
On the approximation of 3D hyperbolic boundary integral equations

A. Temponi, A. Salvadori, F. Mordenti, A. Carini, P. Pelizzari
CeSiA - Centro di studio e ricerca di sismologia applicata e dinamica strutturale,
DICATA - Dipartimento di Ingegneria Civile, Architettura,Territorio e Ambiente
Universit̀a di Brescia, via Branze 43, 25123 Brescia, Italy
E-mail: alessandro.temponi@ing.unibs.it, alberto.salvadori@ing.unibs.it

Keywords: Hyperbolic problems, boundary integral equations, computational complexity.

SUMMARY. The present note summarizes some new results for hyperbolic problems involving 3D
scalar fields modeled by integral equations extensively reported in [1]. Classical approximation
schemes as well as recently published energetic weak forms are considered; algorithms for the nu-
merical solution are formulated adopting polynomial shapefunctions of arbitrary degree (in space
and time) on trapezoidal flat tessellations of polynomial domains. Analytical integrations are per-
formed both in space and time for Lebesgue integrals workingin a local coordinate system; for
singular integrals, both a limit to the boundary as well as the finite part of Hadamard approach have
been pursued..

1 INTRODUCTION
Modeling hyperbolic problems by means of boundary integralequations (BIEs) and approximat-

ing their solution through boundary element methods (BEM) is firmly established in the academic
community as well as in industry. Such methods have been successfully used for decades in the
propagation and scattering of acoustics, electromagnetic[2] and elastic waves [3]. Several modern
research and applications topics are dealt with them: see [1] for a short review.

The integral formulation of thescalar wave problemcan be formulated (see e.g. [3, 4]) stemming
from Graffi’s [5] generalization of steady state reciprocity theorem to dynamics. Under the hypoth-
esis of vanishing initial conditions and no external body forces, the boundary integral representation
(BIR) of the primal fieldu in the interior of the open domainΩ at timet reads:

u(x, t) =

∫

Σ

Guu(r, t− τ)p(y, τ) dΣτ,y −

∫

Σ

Gup(r, l(y), t− τ)u(y, τ) dΣτ,y (1)

Here,Σ is the lateral boundaryΣ = (0, T ) × Γ andr = x − y stands for the vector that joins
point y to x. Identity (1) is based on Green’s functions (also called kernels)Guu andGup. An
additional integral equation can be provided by the application of the co-normal derivative operator
to identity (1): the BIR of the dual fieldp(x) = σ(x) · n(x) on a surface of normaln(x) in the
interior of the domain, i.e.{t,x} ∈ Σ turns out to be:

p(x, t) =

∫

Σ

Gpu(r,n(x), t − τ)p(y, τ)dΣτ,y −

∫

Σ

Gpp(r,n(x), l(y), t − τ)u(y, τ)dΣτ,y (2)

Such a BIR involves Green’s functionsGpu andGpp.
A set of two BIEs can be derived from BIRs (1) (thus obtaining the so-called “primal equation”)

and (2) (thus obtaining the so-called “dual equation”) by performing the space boundary limitΩ ∋
x → x ∈ Γ. In the limit process, after integration in time, singularities of Green’s functions are
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triggered off: their singularity-orders show to be equivalent to the steady state case1. Assuming
smooth boundaries, after imposing the fulfilment of the primal equation on Dirichlet boundaryΓu

and of the dual equation on Neumann boundaryΓp, the following linear boundary integral problem
(omitting the arguments of Green’s functions for paucity ofspace) comes out:

∫

Γu

∫ t

0

Guu p(y, τ)dτ dΓ(y) − −

∫

Γp

∫ t

0

Gup u(y, τ)dτ dΓ(y) = fu (x, t) , x ∈ Γu , t ∈ (0, T ) (3)

−

∫

Γu

∫ t

0

Gpu p(y, τ)dτ dΓ(y)− =

∫

Γp

∫ t

0

Gpp u(y, τ)dτ dΓ(y) = fp (x, t) , x ∈ Γp , t ∈ (0, T ) (4)

Scalarsf i , i = u, p, that gather all data are the following:

fu (x, t) =
1

2
ū(x, t) −

∫

Γp

∫ t

0

Guup̄(y, τ)dτ dΓ(y) + −

∫

Γu

∫ t

0

Gupū(y, τ)dτ dΓ(y) ,

x ∈ Γu , t ∈ (0, T )

fp (x, t) =
1

2
p̄(x, t) − −

∫

Γp

∫ t

0

Gpup̄(y, τ)dτ dΓ(y) +

∫

Γu

∫ t

0

Gppū(y, τ)dτ dΓ(y) ,

x ∈ Γp , t ∈ (0, T )

The above integral problem (3,4) can be solved by means different approximation schemes: the
space-time collocation BEM(see e.g. [3]) requires the fulfillment of the primal BIE (3),after dis-
cretization, onto a set of collocation nodes,{th,xi} ∈ Σ =

def

(0, T ) × Γ. Just like in the elliptic
case, the mathematical analysis of the collocation approach, for which stabilized versions have been
recently proposed [6], lags seriously behind the practicalexperience. The convergence and stabil-
ity analysis of hyperbolic BIEs is rooted onvariational methods proposed in several fashions: the
convolutive variational method [7], the variational formulation in extended sense [8], the energetic
formulation [9, 10].

Thesymmetric Galerkin in space and collocation in time BEMrequires the application of a stan-
dard Galerkin scheme in space on the two equations (3,4), after discretization, collocated thereafter
onto a set of nodes in time,{th} ∈ (0, T ).

Energetic formulationsare rooted in the principle of virtual power. A “velocity equation” for
x ∈ Γu , t ∈ (0, T ) can be obtained from equation (3) by derivation in time:

∂

∂t

[∫

Γu

∫ t

0

Guu p(y, τ)dτ dΓ(y) − −

∫

Γp

∫ t

0

Gup u(y, τ)dτ dΓ(y)

]
=

1

2
˙̄u(x, t) +

∂

∂t
gu (x, t) (5)

where:

gu (x, t) = −

∫

Γp

∫ t

0

Guup̄(y, τ)dτ dΓ(y) + −

∫

Γu

∫ t

0

Gupū(y, τ)dτ dΓ(y)

1KernelGuu shows an integrable singularity (named “weak”); kernelGup andGpu present a strong singularityO(r−2);
kernelGpp is usually named hypersingular, because it shows a singularity (of O(r−3)) greater than the dimension of the
integral.
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From the internal energy definition (see [1] for details) a bilinear formAE can be envisaged with
an energy meaning:

AE(

(
p
u

)
,

(
ς
ν̇

)
) =

〈
L

[
p
u

]
,

(
ς
ν̇

)〉
(6)

=

∫

Γu

∫ T

0

∂

∂t

[∫

Γu

∫ t

0

Guu p(y, τ)dτ dΓ(y) − −

∫

Γp

∫ t

0

Gup u(y, τ)dτ dΓ(y)

]
ς(x, t)dt dΓu(x)

+

∫

Γp

∫ T

0

[
−

∫

Γu

∫ t

0

Gpu p(y, τ)dτ dΓ(y)− =

∫

Γp

∫ t

0

Gpp u(y, τ)dτ dΓ(y)

]
ν̇(x, t)dt dΓp(x)

and the energetic weak form of problem (4-5) reads:

given

(
ḟu

fp

)
find

(
p
u

)
∈W s.t. AE(

(
p
u

)
,

(
ς
ν̇

)
) =

〈(
ḟu

fp

)
,

(
ς
ν̇

)〉
∀

(
ς
ν̇

)
∈ W̃ (7)

After the discretization process, collocation as well as variational formulations turn out to require
the evaluation of “integrals” of the form:

∫

Γs

∫ t

0

Grs(x,y, t − τ)ψ(τ) ⊗ φ(y) dΓ(y)dτ , t ∈ (0, T ) r, s = u, p (8)

2 SHAPE FUNCTIONS
Discretization over the lateral boundaryΣ = (0, T ) × Γ is achieved through space-time poly-

nomial shape functions on a trapezoidal tassellation ofΓ and a non uniform decomposition of seg-
ment(0, T ). Collect in matrixξu all shape functions for the discrete approximationû(y, τ) of the
Dirichlet field u(y, τ) over the lateral boundaryΣu = (0, T ) × Γu. Matrix ξp for the discrete
approximation̂p (y, τ) of Neumann fieldp (y, τ) is defined analogously over the lateral boundary
Σp = (0, T )× Γp. Accordingly,

û(y, τ) = ξu(y, τ) · û , p̂ (y, τ) = ξp(y, τ) · p̂ (9)

In the former equation: i)̂u andp̂ are matrices of unknown nodal values; ii) scalar product is
defined as the usual Frobenius product; iii) shape functionsare taken of tensor product form; they
read:

ξu(y, τ) = Ψ(τ) ⊗ Φu(y) ξp(y, τ) = Ψ(τ) ⊗ Φp(y) (10)

whereΨ(τ) = {Ψm(τ) , (m = 1, 2, ..., NT )} is a basis of a space of finite elements on the time
interval, andΦ(y) = {φn(y) , (n = 1, 2, ..., NΓ)} is a basis of a space of finite elements on
boundaryΓ; iv) tensor product⊗ : RNT × RNΓ → RNT×NΓ is defined as:(a ⊗ b)c = (b · c)a for
all c ∈ RNΓ .

2.1 Definition and representation of shape functions in time
Shape functionsΨm(τ) are defined over a decomposition of the time axis with nodes{tm , (m =

1, 2, ..., NT )} andt0 = 0. Let Tk be the generic (Nk + 1)-nodes interval of the decomposition and
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chose overTk a local basisψ(τ) = {ψj(τ) , (j = 1, 2, ..., Nk + 1)} whereψj(τ) is a polynomial

(usually lagrangian) of degreeNk with compact supportTk. Collect in setTm = {Tk}
NTm

k=1 the (two
at most, i.e.NTm

≤ 2) intervals sharing vertextm; thenΨm is defined as:

Ψm(τ) =

{
ψω(k,m)(τ) τ ∈ Tm

0 τ /∈ Tm
(11)

where the indexω(k,m) selects the local basis function onTk such thatψω(tm) = 1. By con-
struction,Ψm(τ) ∈ C0(R), and its compact support isTm. Collecting into vectorbω(k,m) suitable
constants and defining withτ = {1, τ, τ2, ..., τNk}, shape functionψω(k,m)(τ) in definition (11)
reads:

ψω(k,m)(τ) = χTk
(τ) bω(k,m) · τ (12)

whereχTk
(τ) is the characteristic function of intervalTk.

2.2 Definition and representation of shape functions in space
Let Γh be a flat tessellation of boundaryΓ, Qj ⊂ Γh its generic trapezoidal andan a generic

node ofΓh. Collect in setQn := {Qj s.t. an ∈ Qj} all panels ofΓh sharing nodean (see Fig.
1). Choose overQj a local (lagrangian) basisϕj := {ϕ1, ϕ2, ..., ϕM} and denote withϕω(j,n),
1 ≤ ω ≤M the unique element ofϕj such thatϕω(j,n)(an) = 1. Define shape functionφn(x) (see
Fig. 1) as a piecewise continuous function overΓh whose value is zero outsideQn, as follows:

φn ∈ C0(Γh) supp(φn) = Qn φn|Qj
= ϕω(j,n) (13)

A suitable choice of an orthogonal cartesian coordinate system2 allows an effective representa-
tion forϕω(j,n)(y).

Let L ≡ {y1, y2, y3} define a local coordinate system such that: i) a vertex of trapezoidalQj is
the origin; ii) the planey1 = 0 containsQj ; iii) plane y2 = 0 contains one base of trapezoidalQj ;
iv) planey3 = 0 is orthogonal to the parallel sides ofQj. In L,Qj is defined by:

Qj := {y ∈ R
3 s.t.y1 = 0 ; 0 ≤ y2 ≤ y2 ; ay2 ≤ y3 ≤ by2 + y3 }

wherea andb denote the slopes of the two slanted sides ofQj (see Fig. 1) andy3 the intersection
with axisy3. Shape functionϕω(j,n)(y), denoting withd = y−x, r = ||d|| and using the binomial
expansion rule, can be straightforwardly rearranged in theform:

ϕω(j,n)(d) = a
(3)
ω(j,n)

T

X(3)d3 ⊗ d2 X(2)Ta
(2)
ω(j,n) (14)

where:

dα = {1, dα, d
2
α, ..., d

Nω
α } , X

(α)
il =

(
l − 1
i− 1

)
x(l−i)

α i, l = 1, 2, ...., 1 +Nω; α = 2, 3

2The choice of an orthogonal coordinate system is arbitrary because the jacobian is unit and no distortions are introduced
with regard to the Hadamard’s finite part.
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Figure 1:Shape functions in space. a) Localϕω(j,n)(x) and globalφn(x) shape functions.; b) Local
coordinate systemL and shape function definition.

HereNω stands for the degree of polynomial shape functionsϕω(j,n) anda
(2)
ω(j,n), a

(3)
ω(j,n) are

suitable vectors of constants.

3 MAIN RESULT
By means of (12, 14), integrals (8) can be recast in the form:

∑

j,k

bω(k,m) ·

[∫

Qj

ϕω(j,n)(y)

∫ th

0

Grs(x,y; th − τ) τ χTk
(τ) dτ dΓy

]
(15)

=
∑

j,k

bω(k,m) · frs
ω(j,n)(x, th, Tk)

having denoted withfrs
ω(j,n)(x, th, Tk) the vector of components:

frs
ω(j,n)l

(x, th, Tk) = a
(2)
ω(j,n)

T

X(2)
K

rs
l (x, th, Tk) X(3)Ta

(3)
ω(j,n) (16)

where l = 0, 1, 2, ..., Nk is the degree of the monomialτ l in vectorτ and Krs ∈ R1+Nk ×
R(1+Nω)×(1+Nω) is the matrix:

K
rs(x, th, Tk) =

∫ y
2
−x2

−x2

∫ b d2+Kb,y3

a d2+Ka,0

grs(d, th, Tk) ⊗ d2 ⊗ d3 dd3 dd2 (17)

which collects integration in space of the “time integral” vectorgrs:

grs(d, th, Tk) =

∫ th

0

Grs(d; th − τ) τ χTk
(τ) dτ (18)

In definition (17)Ka,0 = a x2 − x3 = 0 andKb,y
3

= b x2 − x3 + y3 = 0 denote the equations of
the two slanted sides ofQj (see Fig. 1).
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Vectorgrs has a distributional nature, due to the definition of Green’sfunctionGrs. As a conse-
quence, evaluation of (18) has to be performed as a limit process within a suitable functional space,
which appears to beC2

0 . The basic distributions:

<
∂n H

(
t− τ − r

c

)

∂τn
, τ l χTk

(τ) > n = 1, 2, 3 (19)

are required to evaluategrs
l (d, t, Tk). It can be proved - see [1] for detail - that:

<
∂

∂τ
δ
(
t− τ −

r

c

)
, τH(τ)H(tk − τ) > = (20)

H(t−
r

c
)H(tk − t+

r

c
) − tkδ

(
t− tk −

r

c

)

<
∂2

∂τ2
δ
(
t− τ −

r

c

)
, τH(τ)H(tk − τ) > = (21)

δ
(
t−

r

c

)
− δ

(
t− tk −

r

c

)
− tk

∂

∂t
δ
(
t− tk −

r

c

)

Considerx /∈ Qj. By means a suitable recursive relationship - which comes out from the binomial
expansion rule -,Krs(x, t, Tk) is reduced to the combination of a set of two basic integrals:

∫ a−x2

−a−x2

d~

2

∫ b−x3

−b−x3

rp dh
3 dd3 dd2

∣∣∣∣∣
d1=−x1

;

∫ a−x2

−a−x2

d~

2

∫ b−x3

−b−x3

dh
3

r2l+1
dd3 dd2

∣∣∣∣∣
d1=−x1

(22)

with h, ~, p ∈ N0 andl = 0, 1, 2.
Algebraic manipulations lead from (22) to the following tabular expression forKrs

l (x, t, Tk) in
the local coordinate systemL:

K
rs
l (x, t, Tk) = −

α

4π
K̂

rs
m(d, t, Tk)

∣∣∣
θ=b, η=y

3

θ=a, η=0

∣∣∣∣
d2=y

2
−x2

d2=−x2

∣∣∣∣∣
d1=−x1

(23)

with:

K̂
rs

l (d, t, Tk) = L
rs
l log(ζ2 + r) + A

rs
l arctanh

d3

r
+ I

rs
l Ir−3

(d) + R
rs
l r+ S

rs
l

1

r
+ P

rs
l (24)

where: I)Ir−3

(d) is the Lebesgue integral of the function1
r3 overQj II) Lrs

l ,Ars
l , Irs

l ,Rrs
l , Srs

l ,Prs
l

are matrices of the same order ofKrs
l detailed in [1].

4 CONCLUDING REMARKS
The present note aims at providing a closed form for analytical integrations involved in 3D space-

time hyperbolic BIEs. In it, analytical integrations have been performed for equations (3)-(4) in their
discrete form; both the singular and the regular part have been considered, so that the closed form is
obtained as a function of the collocation point. The outcomes presented in [1] are exhaustive for the
collocation approach as well as for the post-process reconstruction of primal and dual fields. The
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results show that space-time variational formulations maytake advantage on the proposed method-
ology as well. With reference to the outer integral in space,the approach pursued in [11] maps the
road to show the mutual cancelation of the singular terms in the outer integration process. Besides
accuracy, the availability of the closed form for the approximated primal and dual fields entails the
possibility of analytical manipulations - see e.g. [12] - which are hardly possible with alternative
approaches. Closed forms obtained are amenable to extension to dynamic fracture mechanics. The
use of fast integral operator techniques [13] seems to be possible in a way similar to steady state
problems. However, further investigations are required toassess conditions for their robustness and
accuracy. Broader impacts may result from the present note:obtained results may have influence
on extremely modern and stimulating applications, e.g. [14] but they need to be extended in order
to comply with very promising techniques for time marching schemes. Furthermore, on the edu-
cational side, introductory courses in the boundary integral equations may benefit from the closed
form for equations (3)-(4), which may lighten the effort of the numerical approximation of hyper-
bolic problems via BEM to inexpert auditors.
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