6) to write the relevant energggral onl'.. in case of a linearized
traction—separation relationship:

/Fc H:Q]'(Qﬂ)ds/Fcc_l(gﬂ)%;@)ds/ C Yo ) (z-n)ds. (10)

r‘C

According to notations introduced in Egn. (7), the right theside of the above statement may
be divided into two different parts. The first integral is &cf the expected contribution to the
complementary energy in the bilinear fou(o, 7). The second one has conversely the form of a
natural boundary condition whetg, = C~*(g - n)*, and may be therefore grouped in the term
flug,z - n).

In the following studies it will be assumed to cope with pureda | growth or free—sliding conditions
in mixed mode propagation, in agreement with [6, 7]. This nsghatC;; # 0, while Cas = C1o =

Co1 = 0. Referring to the shape of the cohesive law, a bi-linearesirfig curve for concrete is
assumed in agreement with the Peterson model, see e.g. [4].

3 THE DISCRETE PROBLEM

This section refers to the finite element discretizatiorhefformulation above presented. Fun-
damentals of the adopted discrete scheme are discussedtiarSe.1, while Section 3.2 presents
the algorithm used in the numerical simulations to handdectiack growth.

3.1 Discrete matrix vector equations

The “truly—mixed” setting calls for the non—trivial issuéproviding a suitable robustness to the
numerical scheme, since not so many finite element disatitizs are available in literature that
fully pass the inf—sup condition, see e.qg. [3]. Within a énsional framework, the herein adopted
JM composite element, introduced in [8], is one of the vewy fiegat are robust towards the stability
requirement.
The JM element is a triangular elemd@ntthat is further subdivided into three sub-trianglésDue
to the mixed nature of the variational principle, both straad displacement fields are separately
approximated. Within each sub-triandlg, the stress is linearly interpolated, while the continuity
of the stress—flux between inner edges is a priori imposeds Mbans that fifteen stress dofs are
needed. Three dofs are computed as the components of thegaveiress tensor on the whole
triangleT’. The remaining twelve dofs are derived from the stress—fluthe edges of’, i.e. two
stress—flux vectors are defined as dofs on each boundary oidinetriangle.
Moving to the approximation of the globally discontinuouspdacement field, an element—wise
linear discretization is adopted, i.e. two dofs at each raddbe main triangle completely represent
the cartesian components of the displacement field.
According to the discretization above introduced, Eqn. &) Egn. (10) generate the following
nonlinear discrete setting:

! M)

Eqgn. (11) highlights the dependence of each term on theaetedomain of integration, i.e. the
whole domairf2, the boundary with prescribed displacemdnt®r the cohesive path.. The entries
may be easily recovered from the bilinear forms of the camirs problem that were presented
in Section 2.1. The only terms that contain contributionmpated on the cohesive path are



the bilinear formsA,, and f. Denoting byA,,(?) and A,,(T'.) the relevant components of the
complementary energy depending on the domain of integratioe has:

AW(Q,FC):AW(Q)JFAM(FC):/QC_lg:;d:cf/F CYo-n) (z-m)ds.  (12)

Similarly, the right hand sid¢ may be written as:

F(Ta,T,) = F(Ta) + F(T.) = /

gd'(gﬂ)dS*/ C g n)(z-n)ds.  (13)
Ta e

Notwithstanding the contributions due to the cohesive patm. (11) preserves the classical com-
pact form of saddle—point problems. As a peculiar featunmized methods, the solving matrix is
non—positive definite and suitable solvers are needed tdi&édme arising indefinite linear systems,
see [9].

3.2 An algorithm for quasi—static cohesive crack propagation

This section points out the main features of an algorithnabégof solving the variational setting
previously derived, in the case of a discrete crack growthiwia continuum medium. During the
process, the evolution of the cohesive zone makes the probtmlinear, thus calling for ad hoc
procedures that manage numerical simulations.
According to [10], the crack length is assumed as the cditgpparameter, i.e. a monotonically
increasing function that drives the loading process. Théirt@ar cohesive law allows for a step—
wise linear procedure that computes, via an iterative sehé¢he elemental loads that open edge—
wise crack segments.
A local remeshing procedure is needed for mixed mode grovsérevthe crack path is not aligned
with the mesh. This procedure involves only a few elemerdsra the evolving mathematical tip of
the cohesive crack, thus requiring limited modificationthi® overall stiffness matrix at each step—
wise growth. The well-known maximum tensile stress ciiteti4] is herein adopted to manage
the fracture propagation, exploiting moreover the acourEche JM—based discretization in the
evaluation of the stress field. The crack growth is assumeaki® place when the principal stress
at the tip is equal to the the tensile strength of the matetialhile the direction of propagation is
derived as the perpendicular to the corresponding prihaiga of greatest tension.

4 NUMERICAL RESULTS

This section presents numerical simulations referringréek propagation in pure mode | and
mixed mode with the free—sliding assumption, as defined otiG@e 2.2. Firstly the capability of
capturing the deterministic size effect on a three—pointleg beam is investigated. Afterwards the
features of mesh independence of the proposed procedukesszd on mixed mode crack paths.

4.1 Size effectin mode | propagation

The first set of investigations focuses on the three—poinding specimen depicted in Figure 1
that has been discretized according to a mesh of &b triangular JIM elements, with 30 element
sides along the depth of the beam. The following mechanmarpeters are considered:

E =25127TMPa, v=0.1, of =2.81MPa, G;=T2Nm™".

The beam is used to perform numerical investigations fdeht values of the beam depthn
a wide range of experimental significance. The well-knowmavér of concrete specimens that
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Figure 1: A three—point bending specimen.
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Figure 2: Extended size effect law vs. numerical simulation

are geometrically similar, see e.g. [4], may be resumedhgtéihat large size beams have a lower
non—dimensional load—carrying capacity with respect talksize ones. These issues have been
intensively investigated via numerical methods, as in teof displacement-based formulations
[11] or X—FEM approaches [7].

To assess the capabilities of the method, the peak loadsteepivom the performed numerical
simulations are compared with an established analytigabsentation of the size effect. The so—
called extended form of the size effect law [12] ties the nmahstrength of the materialy =
Pz /bd, i.€. its ultimate nominal stress, to the size paramétérmay be written as:

d rq—1/2r
on =By |1+ D 5 (14)
0

where By and Dy are constants that characterize the material and the gdoateshape of the
structure, while- is a parameter tied to the range and type of the data to be fitted
Inthe case = 1 Eqn. (14) reduces to the classical size effect law [13] thewva to fit experimental



results with a very good approximation for a range up to abowo.

Dealing with numerical predictions achieved via piece-ediisear softening equations the accuracy
may be gradually lost for wider intervals, due to the asyripteehavior of the adopted interpolation
for small sizes, as pointed out in [14]. To cope with this &sgbe choice = 0.5 has been suggested
in [12] to produce the best fitting in the case of notched betvatsare analyzed via the cohesive
crack model.

Figure 2 shows that the achieved numerical results apprteimith high accuracy the curve derived
from Eqn. (14) along withr = 0.5, over a wide range of sizes. This assesses the capabilities o
proposed truly—mixed approach to deal with the determingéte effect in quasi—brittle materials.

4.2 Mixed mode propagation
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Figure 3: A four—point bending specimen.

The analysis herein presented refer to the non—symmetniepoint bending specimen depicted
in Figure 3. This geometry was originally studied in the wiikvia a displacement—based technique
and, subsequently, by [7], that implemented an enrichedWHtased procedure coupled with a J—
integral scheme to predict the crack growth.

The beam is herein analyzed by the proposed truly—mixeddtation and adopts the following
mechanical parameters from the above literature:

E = 28000M Pa, v =0.1, of =2.40MPa, Gy =145Nm "

Experimental evidences reported in [6] show that a curvedlcis expected to propagate from
the notch, if the load” is applied according to the scheme presented in Figure Grasg F'1 =
10/11F andF2 = 1/11F'. The crack starts with a strong deviation from the vertiazgtth, while
progressively turns towards the lower side of the beam vioilg a smoother path. As detailed
e.g. in [4], similar specimens are used as a benchmark tesassanerical methods for mixed
mode propagation, due to the difficulties that may be expeé&d in the prediction of this curved
trajectory.

The numerical simulations herein presented are performetivo different structural meshes: a
coarse discretization, called mesh 40x10, that has 85 Isrevttk10 edge—wise segment on the beam
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Figure 4: Detail of the deformed meshes in the region of tlaglcpath: discretization 40x10 (L);
discretization 80x20 (R).

depth and a finer grid, called mesh 80x20, that has 3301 nodkE3tvertical edge—wise segments.
Figure 4 shows a direct comparison of the predicted cradkgsafior each one of the two meshes
herein considered. Notwithstanding the remarkable diffee in terms of mesh refinement, the
achieved results exhibit a similar approximation of theckraajectory, that is in full agreement with
the referenced literature.

According to the above results, the proposed algorithmbiteha remarkable robustness towards
the refinement of the mesh used in the simulations. This mibanbshe truly—mixed discretization
allows for a suitable approximation of the stress field afcitaek tip in both the considered cases.

5 CONCLUSIONS

An alternative approach for cohesive crack growth in etastedia has been addressed, based
on the adoption of a truly—mixed discretization. While mokthe methods that are available in
literature call for ad hoc enrichments to model displacemenps, the adopted formulation seems
ideally tailored to cope with cohesive crack propagatiome Tegular traction and discontinuous
displacements peculiar to both the continuous and dissmtemes straightforwardly allow for the
extension of the truly—mixed formulation to macro—crackestlia. A growth algorithm that is able
to cope with pure mode | and mixed mode propagation underrédeedliding assumption has also
been presented and commented on.
The proposed procedure has been tested on concrete spedasting the capability of capturing
the deterministic size effect for the load—carrying capyaand the mesh independence towards the
prediction of crack paths in mixed mode growth. Further diguments include the implementation
of XFEM-like techniques to allow crack propagation withimetJM composite and extensions to
more complex dissipation modes.
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