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SUMMARY. Our research group at the University of Salernoeseloping since a decade a com-
puter code for the minimization of complex functionals, déhen descent methods. Recent applica-
tions have been concerned with masonry-like materialslifgbf thin walled tubes and Fracture of
two—dimensional brittle solids. The present study is basethe variational model for quasi—static
crack propagation proposed by Francfort and Marigo. Egsdbntheir model extends the classi-
cal Griffith’s energy criterion with a unilateral global nmmality property and an energy balance
condition. This is a typical problem of minimization withef discontinuities for which the main
unknown is the jump sdt. The variational model of Francfort and Marigo for crackgagation and
initiation has been recently implemented in our develogiode for elastic—brittle fracture. Actually
our approach lean on local rather than on global minimizaliot, in the present study, we restrict
to cases for which local and global minimization are expgttegive the same answers. With our
computer program, restricted to small strain plane eliagiénd based on classical triangular finite
elements, approximate solutions are searched by miniqnigatally) the potential energy with a
descent method. The potential energy is the sum of the b@lnstnergy defined over the triangles
and the surface fracture energy defined over the skeletdmeadfiangulation. The first, natural, vari-
ables we consider are the node displacements (possiblyrdisaous across triangle boundaries).
The second variables we consider are the node positiong irefarence configuration. By consid-
ering these positions variable and part of the minimizasiwategy, we allow for the skeleton of the
mesh to adapt to optimal fracture patterns. In the preserk war computer model is validated by
comparing our results with the predictions in terms of endggels, stress intensity factor and crack
orientation, of Linear Elastic Fracture Mechanics and titergon of maximum Energy Release Rate
for several Mode |, Mode Il load combinations.

1 INTRODUCTION

The finite element method is widely employed in fracture na@its modelling and many numer-
ical models for crack discontinuity simulations in brittteaterials, based on different finite element
approaches, can be found in the literature.

They can be mainly classified insmeared anddiscrete crack approaches. In the smeared mod-
els, the crack is smeared out into the material in a contisdashion so that this kind of models
can be managed numerically using conventiaifdlelements. Smeared cracks introduce softening
that produces strain localization into bands of zero widthis kind of localization is physically
incorrect and leads to numerically ill posed equationsesthe energy dissipation vanishes and the



solution is mesh dependent. In order to prevent this spsifimealization one needs to introduce an
internal length scale as a material parameter.

In the discrete approaches, the softening behaviour neguitom the fracture process is de-
scribed by using a traction- displacement relation on tlsedtitinuity surface (along a line in 2D),
whilst the bulk of the material is characterized by a stissain relationship. In energy terms there is
an interface energy density controlling the traction-dispment relation on the interface and a bulk
elastic energy density. For the numerical implementagpegcial element type and formulations are
necessary. Many different element formulations can bedaonihe literature to simulate the nucle-
ation and growth of discontinuities and cracks, in some efithihe finite elements are continuous
and the discontinuity can occur inside the elements (seand]2]).

In our 2D approach we consider special gap elements of zelntss placed along the edges of
continuous elements. Being the crack location and oriemtaiot known in advance, we adopt finite
elements based on variable meshes which give to the skebdétive mesh the ability to adapt to
optimal fracture patterns (see [3, 4, 5, 6, 7, 8]). From théheraatical point of view, our numerical
implementation of quasi-static brittle fracture is basedh® variational formulation of Francfort and
Marigo [9] the main difference being the fact that we rely ocdl rather that on global minimization.
Propagation of fracture is obtained by minimizing in a stgpstep process a form of energy that
is the sum of bulk and interface terms. Scope of the preserk i8ado present some numerical
experiments devoted to the comparison of our results widliyéinal solutions for crack propagation
based on classical fracture mechanics.

2 NUMERICAL STRATEGY
The approach we are dealing with is reported in details iraf&] it will be briefly summarized
for the reader’s convenience.

2.1 Preliminaries
Consider a two—dimensional body occupying in the original configuration a bounded plane
domain(2 and undergoing small deformations. Let

€= %(Vu + vu®) 1)

be the infinitesimal strain tensor, beinaghe displacement field defined ov@r The boundarp)
is partitioned into Dirichlet pard2 , and Neumann pafi() , where displacemenis and tractions
p are given respectively. We admit thatmay be discontinuous on a detc €2 assumed to belong
to an admissible set of cracks

T={Tc O\, s.t.Tisclosed, H(T') < oo} , 2)

H! being the one—dimensional Haussdorff measure.

The crack patterd’ is the most relevant unknown in fracture problems and therdms of
Ambrosio [10], valid in particular for Griffith’s type variinal formulations based on global min-
imizers, ensure thdt is sufficiently regular to be approximated by sets composertgular arcs,
such as edge elements, so tiat(T") coincides with the usual arc length and unit normaand
tangentt exist a.e. along'.

The jump ofu, denoted byu] = ut — u™ and resolved into two components relativentot

[u] =an+bt, (3



is defined in such a way that if is positive the corresponding points on the two oppositessiaf
the interface determine a vacancy.
Finally we assume
uc H(Q\T). 4)

2.2 Volume and surface energy densities

The material is assumed to be elastic and isotropic, thatasacterized by the elastic energy
density

p(e) = %()\*(‘mr.r-:)2 + 2ue - E) , (5)

defined ovef \ T', being\* andy the elastic moduli for generalized plane stress.
To model brittle fracture, we introduce the interface egetgnsity

0, a=0,b=0,
Ha,b) =47,  a>0, (6)
400, a<0or a=0,b+#0,

where~ is the surface energy density of the material.

2.3 The Boundary Value Problem
We consider quasi—static BVP’s. A typical example is repnésd by the plane strip of heigth
H and width B shown in Figure 3 to which we refer for notations. @fy, p = 0 and on
00p = X% U X a combination of relative displacementsis given. We assuma to be time
dependent and of the form
tyo = Ug(7), tgs = Upy(7). (7)

At any step of the loading process we seek equilibrium staftése strip as stationary points of the
functional

F(tiw) = [ ple)ix+ [ o(lul)ds ®
O\ r
under the condition (7). Actually, for arly € II", one could find thex corresponding t@' by solving
the problem
F°= min F(Iu). 9

ucH'(Q\I)
u=u on 9p

2.4 Space discretization

To discretize the problem we split the dom&innto triangles, as shown in Figure 3, and identify
I" with the skeleton of the triangulation. In order to dupleabdes and edges of the skeleton of
the mesh, we introduce special interface elements withthérkness placed along the edges of the
continuous elements.

2.5 Approximate surface energy density

In the numerical applications we approximate the equilifortrajectory of the system by consid-
ering crack propagation as based on critical points of tleegyn To get out of possible small energy
wells, either numerical (due to the finite element mesh) gisfal (due to fracture initiation), we
adopt an approximate relaxed form of the surface energyitge63.



On introducing the limit tensile stress, the limit shear stress,, the surface energy densiy
the shear stiffnesk and the function®, (a) andd.(b), depicted in Figure 1

2 aypo a o
Y1(a) = ’y+7’y2(e kbvo—Qarctan{e kbvo}) , (20)
T —
270 krb kmb\ 2
192(()) = W <kﬂ'b arctan |:27'O:| — 70 log 1 —+ <27_0) ]) y (11)
where )
-
Y= —F/—, 12)
2(5v/5 — 11)
the relaxed interface energy density is
B(a,b) = 91 (a) + e ™ a(b) . (13)
91 9g
A A
relaxed energy densu{:ﬁ: exact Griffith energy density
. ’} “cohesive” approximation . s g e o b
\ /”‘\inflecnon point o ) ’
“elastic” approximation
a. b.

Figure 1: The function’; (a) superimposed to the exact Griffith surface energy densitytha
functions(b).

Notice that although the density (13) has a shape close totliae approximate surface energy
density defined in [8], the main difference between themas &l parameters in the function (13)
have a clear physical meaning and no shape parameter istheede

2.6 Descent minimization

The potential energy is the sum of the bulk elastic energg e interface energy where the
densities (5) and (13) are defined on the continuous elemaedtsn the special interface elements,
respectively. At each step of the loading process, the Bdarc¢he minimum proceeds through the
nonlinear Polak—Rilgire Conjugate Gradient Method, that is an iterative det@sti¢ algorithms for
finding local minima of multivariate functions whose argurtgeare continuous. Chosen a starting
point Py, in the first iteration the search direction is taken as thgatiee gradient of the objec-
tive function atP,. Then the search directions are computed by Gram—-Schmigligation of the
residuals. The method is implemented in the open source Sardiace Evolver [11], a minimiza-
tion tool originally designed to find minimal surfaces shépg surface tension, such as foams, and
substantially modified by the authors in order to adapt ihtofurposes of the present study.



3 ANALYTICAL RESULTS

Path—independent integrals, derived from conservation,lare used in physics to calculate the
intensity of a singularity of a field quantity without knovgrithe exact shape of this field near the
singularity. Rice [12] introduced path—independent irgdsyinto fracture mechanics.

Consider a two—dimensional body of perimekewith prescribed displacement on the Dirichlet
part and tractions on the Neumann part of the boundary aneé-aepisting crack and assume the
coordinates are attached at the crack tip.

The potential energii of the body is given by

1= /wda—/tiuids. (14)
Q K

wherew = fog“ o;jde;j. Let us consider the tip of the crack underoing a virtual dispment by an
infinitesimal distancell oriented at an arbitrary angte so that the total energy release rate is

dIl dw du;
- = / Eda— /tiﬁdS. (15)
Q K
After some calculations (see [12] and [13])
11
CiTl =-—n;J; = —(Jicosa+ Jasina) . (16)
where 5
Uuj
;= — 17
Ji /wmt tj(@:@-)ds’ 17)
K

are the components of the-vector,m; are the components of the outward unit vector normal to the
curveK, ny = cos o andny = sin «. Jj is the “J—integral” as introduced by Rice [12] and it is path—
independent, provided that the integral along the cltingeirrounding the notch tip be evaluated in a
contraclockwise sense starting from the lower flat notcfaserto the upper flat surface, the enclosed
area in the curv& be in equilibrium and the energy densitybe a unique function of the strains.

On introducing the angle = arctan j—f, from the equation (15) we get

ai o 2 _
— = Ji+ Jicos(p—a)=G, (18)

G being the rate of change of potential energy associated avitbk advance introduced by Ir-
win [14]. The maximum rate is achieved far= ¢

It follows that onceG,,.x > G., G. being the material toughness, crack tip will advance along
anglea.

Let assume that the loading applied at remote consists ahhioation of horizontal and vertical
loadsq; andgs such thai, = ¢, tan 3, 3 being the load angle. The corresponding stress intensity
factorsK; and K at the tip of the crack are of the order@f,/7a andg,/7a, a being the crack
length.



In case of plane stress, the components oftheector are

K? + K? 2K Ky

J=—1—4 Jp =" 20
1 B ) 2 E ) ( )

whereE is the Young modulus. The crack tip will advance along thdeang

2K Ky

a = —arctan | —————
[K? + K7

} = —arctan [sin 23] . (21)

A plot of the crack angle: versus the load angjéis shown in Figure 2.
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Figure 2: The crack angle as a function of the load angle

4 NUMERICAL RESULTS

As a numerical application we consider the benchmark exanmgpiresented by the notched plane
strip of heigthH and widthB shown in Figure 3, to which we refer for notations.

On oy, p = 0 and ondNp = X° U £ a combination of relative displacemenisof the
form (7) is applied.

Though we could use the analytical solution of Section 3 asaditqtive guide, the quantitative
results are in this case different since the specimen hasite“fize” and the displacement not the
load is considered as the driving force.

We assum@J (1) = S (1) é1+ V. (1) é2 = S (7)(é1 +tan [ é;), whereU_is Uy or Uy andj
is the angle in between the displacement direction and theddal unit vectoé;. Therefore here
the angles is the displacement angle rather than the load angle.

Geometrical and material constants of the specimen aretespio the Table 1.

Table 1: Geometrical and material constants of the specimen

Height Length Thickness Young Modulus Poisson ratio
H (cm) L (cm) t (cm) E (Ncm—2) v
10.0 10.0 1.0 3.0 10° 0.0

The results of the computations are shown in termg,ofomponents and in terms of crack
pattern. In order to evaluate thie-vector the contour integral (17) should be calculated tmofipr-
tunately, it is quite unfavourable in a finite element modekaordinates and displacements refer
to nodal points and stress fields are generally discontswwer element boundaries. Hence, a
domain integral method is commonly used instead. Applylrggydivergence theorem, the contour
integral (17) can be reformulated as an area integral in tivedsions, over a finite domaif,
surrounding the crack front. Thé-integral is associated with a fictitious small crack adeatic
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Figure 3: The specimen: boundary conditions and initialhmes

giving all nodes on and inside a contaUs (the internal boundary d,) the displacement! and
leaving fixed at their original position all nodes on and @eésa contoulC; (the external boundary
of ©y), completely surrounding

Jol = / (a Ou; D, _ 85“’“) da (22)

Ot w
Y Ozy, Ox; Oxy,

Qo

wheredu;, is the shift of the crack front coordinates (i.e. the poinisaad inside’).

The method, suggested by Parks [15] and known as “VirtuatiCExtension” {CE), is quite
robust in the sense that accurate values are obtained etrequite coarse meshes.

The componeny; (respectively.Js) of the J—vector is computed by choosing tNEE parallel
(perpendicular) to the crack plane, id&:. has the direction of; (x3), da = dz1 (da = dz5).

In what follows, we considef, as a one—element crown, as shown in Figure 4 and employ
constant strain finite elements, so that we can rewrite thaten (22) as

N(Qo) (el) (el) (el)
=3 (o Oui 7 Oouy L ety _(er) D0uy, el
Trowr = <U¢j oxy, Oz T 9% %ij oxy, Ar'e (23)
el=1

whereN (Q) is the number of triangles contained in the crown (see Figur&he results reported
in Table 2 in terms of the crack initiation angles agree diganpth the predictions of classical
Fracture Mechanics. In Figure 6 deformed elastic and fradtaonfigurations are shown.

5 CONCLUSIONS

In this paper some benchmark problems under Mode I, Modeald loombinations are con-
sidered. The scope is to validate a computer model by comgpanir results with the predictions
of Linear Elastic Fracture Mechanics. The computer apgrd@iongs to the family of discrete
crack models. Special interface elements with zero thiskipdaced along the edges of continuous



B = 45° B = 90°
Figure 4: The integration domain, (shaded area).

Table 2: Results for several displacement angles

displacement anglg J1 Jo crack anglex crack anglex
Nem—1 Nem—1! Classical Fracture Mechanics  Numerical Experiments
0° 0.4445 0.0247 — 3.1762° — 2.7787°
45° 1.9248 1.1311 —30.4395° —30.4583°
90° 1.4964 0.0080 — 0.3065° — 0.4279°

triangular elements are considered and, since the craakidmcand orientation is not known in ad-
vance, a variable mesh is adopted in order to allow for thietke of the mesh to adapt to optimal
fracture patterns. Special attention is paid to the nuraknoplementation concerning crack path
irreversibility. In particular if a piece of crack opens upaacertain step, it is maintained at any
successive step. The proposed method needs no assumptiding orack geometry in advance.
Numerical tests of a notched specimen for different apdiedndary conditions are analyzed. The
results are sufficiently satisfactory for the three différeases studied. The discontinuity can run ar-
bitrarily through the finite element mesh as shown in the gtamand all the crack initiation angles
are found to agree sharply with the predictions of clas$tcatture Mechanics.

z2

pre—existing crack tip

crack angled.4279° (displacement anglg0°)

/ crack angle2.7787° (displacement angle )

@1

Figure 5: Superimposition of the results of the numericglegiments in terms of crack angles.
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Figure 6: Results of numerical tests for three displacernenhdary conditions. From top to bottom:
8 =0°3=45° 0 =90°.



References
[1] Belytschko, T., Fish, J. and Engelmann, B. E., “A finiterkent with embedded localization
zones,”Comp. Meth. Appl. Mech. Eng., 70 (1), 59-89 (1988).

[2] Negri, M., “A discontinuous finite element approach foetapproximation of free discontinuity
problems,”Adv. Math. Sci. Appl., 15, 283-306 (2005).

[3] Angelillo, M., Babilio, E. and Fortunato, A., “Numeritaxperiments on fracture of elastic
solids through energy minimizationProc. of 2nd CanCNSM, Vancouver, Canada, June 19-
23, 2002, E. M. Croitoro ed., 181-186 (2002).

[4] Angelillo, M., Babilio, E. and Fortunato, A., “A numert method for fracture of rods,” In
Mechanical Modelling and Computational Issues in Civil Engineering, Lecture Notes in Ap-
plied and Computational Mechanics, Volume 23, Springetags Berlin, M. Fremond and F.
Maceri eds., 277-292 (2005).

[5] Babilio, E. and Fortunato, A., “Numerical approximatiof variational fracture through vari-
able finite elements with gaps,” IRroc. AGS '08, Volume 1: Advanced Computations of
Structures and Engineering Works, 81-93. F. Darve, |. Doghri, R. El Fatmi, H. Hassis and H.
Zenzri editors, G. Del Piero guest editor (2008).

[6] Angelillo, M., Babilio, E. and Fortunato, A., “A computianal approach to quasi-static propa-
gation of brittle fracture,” IrProc. Colloguium Lagrangianum 2002 (Lecture Notes in Applied
and Computational Mechanics), Ravello (SA), Italy, Novem®-9, 2002 (To appear).

[7] Angelillo, M., Babilio, E. and Fortunato, A., “A numerdt approach to irreversible fracture
as a free discontinuity problem,” iRroc. Colloquium Lagrangianum 2003 (Lecture Notes in
Applied and Computational Mechanics), Montpellier, Feyidovember 20-22 (To appear).

[8] Angelillo, M., Babilio, E., Cardamone, L. and Fortunatd., “A numerical model for vari-
ational fracture based on discontinuous finite elementsPrioc. 3rd CanCNSM, Toronto,
Canada, June 25-29, 2008, E. M. Croitoro ed. (To appear).

[9] Francfort, G. A. and Marigo, J. J., “Revisiting brittleatture as an energy minimization prob-
lem,” J. Mech. Phys. Solids, 46 (8), 1319-1342 (1998).

[10] Ambrosio, L., “Compactness theorem for a special cta#siinctions of bounded variation,”
Boll. Un. Mat. Ital., 3-B, 857—881 (1989).

[11] Brakke, K. A., Surface Evolver Manual, Mathematics Department, Susquehanna University,
Selinsgrove, (1999).

[12] Rice, J. R., “A path independent integral and the apionaxe analysis of strain concentration
by notches and cracks,” ASMEAppl. Mech., 35, 379-386 (1968).

[13] Ma, L., Lu, T. J. and Korsunsky, A. M.,“Vectaf—-Integral analysis of crack interaction with
pre—existing singularities”. ASMBE. Appl. Mech. 24, 311-364. (1957).

[14] Irwin, G. R., “Analysis of stresses and strains nearghe of a crack traversing a plate,” ASME
J. Appl. Mech. 73, 876—883 (2006).

[15] Parks, D.M., “The virtual crack extension method fomhioear material behavior,Comp.
Meth. Appl. Mech. Eng., 12, 353-364 (1977).

10



