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SUMMARY. An alternative approach for cohesive crack growthin elastic media is proposed. Stan-
dard methods resort to the enrichment of displacement–based formulations to model the cohesive
crack through ad hoc displacement jump interpolations. Theproposed method is conversely based
on a mixed variational principle that inherently allows forregular traction while discontinuous dis-
placements both in the continuous and discrete form. An extension of the truly–mixed formulation
for macro–cracked media is herein presented along with a growth algorithm that is able to cope with
pure mode I and mixed mode propagation in quasi–brittle materials. To assess the capabilities of the
method a few numerical simulations are performed on different kinds of concrete specimens. The
size effect with respect to three–point bending beams is firstly investigated through pure mode I sim-
ulations. Predictions of crack paths in mixed mode growth are subsequently addressed assessing the
mesh independence of the procedure.

1 INTRODUCTION
An alternative approach for cohesive crack growth in quasi–brittle materials is addressed. Classi-

cal methods move from displacement–based formulations that are enriched to handle discontinuities
in the inherently continuous displacement field (see e.g. the extended finite element method XFEM
[1] or the embedded discontinuity [2] approaches).
The herein adopted formulation is conversely based on a truly–mixed discretization [3] that has
stresses as main regular variables, while discontinuous displacements play the role of Lagrangian
multipliers. The approach directly handles the propagation of cohesive cracks in elastic media
through the appropriate inclusion of interface energy terms that enrich the formulation when a crack
is growing. Notably, no edge element is introduced but simply the inherent discontinuity of the
displacement field is taken advantage of. Furthermore, stress–flux continuity is imposed in an exact
fashion within the formulation and not as an additional weakconstraint, as classically done.
An algorithm capable of solving the variational setting is therefore derived, having the aim of han-
dling the propagation of a discrete crack within a continuummedium. The evolution of the cohesive
zone makes the problem nonlinear, thus calling for ad hoc procedures that manage numerical simula-
tions. To this purpose the crack length is assumed as the controlling parameter, i.e. a monotonically
increasing function that drives the loading process. Sincethe discontinuity of the displacement field
is only allowed at the mesh edges in the discrete formulation, a remeshing technique is proposed
to align the element sides to the evolving crack path. Step–wise loads and growth directions are
computed resorting to the classical MTS (maximum tensile stress) criterion [4], that may exploit the
accuracy in the evaluation of the stress field peculiar to thetruly–mixed setting.
A few simulations are provided along with comparisons with numerical results and experimental
data from established literature of the field. Pure mode I analysis are used to assess the capability
of the method to handle the size effect phenomenon. Global mixed mode simulations are therefore
performed to investigate the robustness of the results and the capability of the method to deal with
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different meshes.
Concerning the ongoing research, reference is made to the development of XFEM-like techniques
to allow crack propagation within the JM element and to the extension of the presented framework
to the case of elasto–plastic media.

2 THE CONTINUOUS PROBLEM
Section 2.1 reports fundamentals on the truly–mixed finite element formulation, as modified to

cope with the presence of a cohesive crack. The variational formulation for the isotropic elastic
problem is detailed in [3], while modifications in case of cracked media are also discussed in [5]. To
complete the general framework, Section 2.2 discusses the cohesive constitutive laws as included in
the presented formulation and implemented in the numericalalgorithms.

2.1 Truly–mixed formulation for cohesive–cracked media
As detailed in Section 1, the peculiar benefits of the adoption of a truly–mixed method in the

description of cohesive–cracked media mainly descend fromthe nature of the fields involved in the
analysis of the elastic problem.
To introduce the continuous formulation let firstly consider the case of a homogeneous domain
Ω ∈ R2, with regular boundary∂Ω, making also the assumption of a linear elastic isotropic material
whose elasticity tensor is further denoted asC . As usual,∂Ω is made of two complementary parts,

i.e. Γd andΓt, where prescribed displacementsud and stressesf
t

are respectively enforced. Let
σ denote the unknown stress fields andu the unknown displacement field, whileg is the square
integrable vector body load. The “truly–mixed” weak formulation reads: find(σ, u) ∈ H ×W such
thatσ · n |Γt

= f
t

and



















∫

Ω

C −1σ : τdx +

∫

Ω

div τ · udx =

∫

Γd

ud · (τ · n)ds, ∀τ ∈ H,

∫

Ω

div σ · vdx = −

∫

Ω

g · vdx, ∀v ∈ W.

(1)

wheren denotes the normal to the boundary and the relevant functional spacesH andW may be
derived in a fairly natural way so that the integrals involved in the above equations make sense. One
has that the stress fieldσ is the main variable of the formulation and must belong to theregular
space:

H = H(div ; Ω) =
{

τ : τij = τji, τij ∈ L2 (Ω) , div τ ∈ W
}

. (2)

Conversely, displacements play the role of Lagrangian multipliers and may also be discontinuous,
since the square–integrability is the only requirement on regularity properties of the functionals, i.e.:

W =
[

L2(Ω)
]2

. (3)

From a mathematical point of view, the presence of a cohesivecrack implies that a localized discon-
tinuity arises in the displacement field, while continuity of the stress–flux is preserved. This means
that two opposite sides,Γc1 andΓc2, must be taken into account when a crack is developing along
Γc, while the sameσ · n characterizes both the edges. Due to the continuity of the stress–field, one
may specialize the right hand side of Eqn.(1)1, thus deriving the following term onΓc:

∫

Γc1

u · (τ · n)ds −

∫

Γc2

u · (τ · n)ds =

∫

Γc

‖–
–u‖–

– · (τ · n)ds, (4)
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where‖–
– · ‖–

– denotes the jump of the relevant quantity. Eqn. (4) clearly shows that the displacement
jump is computed as a difference between the values of the relevant field on adjacent elements and
does not call for any enrichment of the discretization, see e.g. XFEM or the embedded discontinuity
approaches. In the framework of cohesive fracture one may therefore introduce a (rate–independent)
law, that is a generally nonlinear vector relation between the stress fluxσ · n and the displacement
jump vector‖–

–u‖–
–, i.e.

σ · n = F(‖–
–u‖–

–). (5)

Proceeding on a purely formal ground one may introduce the inverse of the operatorF and merging
Eqns. (4) and (5), thus writing:

∫

Γc

‖–
–u‖–

– · (τ · n)ds =

∫

Γc

F−1(σ · n) · (τ · n)ds. (6)

Eqn. (6) turns out to be a complementary energy term that takes into account the presence of a
cohesive crack onΓc. Eqn. (1) may be therefore re–written according to the classical compact form
of saddle point problems. In the specific case of “truly–mixed” formulation for cohesive crack media
one has the generally nonlinear statement: find(σ, u) ∈ H × W such thatσ · n |Γt

= f
t

and:







a(σ, τ) + b(τ , u) = f(ud, τ · n), ∀τ ∈ H,

b(σ, v) = g(g, v), ∀v ∈ W,
(7)

where scalar products(·, ·) may be straightforwardly derived from a comparison with Eqn. (1) that
refers to the uncracked medium. The only modification neededto take into account the complemen-
tary energy in Eqn. (6) affects the bilinear term, that now reads:

a(σ, τ) =

∫

Ω

C −1σ : τdx −

∫

Γc

F−1(σ · n) · (τ · n)ds. (8)

Both the bulk elastic law and the nonlinear cohesive crack law are enforced in strong form according
to the above truly–mixed setting, depending on stress and stress–flux, respectively. The bulk integral
takes into account the energy contributions of the elastic material, while the line one refers to the
cracked path. The presence of both energy contributions onΩ andΓc is the key to capture size effect
behaviors, see e.g. [4].

2.2 The cohesive law
At least in rate form, one may write the following matrix expression, that linearizes the traction–

separation relationship introduced in Eqn. (5):

{

| σ · n |⊥
| σ · n |‖

}

=

[

C11 C12

C21 C22

]

{

‖–
–u‖–

–
⊥

‖–
–u‖–

–
‖

}

+

{

| σ · n |⊥
| σ · n |‖

}∗

, (9)

In the above equation,| σ · n |⊥ is the normal traction and| σ · n |‖ the shear stress. The threshold
vector is denoted as| σ · n |∗, whose entries are the the tensile strength of materialσ∗

t and the shear
strength of materialσ∗

s . ‖–
–u‖–

–
⊥ stands for the opening displacement and‖–

–u‖–
–
‖ denotes the sliding one,

while the entries of the matrixC define the softening behavior in case of mode I, mode II or mixed
mode fracture.
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Towards the assessment of an algorithm based on the truly–mixed formulation, the inverse of Eqn.
(9) may be plugged in Eqn. (6) to write the relevant energy integral onΓc in case of a linearized
traction–separation relationship:

∫

Γc

‖–
–
u‖–
–
· (τ · n)ds =

∫

Γc

C−1(σ · n) · (τ · n)ds −

∫

Γc

C−1(σ · n)∗ · (τ · n)ds. (10)

According to notations introduced in Eqn. (7), the right hand side of the above statement may
be divided into two different parts. The first integral is in fact the expected contribution to the
complementary energy in the bilinear forma(σ, τ ). The second one has conversely the form of a
natural boundary condition whereud = C−1(σ · n)∗, and may be therefore grouped in the term
f(ud, τ · n).
In the following studies it will be assumed to cope with pure mode I growth or free–sliding conditions
in mixed mode propagation, in agreement with [6, 7]. This means thatC11 6= 0, while C22 = C12 =
C21 = 0. Referring to the shape of the cohesive law, a bi-linear softening curve for concrete is
assumed in agreement with the Peterson model, see e.g. [4].

3 THE DISCRETE PROBLEM
This section refers to the finite element discretization of the formulation above presented. Fun-

damentals of the adopted discrete scheme are discussed in Section 3.1, while Section 3.2 presents
the algorithm used in the numerical simulations to handle the crack growth.

3.1 Discrete matrix vector equations
The “truly–mixed” setting calls for the non–trivial issue of providing a suitable robustness to the

numerical scheme, since not so many finite element discretizations are available in literature that
fully pass the inf–sup condition, see e.g. [3]. Within a bidimensional framework, the herein adopted
JM composite element, introduced in [8], is one of the very few that are robust towards the stability
requirement.
The JM element is a triangular elementT , that is further subdivided into three sub-trianglesTj. Due
to the mixed nature of the variational principle, both stress and displacement fields are separately
approximated. Within each sub-triangleTj, the stress is linearly interpolated, while the continuity
of the stress–flux between inner edges is a priori imposed. This means that fifteen stress dofs are
needed. Three dofs are computed as the components of the average stress tensor on the whole
triangleT . The remaining twelve dofs are derived from the stress–flux on the edges ofT , i.e. two
stress–flux vectors are defined as dofs on each boundary of themain triangle.
Moving to the approximation of the globally discontinuous displacement field, an element–wise
linear discretization is adopted, i.e. two dofs at each nodeof the main triangle completely represent
the cartesian components of the displacement field.
According to the discretization above introduced, Eqn. (7)and Eqn. (10) generate the following
nonlinear discrete setting:

[

Aσσ(Ω, Γc) Bσu(Ω)
Buσ(Ω) 0

] {

σ
u

}

=

{

f(Γd, Γc)
g(Ω)

}

. (11)

Eqn. (11) highlights the dependence of each term on the relevant domain of integration, i.e. the
whole domainΩ, the boundary with prescribed displacementsΓd or the cohesive pathΓc. The entries
may be easily recovered from the bilinear forms of the continuous problem that were presented
in Section 2.1. The only terms that contain contributions computed on the cohesive pathΓc are
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the bilinear formsAσσ andf . Denoting byAσσ(Ω) andAσσ(Γc) the relevant components of the
complementary energy depending on the domain of integration, one has:

Aσσ(Ω, Γc) = Aσσ(Ω) + Aσσ(Γc) =

∫

Ω

C −1σ : τdx −

∫

Γc

C−1(σ · n) · (τ · n)ds. (12)

Similarly, the right hand sidef may be written as:

f(Γd, Γc) = f(Γd) + f(Γc) =

∫

Γd

ud · (τ · n)ds −

∫

Γc

C−1(σ · n)∗ · (τ · n)ds. (13)

Notwithstanding the contributions due to the cohesive path, Eqn. (11) preserves the classical com-
pact form of saddle–point problems. As a peculiar feature ofmixed methods, the solving matrix is
non–positive definite and suitable solvers are needed to handle the arising indefinite linear systems,
see [9].

3.2 An algorithm for quasi–static cohesive crack propagation
This section points out the main features of an algorithm capable of solving the variational setting

previously derived, in the case of a discrete crack growth within a continuum medium. During the
process, the evolution of the cohesive zone makes the problem nonlinear, thus calling for ad hoc
procedures that manage numerical simulations.
According to [10], the crack length is assumed as the controlling parameter, i.e. a monotonically
increasing function that drives the loading process. The bi–linear cohesive law allows for a step–
wise linear procedure that computes, via an iterative scheme, the elemental loads that open edge–
wise crack segments.
A local remeshing procedure is needed for mixed mode growth where the crack path is not aligned
with the mesh. This procedure involves only a few elements around the evolving mathematical tip of
the cohesive crack, thus requiring limited modifications tothe overall stiffness matrix at each step–
wise growth. The well–known maximum tensile stress criterion [4] is herein adopted to manage
the fracture propagation, exploiting moreover the accuracy of the JM–based discretization in the
evaluation of the stress field. The crack growth is assumed totake place when the principal stress
at the tip is equal to the the tensile strength of the materialσ∗

t , while the direction of propagation is
derived as the perpendicular to the corresponding principal axis of greatest tension.

4 NUMERICAL RESULTS
This section presents numerical simulations referring to crack propagation in pure mode I and

mixed mode with the free–sliding assumption, as defined in Section 2.2. Firstly the capability of
capturing the deterministic size effect on a three–point bending beam is investigated. Afterwards the
features of mesh independence of the proposed procedure aretested on mixed mode crack paths.

4.1 Size effect in mode I propagation
The first set of investigations focuses on the three–point bending specimen depicted in Figure 1

that has been discretized according to a mesh of about8.000 triangular JM elements, with 30 element
sides along the depth of the beam. The following mechanical parameters are considered:

E = 25127MPa, ν = 0.1, σ∗
t = 2.81MPa, Gf = 72Nm−1.

The beam is used to perform numerical investigations for different values of the beam depthd in
a wide range of experimental significance. The well–known behavior of concrete specimens that
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Figure 1: A three–point bending specimen.
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Figure 2: Extended size effect law vs. numerical simulations.

are geometrically similar, see e.g. [4], may be resumed stating that large size beams have a lower
non–dimensional load–carrying capacity with respect to small size ones. These issues have been
intensively investigated via numerical methods, as in the case of displacement–based formulations
[11] or X–FEM approaches [7].
To assess the capabilities of the method, the peak loads reported from the performed numerical
simulations are compared with an established analytical representation of the size effect. The so–
called extended form of the size effect law [12] ties the nominal strength of the materialσN =
Pmax/bd, i.e. its ultimate nominal stress, to the size parameterd. It may be written as:

σN = B0

[

1 +

(

d

D0

)r]−1/2r

, (14)

whereB0 and D0 are constants that characterize the material and the geometrical shape of the
structure, whiler is a parameter tied to the range and type of the data to be fitted.
In the caser = 1 Eqn. (14) reduces to the classical size effect law [13] that allows to fit experimental
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results with a very good approximation for a range up to about1 : 20.
Dealing with numerical predictions achieved via piece–wise linear softening equations the accuracy
may be gradually lost for wider intervals, due to the asymptotic behavior of the adopted interpolation
for small sizes, as pointed out in [14]. To cope with this issue, the choicer = 0.5 has been suggested
in [12] to produce the best fitting in the case of notched beamsthat are analyzed via the cohesive
crack model.
Figure 2 shows that the achieved numerical results approximate with high accuracy the curve derived
from Eqn. (14) along withr = 0.5, over a wide range of sizes. This assesses the capabilities of the
proposed truly–mixed approach to deal with the deterministic size effect in quasi–brittle materials.

4.2 Mixed mode propagation

Figure 3: A four–point bending specimen.

The analysis herein presented refer to the non–symmetric four–point bending specimen depicted
in Figure 3. This geometry was originally studied in the work[6] via a displacement–based technique
and, subsequently, by [7], that implemented an enriched XFEM–based procedure coupled with a J–
integral scheme to predict the crack growth.
The beam is herein analyzed by the proposed truly–mixed formulation and adopts the following
mechanical parameters from the above literature:

E = 28000MPa, ν = 0.1, σ∗
t = 2.40MPa, Gf = 145Nm−1.

Experimental evidences reported in [6] show that a curved crack is expected to propagate from
the notch, if the loadF is applied according to the scheme presented in Figure 3, assumingF1 =
10/11F andF2 = 1/11F . The crack starts with a strong deviation from the vertical notch, while
progressively turns towards the lower side of the beam following a smoother path. As detailed
e.g. in [4], similar specimens are used as a benchmark to assess numerical methods for mixed
mode propagation, due to the difficulties that may be experienced in the prediction of this curved
trajectory.
The numerical simulations herein presented are performed on two different structural meshes: a
coarse discretization, called mesh 40x10, that has 851 nodes and 10 edge–wise segment on the beam
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Figure 4: Detail of the deformed meshes in the region of the crack path: discretization 40x10 (L);
discretization 80x20 (R).

depth and a finer grid, called mesh 80x20, that has 3301 nodes and 20 vertical edge–wise segments.
Figure 4 shows a direct comparison of the predicted crack pathes for each one of the two meshes
herein considered. Notwithstanding the remarkable difference in terms of mesh refinement, the
achieved results exhibit a similar approximation of the crack trajectory, that is in full agreement with
the referenced literature.
According to the above results, the proposed algorithm exhibits a remarkable robustness towards
the refinement of the mesh used in the simulations. This meansthat the truly–mixed discretization
allows for a suitable approximation of the stress field at thecrack tip in both the considered cases.

5 CONCLUSIONS
An alternative approach for cohesive crack growth in elastic media has been addressed, based

on the adoption of a truly–mixed discretization. While mostof the methods that are available in
literature call for ad hoc enrichments to model displacement jumps, the adopted formulation seems
ideally tailored to cope with cohesive crack propagation. The regular traction and discontinuous
displacements peculiar to both the continuous and discreteschemes straightforwardly allow for the
extension of the truly–mixed formulation to macro–crackedmedia. A growth algorithm that is able
to cope with pure mode I and mixed mode propagation under the free-sliding assumption has also
been presented and commented on.
The proposed procedure has been tested on concrete specimens testing the capability of capturing
the deterministic size effect for the load–carrying capacity and the mesh independence towards the
prediction of crack paths in mixed mode growth. Further developments include the implementation
of XFEM-like techniques to allow crack propagation within the JM composite and extensions to
more complex dissipation modes.
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