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SUMMARY 

An experimental bifurcation scenario to low-dimensional homoclinic chaos in the finite 
amplitude forced dynamics of a sagged cable is characterized in-depth, referring the relevant 
regular and non-regular dynamics to a canonical scenario from dynamical systems theory. A 
feedback between experiments and theory allows us to build a consistent phenomenological 
model: the unfolding of a canonical bifurcation normal form is used to produce an highly 
degenerated periodically perturbed bifurcation set in an enlarged parameter space where the effects 
of material damping and forcing asymmetry are evidenced.  

1 BACKGROUND AND MOTIVATION 
Finite amplitude dynamics of suspended cables have been addressed in the last two decades by 

variably refined theoretical models through purely analytical, numerical or mixed treatments [1]. 
However, understanding the actual nonlinear behaviour of suspended cables through also physical 
models is important both for validating theoretical predictions and for detecting new or complex 
phenomena associated with system nonlinearities but often un-modelled in theoretical analyses.  

Quite a systematic analysis of experimental nonlinear cable dynamics has been accomplished 
in a few papers dealing with a hanging cable/mass system subjected to different harmonic motions 
of the supports and realizing, for relatively low excitation frequencies, a fairly reliable model of 
bare suspended cable. Focusing on the transition to complex response under various external and 
internal resonance conditions, bifurcation mechanisms have been characterized by properly 
reconstructing the system dynamics from experimental measurements [2, 3]. Reconstructed 
attractors and underlying manifolds have been studied via different experimental techniques, i.e., 
delay embedding and proper orthogonal decomposition, focused at identifying mechanically 
meaningful classes of motion and the associated mechanisms of transition to chaos. Particular 
interest has been devoted to highlight the possible occurrence of low-dimensional complex 
responses, which is of major interest for identifying reduced (and minimal) theoretical models able 
to describe the complex dynamics of the experimental system.  

An overview on the richness and robustness of two different – quasiperiodic and homoclinic – 
bifurcation scenarios to chaos occurring in various regions of control parameter space, along with 
the involved proper orthogonal modes (POMs), is summarized in Table I, making reference to 
features of support motion, external resonance condition, and cable dynamic properties [3]. 

For the slacker cable, quasiperiodic transition to chaos via breakdown of regular dynamics on 
3D-tori is robust at primary resonance under in-phase support motion, whereas it competes with 



the homoclinic bifurcation scenario at 1/2-subharmonic resonance under out-of-phase motion. In 
turn, this latter scenario is definitely robust near primary resonances of 1:1 internally resonant 
VnHn-type couples of modes (V=vertical, in-plane; H=horizontal, out-of-plane; n=2-5; n=odd, 
symmetric; n=even, antisymmetric) for both the slacker and the crossover cable. However, while 
the quasiperiodic transition to chaos through a tori breakdown has been addressed quite 
exhaustively and satisfactorily [2], only some preliminary, yet promising, results were obtained as 
regards the quite general scenario seemingly involving two main – though variable – POMs in the 
global bifurcation of a homoclinic invariant set of the flow.  

Thus, by focusing on the homoclinic bifurcation of a multiple internally resonant cable under 
anti-phase support motion at primary resonance, two main items are to be accomplished. (i) Going 
in-depth into its experimental characterization, by analysing the relevant peculiar and/or persistent 
bifurcation features, and by possibly tracing them back to a canonical scenario from dynamical 
systems theory; (ii) developing a phenomenological theoretical model able to reproduce the 
intrinsic features of the dynamical system and its overall bifurcation scenario. The first item, 
which involves a systematic physical investigation and the understanding of phenomena 
responsible for the onset of experimental non-regular dynamics, has been accomplished in [4]. 

In turn, developing a phenomenological bifurcation model relying on the normal form of 
bifurcation mechanisms known from dynamical system theory and properly modified to account 
for the specific features of the experimental system and response, can allow us to gain insight into 
the limits of some assumptions made in “classical” theoretical modelling of suspended cables. As 
a matter of fact, in the context of a profitable feedback between experiments and theory, such a 
phenomenological model can allow us to recognize the mechanical meaning of terms playing a 
meaningful role in the bifurcation mechanisms, thus paving the way towards the independent 
formulation of a theoretical reduced order cable model having all the necessary pre-requisites for 
possibly reproducing the experimentally observed phenomena. This second item is specifically 
accomplished in this paper.  

Some main experimental results from the systematic investigation are summarized in Sect. 2, 
along with the unfolding of the relevant regular and non-regular dynamics within a reference 
bifurcation scenario. Then, the low-dimensional phenomenological model is presented in Sect. 3 
by considering the O(2) symmetric nilpotent double-zero normal form, from which a highly 
degenerated bifurcation set is produced and then perturbed to obtain an enriched D4 normal form  
accounting for support motion. Finally, partial unfolding of the Z2 normal form describing the 
solely vertical support motion and capable to exhibit a bifurcation scenario comparable to the 
experimental one is presented in Sect. 4, with a few conclusions being given in Sect. 5. 

Table I: Summary of results concerned with bifurcation to chaos scenarios. 



2 SUMMARY OF EXPERIMENTAL RESULTS AROUND A DIVERGENCE-HOPF  
BIFURCATION 

System mechanical and geometrical properties of the experimental system (Fig. 1) realize a 
condition of 2:2:1 multiple internal resonance amongst the frequencies of first anti-symmetric in-
plane (V2) and out-of-plane (H2) modes, and first symmetric out-of-plane (H1) mode. Previous 
non-systematic results allowed to conjecture that, when the first anti-symmetric in-plane mode is 
excited at primary resonance, a scenario involving the global bifurcation of an homoclinic 
invariant set could be responsible for transition to chaos with two dominant POMs resembling the 
linear modes V2 and H2 (Fig. 2) [3]. Thereafter, behavior charts in the frequency-amplitude 
excitation plane have been obtained within a systematic, thermally conditioned and controllable, 
experimental investigation made at different temperature (T) values. Two of them are depicted in 
Fig. 3: see [4] for a detailed discussion of the various classes of motion and of the relevant 
dynamic indicators reported in the tables. Overall, rich and complex responses do occur within the 
wide range wherein the directly forced one-mode solution P1M1 (label A) is unstable (Fig. 3). 

The organizing role of a divergence-Hopf (d-H) codimension two bifurcation is evidenced in 
both charts, along with the effect played by the temperature (material hysteretic properties do 
depend on temperature). Varying the temperature entails the variation of the d-H forcing critical 
value and of the dimension of some response classes. However, though some differences occur 
between bifurcation diagrams, it is possible to inscribe them in the framework of the stability 
diagrams of the d-H normal form. The possible involvement of other POMs, besides V2 and H2, 
produces motion classes with augmented dimension but does not entails qualitative changes with 
respect to canonical bifurcation diagrams, i.e. topologically equivalent motion classes bifurcate 
following the canonical path even if they are embedded in higher order manifolds.  

 

 

Figure 1:  Experimental setup.   
 
 

  
 
 

 

 

 

Figure 2: First two POMs inside the 
lower dimension chaotic region. 

Figure 3: Qualitative behaviour chart  and characterization of motion 
classes (left, T=12°C; right, T=4°C). 
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However, for even lower temperature, the overall scenario changes dramatically [4].  
Results of a delay embedding reconstruction of phase space from a time series singled out from 

the chaotic motion CHM2 are reported in Fig. 4. Dynamics is organized by an unstable fixed point 
on the map characterized by a two-dimensional focus-stable manifold Ws and a one-dimensional 
saddle-unstable manifold Wu, and an invariant of the flow responsible for re-injection toward the 
fixed point. The fixed point on the second order Poincarè section corresponds to an unstable two-
dimensional invariant of the flow resembling a formerly stable quasiperiodic motion (QP1M2(SC)).  

    

Figure 4: Time delay reconstruction: (a) time series, (b) and (c) projections of the second order 
Poincaré section of the reconstructed attractor show a typical homoclinic evolution. 

2.1 Schematic unfolding of regular and nonregular dynamics  
The experimental results allow to draw a robust unfolding of both regular and nonregular 

dynamics and to refer the overall bifurcation scenario to a canonical one in dynamical system 
theory. Indeed, the experimental scenario appears to be consistent with the unfolding of the 
dynamics in the neighbourhood of a d-H bifurcation point, provided the topological dimension of 
the observed periodically forced motion classes is reduced by one, i.e. if looking at the 
experimental Poincaré section. Due to the external and  internal resonance features, the system 
dynamics in both regular and non-regular regime is essentially traceable to participation of two 
spatial shapes closely resembling the first two anti-symmetric linear modes.  

It is worth observing that, besides the two main control parameters, excitation frequency and 
amplitude, varying the temperature as a further “external” control parameter allows us to highlight 
the strong role likely played by the material damping (which depends on temperature) in unfolding 
the experimental dynamics. Yet, a substantially invariant bifurcation scheme is seen to persist over 
the whole range of temperature variation, thus allowing us to refer to the theoretical unfolding 
provided by the low-dimensional bifurcation system represented by the d-H normal form. 

In the regular dynamics regime, for growing frequency at temperatures T≥6°C, two most 
robust experimental bifurcation paths occur in the neighbourhood of d-H point, for forcing levels 
respectively higher and lower than the critical value:  
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For the sake of comparing the unfolding of experimental results around d-H with theoretical 
scenarios, stability and bifurcation diagrams are sketched in Fig. 5. Solutions and bifurcations are 
described as follows, starting from the region (a) where only the anti-symmetric in-plane POM 
takes part in the response (focus fixed point P1M1). 

Following an anti-clockwise path (corresponding to the former path (ii)) in Fig. 5a: (i) From 
(a) to (e),  P1M1 loses stability due to pitchfork to a couple of coexisting symmetric foci P1M2(SC) 
on a resonant two-torus. At pitchfork, the anti-symmetric out-of-plane experimental eigenfunction  
enters the response. Due to reflection symmetry, the system has solutions either self-symmetric 

(b) (a) (c) 



(prime (S)) or being related in symmetric pairs (prime (SC)). (ii) From (e) to (d), the couple of 
symmetric foci P1M2(SC) bifurcates through Hopf to the couple of limit cycles QP1M2(SC). 

Following a clockwise path (corresponding to the former path (i)) in Fig. 5b: (i) From (a) to 
(b), stability of P1M1 is lost through Hopf and a limit cycle (QP1M1) settles down; in the 
schematic diagram of Fig. 5b, the unstable fixed point and a stable limit cycle are shown. (ii) From 
(b) to (c), a pitchfork bifurcation is trespassed and two new unstable fixed points add to phase 
space. The pitchfork drives the out-of-plane anti-symmetric experimental eigenfunction into the 
response. Phase space is characterized by three unstable fixed points and a cross-well limit cycle 
(QP1M2(S)). (iii) From (c) to (d), an homoclinic saddle connection is trespassed corresponding to 
phase space transition on two-torus from stable cross-well QP1M2(S) motion to two stable in-well 
QP1M2(SC) motions.  

                   

 

 

               

Figure 5: Schematic (a) stability diagram, (b) experimental bifurcation paths. 

In turn, transition to nonregular dynamics is summarized as follows. Two homoclinic 
bifurcations responsible for onset of nonregular dynamics from either symmetric (QP1M2(S)) or 
symmetric couple (QP1M2(SC)) quasiperiodic response may occur.  

Homoclinic explosions originate a strange invariant set that becomes an attractor in a range of 
control parameters (within the instability range of P1M1), and then suddenly disappears. It is 
conjectured (see the schematic stability diagram and bifurcation paths in Fig. 6) that, far away 
from d-H point in the stability diagram (Fig. 6a), the saddle connection locus reaches a new 
codimension 2 bifurcation point (G) where it splits into an homoclinic explosion/implosion pair, 
with an interval of stable nonregular dynamics in between. To make the experimental bifurcation 
scenario consistent with an interpretative theoretical scheme [4], other bifurcation branches are 
requested to emanate from G.  

 

Figure 6: Schematic (a) stability diagram, (b) experimental bifurcation paths. 
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In such a case (compare with also the bifurcation paths in Fig. 6b): Moving anticlockwise 
around G: (i) a PD bifurcation on (SC)-cycle (which becomes unstable) produces an unstable (S)-
cycle branch reaching an homoclinic explosion (HE) where a strange invariant set is produced, 
another HE (herein playing an implosion role) then destroying all unstable orbits; (ii) the new born 
unstable (S)-cycle gains stability due to a SN bifurcation and emerges on the other side of the 
chaotic region. In turn, moving clockwise around G: (i) a SN bifurcation on (S)-cycle (which 
becomes unstable) produces an unstable (SC)-cycle branch reaching an homoclinic explosion (HE) 
where a strange invariant set is produced, another HE then destroying all unstable orbits; (ii) the 
new born unstable (SC)-cycle gains stability due to PD bifurcation and emerges on the other side 
of the chaotic region. 

3 THE LOW-DIMENSIONAL PHENOMENOLOGICAL MODEL  
We aim at building a complete phenomenological model embedding the experimental 

bifurcation scenario and suitable: (i) to analyze the interaction between the system parameters 
(linear frequency σ and dissipation µ) governing the unfolding of the normal form of the 
conjectured codimension 2 bifurcation and the applied excitation amplitude; (ii) to highlight the 
symmetry breaking effect induced in the unforced system by the asymmetric boundary conditions 
(sole in-plane support motion) of the experimental system.  

The experimental scenario is reproduced using a bifurcation set obtained through the forced 
symmetry breaking of a highly degenerated normal form of the O(2) symmetric nilpotent  double-
zero bifurcation. Besides globally tracing the experimental scenario, the model has a discrete 
mathematical structure to be profitably compared with literature cable models. In detail, we need 
(i) to consider an equation set order corresponding to the experimental response dimensionality; 
(ii) to respect the symmetry properties of the forced experimental system, which is solely Z2 
symmetric instead of being O(2) symmetric as the unforced system in the background. The model 
is built by reproducing the bifurcation scenario as highlighted in the experimental Poincaré 
section; yet, the equation set governing the dynamics of the flow is obtained, too. 

3.1 Highly degenerated bifurcation set 
An approach is followed which allows us to build a model possessing not only a higher 

dimensionality with respect to that of the sole divergence-Hopf bifurcation (marginal stability 
space of dimension 3) but also a more convenient structure where terms and coefficients preserve 
a direct physical meaning. First, an O(2) symmetric highly degenerated nilpotent double zero 
bifurcation set (marginal stability space of dimension 4) is produced. Indeed, if the cable sag-to-
span ratio is small, as assumed herein, the unforced physical system has O(2) symmetry properties, 
and the same features are required to the unforced model in the invariant space spanned by the first 
two antisymmetric modes (of amplitudes u1, u2) where the experimental dynamics we want to 
reproduce is confined. Then, this symmetry is broken down to Z2 as in the forced physical system, 
by imposing forcing non- O(2) symmetric boundary conditions to the assumed underlying flow.  

The unfolding of the nilpotent double-zero normal form occurring at 00 == µσ , , reads, in the 
O(2) symmetric case and for long times, small amplitudes and small dampings [6]   
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To produce the highly degenerated bifurcation set, a third control parameter (the temperature) 
is introduced – besides the forcing amplitude and frequency – through the following assumptions 
on the dissipation terms, ( ) µγµµ µ ˆTT +−= 0 , ( )0TTcc c −= γ , ( )0TTdd d −= γ , ( )0ee e T Tγ= − , where µ̂ is 

the viscous damping, ,c ,d ,eµ are hysteretic coefficients, T is the system ambient temperature and 
T0 is its reference value nominally corresponding to the solely viscous dissipation; the temperature 
dependent γ functions are assumed to vanish, i.e., 0c d eµγ γ γ γ= = = = , when 0TT = . The highly 
degenerated bifurcation set reads:  
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   (2.1) 

Note that, on passing from eq. (1) to eq. (2), the homogeneous bifurcation set has been 
enriched with fifth order terms.  Indeed, a partial unfolding of the Z2 symmetric version of eq. (2) 
obtained by considering different h and k coefficients, preliminarily performed to verify the 
possibility to reproduce the experimental scenario and to find the relevant condition on the 
unfolding parameters, has shown  the necessity to break the symmetry of third order terms: the 
fifth order terms will indeed produce cubic parametric terms breaking the symmetry when non-
homogeneous boundary condition will be applied. 

3.2  Periodically excited highly degenerated bifurcation set 
The constructed highly degenerated bifurcation set, eq. (2), can be regarded as the reduced 

equations (map) of an autonomous evolution equation (flow) of the type ( )U,FdtdU λ= , where U 
∈ phase space nE ℜ= , λ is a vector of control parameters in mℜ , ( ) 000 =,F  and ( )00,DFL =  is the 
jacobian matrix with a spectrum consisting of eigenvalues with either zero or negative real part. 
Aiming at reproducing the effect of the support motion in the experimental setup, we look for a 
reduced bifurcation set of a perturbed evolution equation ( ) ( )t,U,GU,FdtdU λδλ += , where δ is 
the excitation amplitude and ( )t,U,G λ  is a time-periodic perturbation such to break the O(2) 
symmetry. Note that we know the reduced bifurcation set (2) but we don’t know the autonomous 
evolution set, to be perturbed, in the background. 

In order to produce the reduced bifurcation set, considering a generic autonomous evolution set 
at bifurcation, the phase space E is split into its critical and non critical eigenspaces −⊕ EEo , with 
corresponding invariant subspaces oL and −L . If the E phase space dimension of the autonomous 
evolution set is equal to the critical eigenspace at bifurcation )EE( o= and the dynamic matrix is 
already in Jordan canonical form )LL( o= , the perturbed bifurcation set can be obtained, without 
loss of generality, by assuming the underlying evolution equation just in the form of its 
(autonomous) reduced bifurcation set, i.e. in the form (2), properly perturbed.  

To this aim, the set (2) is enriched (i) by accounting for the effect of a non homogeneous 
boundary condition, via a suitable coordinate transformation, and (ii) by imposing fulfilment of D4 
symmetry properties to the perturbed set of discrete evolution equations. The following perturbed 
evolution equation set, truncated at third order,  is obtained:  
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where parametric terms (inside square brackets) as well as inertial and viscous terms (curly 
brackets) owing to the harmonic support motions ( )( )0 1 2h hu sin t , h ,δ ϕ= Ω + =  are recognized.  

3.3 D4 perturbed normal form of the O(2) symmetric  nilpotent double-zero bifurcation  
The bifurcation set (3) exhibits for the trivial solution and for 0ˆµσ µγ µ= + =  a nilpotent 

double-zero bifurcation. For the sake of deriving a normal form enriched by the contribution of the 
solely parametric forcing terms and discussing the relevant stability, we apply the multiple time 
scales method to the equation set (3). The dependent variables ui are expanded in a fractional series 
[7] as 
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where j
jT tε= , with ε being a smallness parameter. 

An ordering of the system terms is done and the perturbation equations at orders 
2 0 5j / , j ,ε = are obtained. They are solved in chain, by imposing the solvability conditions through 

vanishing of the secular producing terms at orders 2 1 5j / , j ,ε = . The solvability conditions provide 
the normal form of the equations describing the modulation of the amplitudes and phases of the 
solution in the slow-varying time scale; in our case, being the system harmonically forced, the 
aforesaid modulations describe the solution of the parametrically forced flow on the Poincarè 
section. Primary external and internal 1:1 resonance between in-plane and out-of-plane 
antisymmetric modes is considered and the normal form reads 
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where the superscript (f) denotes parametric coefficients reducing the symmetry of the canonical 
O(2) nilpotent double-zero normal form to D4.  

If the experimental case of solely vertical support motion is considered 1 20 0( , )δ δ≠ = , the 
system (5) becomes Z2 symmetric.  



4 PARTIAL UNFOLDING OF THE Z2 NORMAL FORM 
The stability of the trivial solution is discussed for the two cases T=To and T>To. (i) In the case 

T=To, the linear and nonlinear terms depending on the hysteretic behavior in equation (6) vanish. 
In the excitation parameter plane (σ, f), if the viscous damping parameter ( µ̂ ) is also set to zero, a 
nilpotent double zero point (Takens-Bogdanov bifurcation) is found (at σ=f=0), from which two 
branches (f>0, f<0) of divergence locus and two branches of Hopf ( 0=µ̂ , σ<0, σ>0) locus do 
emanate. For 0≠µ̂ , neither TB nor Hopf bifurcation points occur on the trivial solution but only 
divergence loci are present in the forcing parameter plane (Fig. 7a). (ii) Then, the case of 
temperature higher than To (T>To) is considered, in which linear and nonlinear terms depending on 
the hysteretic behavior do occur. In the forcing parameter plane, also the Hopf bifurcation is now 
possible for the trivial solution and ( )0 0ˆT Tµµ µγ µ= − + ≠ . Two nilpotent double zero (TB1 and TB2 
points) are evidenced, too (Fig. 7b). It is worth noting that TB’s critical forcing decreases with 
decreasing linear damping up to laying onto the horizontal axis when µ=0 (TB1 and TB2 collide 
and coincide with the origin when T=T0, 0µ̂ = ).  

Keeping the nonlinear hysteretic coefficients ( d,c ) fixed and varying the linear damping (µ), 
the diagram of Fig. 8 is obtained. The )T(α parameter summarizes qualitatively the effect of 
temperature variations with 0=µ̂ if µ tends to zero faster than ( d,c ) coefficients. On the 
divergence surface a locus of double zero (TB) points is seen to occur at the intersection with the 
Hopf surface (not shown in the figure).  

Let us follow the bifurcation diagram for a fixed value of T>To. Fig. 9 shows a behaviour chart 
with motion classes and bifurcation loci in the external detuning (σ)–support motion amplitude (f) 
plane. Gray region, delimited by saddle node bifurcations, shows the existence range of the one-
mode P1M1 solution, stable in a small region on the left. Takens-Bogdanov (σ, f)=(-0.02, 0.11) 
and divergence-Hopf (σ, f)=(0.035, 0.05) codimension 2 bifurcation points affect the trivial and 
periodic (P1M1) solutions, respectively. The divergence and Hopf loci of the trivial solution 
(labelled pf1 and H1, respectively) are reported in the behaviour chart, which also summarizes the 
stability analysis results of the P1M1 solution by showing the corresponding divergence (pf2) and 
Hopf (H2) loci, and their intersection. With increasing frequency, the divergence involves the 
second mechanical mode (antisymmetric out-of-plane H2) responsible of the onset of P1M2 
motion class in the experiment, whereas the Hopf corresponds to the onset of the experimental 
quasiperiodic QP1M1 motion class. The intersection of the two loci furnishes the searched 
codimension 2 divergence-Hopf bifurcation. 

 

 

Figure 7: a) T=To: divergence curves for growing µ̂ , TB for 0=µ̂ ; b) T>To: divergence and 
Hopf loci intersect at TB bifurcations ( ( )0 0ˆT Tµµ µγ µ= − + ≠ ). 

(b)



 
 

  
Figure 8: The TB curve in the parameter space 

( )T(,,f ασ ). 
Figure 9: Motion classes and bifurcation loci in the 

external detuning (σ)–support motion amplitude (f) plane. 

5 CONCLUSIONS 
Considering the temperature as a further controllable parameter besides the excitation 

amplitude and frequency has allowed us to interpret the response scenario of an experimental 
cable-mass system in the neighbourhood of a divergence-Hopf bifurcation in the framework of the 
symmetry breaking of an highly degenerated bifurcation set describing an O(2) symmetric Takens-
Bogdanov bifurcation.  

In the context of a profitable feedback between experiments and theory, the phenomenological 
model has helped steering the experimental analysis and interpreting the relevant results, by also 
clarifying to which extent they can be referred to a canonical scenario from dynamical systems 
theory. It also paves the way for improving the continuous cable theoretical modelling and for 
building reduced order models to be implemented in a numerical procedure for cross-validating 
and  partially reproducing the observed experimental scenarios.   
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