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SUMMARY. In this paper the analysis of self-excited struesiunder turbulent wind, taking into
account the possible occurrence of multiple Hopf bifuadi is carried out. In particular, a two
d.o.f. nonlinear system, describing the dynamics of twegoéxposed to turbulent wind flow and
linked by a strongly nonlinear viscous device, is consideiEhe stationary wind is responsible of
self-excitation, while the turbulent part provides bothgraetric and external excitations. Thus the
simultaneous presence of those excitations is taken imtoust, in a specific resonance condition.
The periodic and quasi-periodic solutions are studied #fteapplication of a perturbation scheme
and the possible interaction between the two differenf.dsohighlighted.

1 INTRODUCTION

Nonlinear dynamical systems can experience a variety oirdation and instability phenom-
ena, which can be related to different kind of excitationailtMparameter families of self-excited
autonomous systems, under a suitable combination of péeasnendergo, for instance, multiple
Hopf bifurcations, in which several degrees of freedom avelved in the post-critical dynamics.
Multi-modal responses can also been triggered by intessdrances occurring between unstable
and stable modes. This is the case, for example, of intgrnadionant cables subjected to steady
wind [1] where, in addition to uni-modal steady solutionsjltnmodal stable oscillations appear.
On the other hand, when dealing with non-autonomous systbeparametric and external excita-
tions also lead to interesting behaviors, such as, for el@migimark bifurcations, fold bifurcations
and jump phenomena [2].

Depending on the nature of the loads, the three kinds ofabait can interact, as in the case of
structures exposed to turbulent wind. In particular, tleady part of the flow is responsible for the
self-excitation, while the unsteady flow brings on parametnd external forces.

In the framework of the cable dynamics, a first attempt of gsialof the interaction between self
and external excitations was done by Paolone [3], wheregbidlations of a cable in a turbulent flow
were investigated through a one d.o.f. system. It was shbeexistence of Neimark bifurcations
from the stationary mono-periodic solution, conveyingttbte quasi-periodic oscillations.

In this framework, Abdel-Rohman [4] considered a one dgeff-excited system, descending
from a Galerkin projection of a continuous model, to studydhlloping phenomena of tall cantilever
structures. There, the Multiple Scales Method (MSM) waslis@nalyze the response of the system
to a mono-frequentunsteady wind flow, bearing the simutias@resence of the self, parametric and
external excitations, in case of primary and secondaryna@sees. It was shown that the unsteady
component can cause a significant decrease in the critical gpeed at which galloping occurs;
moreover, the contribution of the unsteady component is fgeminent at high wind velocities,
where the amplitude of galloping oscillations is very samilo the case of steady wind flow.



This paper aims to extend the analysis of self-excited stras under turbulent wind, taking into
account the possible occurrence of multiple Hopf bifuemagiand, more generally, the interaction of
the different degrees of freedom. To this end, a two d.oflinear system, under the simultaneous
presence of the self, parametric and external excitatisesnsidered. Thatis figured to describe the
dynamical behavior of a structure constituted by two pdieged by a strongly nonlinear viscous
device, subjected to wind flow. The combined effect of thetflating component of wind and the
(nonlinear) motion of the structure leads to the appearahtime-varying coefficients (parametric
excitation) and known terms (external excitation).

The Multiple Scale Method [2] is applied, considering a s$fiecesonance condition. A set of
coupled Amplitude Modulation Equations (AME) is obtaindéscribing the slow dynamics of the
system in terms of amplitudes and phase-differences. Thiélegum solutions, representing steady
oscillations, are analyzed, although not exhaustivelytha space of the bifurcation parameters.

Their stability is discussed, highlighting the influencetba response of the three components of
the excitations in different regions of the parameter space

2 THE MODEL

Two slender clamped-clamped poles of non-circular cressiens, linked on the mid-span by
a strongly nonlinear viscous device, are opened to unste@uty. The two sub-structures lie in a

plane, the wind blows orthogonally to (see Fig. 1). The duplane stiffness of the poles is assumed
much larger than the one in the in-plane direction.
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Figure 1: The two poles opened to the wind

The structure is symmetric with respect to the axis passingugh the mid-span of the poles,
therefore half structure is considered (by accounting fdf of the mechanical characteristics of
the device). If{v,(s1,t),v2(s1,t)} are the in-plane transverse displacements of the two paes,
spectively, where, s, are the local abscissas ahthe time, the approximate continuous nonlinear



model of the system is the following (see [5]):

EA &
p1i1 + ELv!" + 27 11/1'/ u’f(g)dg =b
Ry (1)
. EL " EA2 " 2/2 dc =b
p2U2 + Llvy " + ol Uy | vy (€)d¢ = by

wherep; the mass density'I; the bending stiffness A; the axial stiffnessy; the length and;
the aerodynamic forces, the prime denoting differentratigth respect te; or sy and the dot with
respect to the time. The boundary conditions are

v1(0) =v2(0) =0

v1(0) =v5(0) =0

vf (1) = vy (£2) = 0

ELv{" (1) = —ELvy (b2) = f(01(41) — 02(f2))

(2)

where f represents the force exerted by the viscous device. Theussdevice is figured to get a
constitutive law of typef(A) = k1A + k3A3, whereA = i, (£1) — va(La), With k3 > k1. It
provides coupling terms between the two poles in the boynztarditions.

The wind applies on theth pole ¢ = 1, 2) a lift force, lying on the plane of the structure, of type
bi = by (U (1)) +cin(U(t)0; +cin(U(1)02 +cis(U(t)) 03, wherec;; are the linearf{ = 1), quadratic
(s = 2) and cubic { = 3) aerodynamic coefficients, respectively, which dependenelative wind
velocityU (¢) (and on its powers) and on the shape of the cross-sectioe pbile. The wind velocity
can be decomposed&st) = U +u(t), wherelU is a constant (average) part, representing the steady
component, ana(t) is a periodically time-dependent part, representing thieulence. Therefore,
the aerodynamic forces provide, by means of its steady garstant-coefficient velocity-dependent
terms, which can be responsible for galloping; moreover thmish periodic time-dependent terms,
responsible for both external and parametric excitatises (4]). In this work, the turbulent part is
just considered in its fundamental frequencyyu &g = sin(2t).

The system (1)-(2) is discretized via the Galerkin methgdagsuming one in-plane mode for
each poles, evaluated in absence of the wind and viscousedeVhe two resulting second-order,
non-homogeneous, time-periodic, ordinary differentii&ions are coupled in the linear and non-
linear velocities, containing quadratic (in the velocigy)d cubic (in the velocity and displacement)
nonlinearity:

& — (14 bou(t)d + wiz + (bry + brau(t))d® + (b1 + baou(t))i’+

+b3(2 — ¢) 4+ ba(@ — ) + c12® = mu(t) 3)
§— (v +bsu(t))y + wiy + (ber + beau(t))y® + (br1 + brau(t)) i+

—b3(& — ) = ba(@ — 9)° + ey’ = m2u(t)

wherex(t), y(t), are the unknown amplitudes of the tips of the two poles,eetgely. The co-
efficientsy and v are the aerodynamic plus structural modal damping of thegpakspectively:
po= 26w + Ea1U, v = 2€0wo + E40U, Whereg,; are the structural modal damping ratios @pd
the aerodynamic damping ratios.

The two sub-structures independently underga.(at . andv = v, respectively) a Hopf bifur-
cation when the turbolent wind is absent and the small liceapling due to the viscous device is



neglected. The quantitigsandv are taken as bifurcation parameters (a further bifurcgiamame-
ter o, accounting for resonance detuning, will be introduceerjatThey are linear combinations of
two physical parameters, e.g. the wind veloéitand one of the two structural damping coefficients
&si, the remaing parameters being kept fixed. Thus, by vanyiagdy, a family of physical systems
is spanned, in which each member posseses different meahproperties and undergoes different
wind loads. The termg;, ¢;, n; are auxiliary (fixed) parameters. The natural frequenciess; are
assumed to be incommensurable, representing a case oédiffgiffness of the two poles.

3 THE MULTIPLE SCALES
To apply the Multiple Scales Method, a dimensionless snaihmetek is introduced and the
dependent variables:, y } are expanded as

(b= {0 @

The linear damping terms are assumed small; the coefficadrnise external and parametric
excitation, as well as the nonlinearity, are ordered sottigt appear at the last order perturbation
equations. Therefore the coefficieRts, v, by, b3, b5} are of order, the coefficients ofn;, 72} of
orderes and the coefficient$by1, b12, b1, be2 } Of orderez. The other coefficients are of order
After introducing two independent time scalgs:= t andt; := et, the derivative with respect
to the time assumes the expressibt = dy + ed;, whered; := 9/0t;. As a consequence, the
perturbation equations, multiplied by, read:

. dgxl + w%xl =0
0 {d3y1 + w3y =0
d3zo + wiry = — by sin(Qtg)dozT + bo sin(Qtg)dox1 — bag sin(Qto)dox+
+ 3badozdoys — 3badox1doy — badox? — boydox? — byydori+
— badox1 + bsdoy1 + badoy? + pdoxy — 2dodyzy — c12 + g sin(Qtp)
d3ys + wiys = — bea sin(Qtg)doyi — bro sin(Qt)doys — 3badoxs doy1+
+ 3badoxrdoyi + badox? + bsdowy — bsdoyr — badoy?+

— b61d0y% — b71d()y:1s —|— I/doyl — 2d0d1y1 — CQy% —|— 7’]2 SiH(Qto)
(5)

Equation (5) admits the following solution:

I Al (tl) exp(iwlto)}
{y1 } {Az(tl) exp(iwatp) tec (6)
wherecc denotes the complex conjugates the imaginary unit andl;, A, are unknown complex

amplitudes. By substituting Eq. (6) in Eg. §5nd by zeroing the secular terms which arise in the
right hand side, a set of differential equationsdin A, is obtained:

di Ay = f1(A1, A))

di Ay = fo( Ay, Ag) (7)



Hence, by coming back to the true timeEq. (7) provides the Amplitude Modulation Equations
(AME). In case of external resonance of type 1:1 with the fiejuency, namely2 = w; + €0 (o
is the detuning parameter), the AME read:

. —b . b . b ) _ _
Ay =B - gt 229 0 Ayt P2 p3e 0t 4 5 AT AL — 3biwd A1 As Ay
2 4w 2 2
. _p B B
Ao :l/ 5 3A2 — 3b4w%A1A2A1 + ﬁgA%Ag
(8)
wheres; = —%w%(bgl + b4) + Z;’% andgs = —%w%(b4 + b71) + 25’%22

It is worth noticing how, among the parametric terms, justdinadratic ones are resonant when
Q ~ wy; moreover the coupling between the two d.o.f. is due to tiomonlinearity of the damping
device, while the linear part is responsible for a shift & thitical condition for galloping.

The polar form of the (8), obtained posing := %alewl, Ay = %age“92 andy, := ot — VY,
and referred as Reduced Amplitude Modulation EquationsMEN is:

1 3 3 3
a 25(“ —bsz)ar — Zb4w§a1a§ - g“}%a:{’(bzi + b21) + §b12w1a% cos 1 — UERaiia 21 ;ZS;QOI
v = bV — Shi2alan — Swlad o
a2 —2(V bs)az 4b4w1a1a2 8w2a2(b4 +b71) 9)
: 3¢ 1 . sin
aip1 =0a1 — ﬁaf - §b12w1a% sin o1 + %
1 1

3.1 Fixed points

Fixed points of Eq. (9), obtained posing = a2 = ¢1 = 0, represent stationary oscillations of
the poles. Is this Subsection, analytical expressionsasfitre sought.

In case of absence of turbulendey{ = 7, = 0), the case of non-resonant double Hopf bifur-
cation is obtained [6]. Just Eg. (9) are interesting, being the phage, as well asy,, a slave
variable. In this case, besides the trivial solutign= a; = 0, indicated as O, the self-excitation is
responsible for galloping, and the classical mono-modat&ms occur. One of them, indicated as

l, is the following: {a;. = 2, /ij), as. = 0} which occurs whem > b3, V. Its stability is

wi(b21

ruled by the sign of the real part of the eigenvalues of theldan matrix, that read:

A2 = % <—3 (5b4 + 3bo1) wial, — 8bz +4(u+v) £ \/(3 (bg + 3ba1) wia?, — 4(u — )’
(10)
A second mono-modal solution, indicated as Il{is. = 0, a2, = 2, /uﬁ@%ﬁilm} and occurs
whenv > bs, Vu. Its stability is governed by the following eigenvaluestoé lacobian matrix:

1
Ao = i (—3 (5b4 + 3b71) wia3, — 8bz +4(u+v) £ \/(3 (by + 3b71) wiad, +4(p — 1/))2

(11)



A bi-modal solution, indicated as Ill, is

(12)

=

G2e = l_( %b;;wf (% — %) + (% - %) (—%b@)f — %bﬂwf) ]

3 2 3 2 3 2 3 2 912 ,2 2
—gbawi — Fbn1wi) (—Fbawd — bniwf) — Hhiwiws

Both solutions | and Il indicate periodic oscillations ofeopoles, while the other one is at rest, at
this order. The solution Il represents quasi-periodidlizons of the two poles.

In case of presence of turbulence, two nonlinear algebi@i@atons can be drawn in the fol-
lowing way: cos ¢ is obtained by zeroing the right-hand side of Eq,(%)n ¢ is obtained by
zeroing the right-hand side of Eg. (9)and then the variable, is condensed by the relation
cos? o1 + sin? p; = 1. The resulting equation, where only anda, appear and valid whem
or by is different fro zero, is the following:

w? (6b4w§a1a§ + 3bywia? + 3baiwiad + 4bza; — 4ua1)2 (8crw1a1 — 3cla?)2

(4771 - 3b12w%a%) 2 (blgw%a% — 4771)2

=1 (13)

Itis sided by the equation obtained taking the right-haid@-ef Eq. (9} equal to zero. Solutions of
that system are sought by numerical procedures and aresdetin the following Section.

4 NUMERICAL RESULTS

4.1 Absence of turbulent wind

In case of absence of turbulence, the behavior chart of thesyis shown in Fig. 2, when
w1 = 1l,wy = 1.7,b4 = —%,bgl = 1,by1 = 1,b3 = 0.1. The solution O exists in the whole plane
{w,v}. The lines indicated as | and Il are the boundary limits offtf@no-modal solutions | and 11,
respectively. The line indicated as Il represents the bamylimit of the solution IIl. The line 1 is
the path of the section reported in Fig. 3.

Figure 3 shows the variable,, while Fig. 3, shows the amplitude, varying p, along the
section 1. In particular, the trivial solution O loses sliépiat the bifurcation point B, where the
stable galloping solution | appears. Whens further increased, a secondary bifurcation occurs
(B2), the solution | loses stability and the bi-modal, unstabtanch Il appears.

4.2 Presence of turbulent wind

The turbulent wind produces, in case of resonafce wq, two kind of excitations: external,
of amplituden;, and parametric, of amplitudg,. For the same values of the auxiliary parameters
assumed in the case of absence of turbulent wind and fe0, ¢c; = 1, the effects on the response
are evaluated here.

The case where the external excitation prevails againgpdn@metric one is shown in Fig. 4.
There, a mono-modal branch of stable equilibriaiin(referred as 1) is present; it corresponds to
a branch of periodic oscillations in the variahlé), of amplitudea;. When the parameter is
increased, a divergence occurs gt Borresponding to a Hopf bifurcation faf(t). At B, a bi-
modal branch of equilibria (referred as IIl) starts and thenich | becomes unstable. The bi-modal
solution is initially stable, but it loses stability on a sadary bifurcation referred as;B Then,
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Figure 2: Stability diagram in absence of turbulent wind
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Figure 3: Equilibrium branches in absence of turbulent wiordy = 0 (section 1). (a) amplitude
a1; (b) amplitudeas.

increasingu, the branch Il dies on the branch | when the divergence @irs reached. A Hopf
bifurcation occurs at Bon the branch I, but any periodic solutions branching off fint are not
sought in this paper. It is worth noticing how the backbon¢hefse two branches (I and Ill) are
the corresponding branches obtained in absence of tudmi(elotted lines in Fig. 4). For the same
values of Fig. 4, a section in the plangs a; } and{o, a2} is shown in Fig. 5 whem = 0.06.

When the parametric excitation is prevailing against thtemmal one, the sections are shown in
Figs. 6 and 7, for different values ef Wheno = 0 (see Fig. 6), the equilibrium branch | exist for
all the values ofs, and near the valug = 0.1 a loop and change in stability occur. The backbone
curve is again the corresponding branch | obtained in alesehturbulence (dotted line). When
o = 0.06 (see Fig. 7), the behavior is more complicated, since thedbrais divided into two parts,
one of them is an island. On the lower part, instability osauhen the Hopf bifurcation pointBs
reached (any periodic soultions branching off this poistrast sought in this paper). On the island,
the two divergence points;Band B, represent the limits of existence on the bi-modal branch IlI
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Figure 4: Equilibrium branches fep = 0.06, b;2 = 0.005, 0 = 0. Continuous line: stable; dashed
line: unstable; dotted line: backbone (absence of turbwiémd). (a) amplitude:;; (b) amplitude
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Figure 5: Equilibrium branches fof; = 0.06, b1 = 0.005, x = 0.06. (a) amplitudea;; (b)
amplitudeas.

The backbone is again highlighted. In case.ef 0.099, a section in the plangs, a; } and{o, as}
is shown in Fig. 8, where the two parts of branch | and the bitahbranch Il are evident.

5 CONCLUSIONS

In this paper a 2 d.o.f. nonlinear dynamical system, drawa &galerkin projection of a continu-
ous structure, constituted by two poles and a viscous nealidevice, opened to turbulent wind, is
considered. The system is subjected to simultaneoussgthton, external and parametric excita-
tions, the first due to the steady part of the aerodynamiefdhe last two due to the turbulent part
of the wind. The Multiple Scales are used to obtain Amplithtelulation Equations, under the 1:1
resonance condition between the fundamental componehedfitbulent wind and the first d.o.f.,
and in absence of internal resonance. For fixed values ofutkidiaay parameters, the dynamical
behavior of the system is studied and comparison among céggeponderance of different kind
of excitations are analyzed, in terms of equilibrium braaxbf the amplitudes. In particular, when
the turbulence is present, both mono-modal and bi-modaldwes occur, and they are drawn on the
backbones constituted by the corresponding brancheseltaiithout turbulence. The parametric
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Figure 6: Equilibrium branches fop, = 0.003, b1> = 0.51, o = 0. Continuous line: stable; dashed
line: unstable; dotted line: backbone (absence of turbwiémd). (a) amplitude:;; (b) amplitude
ag.
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Figure 7: Equilibrium branches fop; = 0.003, b12 = 0.51, 0 = 0.06. Continuous line: stable;

dashed line: unstable; dotted line: backbone (absencerimfilant wind). (a) amplitude,; (b)
amplitudeas.

excitation is also responsible for the separation of theanmiedal branch in two parts, one of them
is an island.
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