On the approximation of 3D hyperbolic boundary integralaons
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SUMMARY. The present note summarizes some new results fpetplic problems involving 3D
scalar fields modeled by integral equations extensivelpnted in [1]. Classical approximation
schemes as well as recently published energetic weak faensoasidered; algorithms for the nu-
merical solution are formulated adopting polynomial shapetions of arbitrary degree (in space
and time) on trapezoidal flat tessellations of polynomiahdms. Analytical integrations are per-
formed both in space and time for Lebesgue integrals working local coordinate system; for
singular integrals, both a limit to the boundary as well asfthite part of Hadamard approach have
been pursued..

1 INTRODUCTION

Modeling hyperbolic problems by means of boundary integgaiations (BIEs) and approximat-
ing their solution through boundary element methods (BEMjrimly established in the academic
community as well as in industry. Such methods have beeressfidly used for decades in the
propagation and scattering of acoustics, electromagfitand elastic waves [3]. Several modern
research and applications topics are dealt with them: gder[a short review.

The integral formulation of thecalar wave problernan be formulated (see e.g. [3, 4]) stemming
from Graffi's [5] generalization of steady state reciprgditeorem to dynamics. Under the hypoth-
esis of vanishing initial conditions and no external bodygés, the boundary integral representation
(BIR) of the primal fieldu in the interior of the open domain at timet¢ reads:

u(x,t) = /2 Guu(r,t — T)p(y, 7)dE,, — /2 Gup(r,(y), t — Tu(y,7)dXE, (1)

Here,X is the lateral boundary = (0,7) x " andr = x — y stands for the vector that joins
pointy to x. ldentity (1) is based on Green'’s functions (also callech&t) G, andG,,,. An
additional integral equation can be provided by the apptiozof the co-normal derivative operator
to identity (1): the BIR of the dual fielg(x) = o(x) - n(x) on a surface of normai(x) in the
interior of the domain, i.e{¢,x} € 3 turns out to be:

p(x,1) / Gpu(r,n(x),t — 7)p(y, 7)dX, / Gpp(r,n(x),1(y), t — Tuly,7)dE,, (2)

Such a BIR involves Green'’s functiods,, andG,,.

A set of two BIEs can be derived from BIRs (1) (thus obtainimg $o-called “primal equation”)
and (2) (thus obtaining the so-called “dual equation”) byf@ening the space boundary limit >
x — x € I'. In the limit process, after integration in time, singuii@s of Green’s functions are



triggered off: their singularity-orders show to be equérdlto the steady state cdseAssuming
smooth boundaries, after imposing the fulfiiment of the @ilieguation on Dirichlet boundaiy,
and of the dual equation on Neumann boundayythe following linear boundary integral problem
(omitting the arguments of Green’s functions for paucitgpfce) comes out:

t t
/ / Guup(y, 7)dr dl(y) —][ / Gupul(y,7)drdl () = f*(x,t) , xe€Ty,t€ (0,T) (3)
r. Jo r, Jo

t t
][ / Gpup(y, 7)d7 dl () — 7[ / Gppu(y,7)drdl) = fP(x,t) , xeT,,tc(0,T) (4)
Ty J0 r,Jo

Scalarsf? , i = u, p, that gather all data are the following:

1_
frx,t) = 5 a(x,t) // Guubd(y, T deF(y)Jr][/ upU(y, T deF(y),
r,,te0,7)

fp (X, t) = X t ][ / pup y, T dT dF(y) +/ / ppu y, T dT dF(y) s
xel,, te(0,T)

The above integral problem (3,4) can be solved by meangeéift@approximation schemes: the
space-time collocation BENsee e.g. [3]) requires the fulfillment of the primal BIE (&jter dis-
cretization, onto a set of collocation nodgs,, x;} € ¥ = (0,T) x I'. Just like in the elliptic
case, the mathematical analysis of the collocation apprdacwhich stabilized versions have been
recently proposed [6], lags seriously behind the practgpkerience. The convergence and stabil-
ity analysis of hyperbolic BIEs is rooted owariational methods proposed in several fashions: the
convolutive variational method [7], the variational forfation in extended sense [8], the energetic
formulation [9, 10].

Thesymmetric Galerkin in space and collocation in time BE?duires the application of a stan-
dard Galerkin scheme in space on the two equations (3,4}, @ificretization, collocated thereafter
onto a set of nodes in timé¢, } € (0,7).

Energetic formulationsre rooted in the principle of virtual power. A “velocity eaion” for
xeT,, t € (0,T) can be obtained from equation (3) by derivation in time:

1. 0 .
g [/ / Guup(y, 7)dr dl(y) —][ / Gupu(y, T )deF(y)l = U u(x,t) + 57 (x,t) (5)

where:

t t
_ / / Guup(y, 7)dr dT () + ][ / Gupii(y, 7)dr dT'(,,
r, Jo r. Jo

1KernelG ... shows an integrable singularity (named “weak”); ker@igl, andGp., present a strong singulariy (r—2);
kernel Gy, is usually named hypersingular, because it shows a sirityu{af O(r~3)) greater than the dimension of the
integral.




From the internal energy definition (see [1] for details)labiar form. A can be envisaged with
an energy meaning:

AE(@ ’ G)) - <‘C [ﬁ] | <i>> (6)
_ /F /OT % [ /F /0 G ply, )Ty ]£ /0 t Gupu(y,f)dmr(y)] o, 1)dt Ty )
+ /F p /OT [ ]{ /0 t Gpu p(y, 7)d7 dT ()~ 7{ /0 t G,,pu(y,f)der(y)] p(x,t)dt dT s

and the energetic weak form of problem (4-5) reads:

pon () 1o () () ()= ((£)- ) <)

After the discretization process, collocation as well aga®nal formulations turn out to require
the evaluation of “integrals” of the form:

¢
L\A(}Axyi—wﬂw()®¢() »dr, te(0,7) r,s=1up (8)

2 SHAPE FUNCTIONS

Discretization over the lateral boundaty= (0,7") x I' is achieved through space-time poly-
nomial shape functions on a trapezoidal tassellatioil ahd a non uniform decomposition of seg-
ment(0, 7). Collect in matrix¢* all shape functions for the discrete approximatids, ) of the
Dirichlet field u(y, ) over the lateral boundar},, = (0,T) x I',. Matrix & for the discrete
approximatiory (y, 7) of Neumann fieltb (y, 7) is defined analogously over the lateral boundary
¥, = (0,T) x I';,. Accordingly,

u(y,7) =&"(y,7)-a,  ply,7) =&y, 7) P (9)

In the former equation: i1 andp are matrices of unknown nodal values; ii) scalar product is
defined as the usual Frobenius product; iii) shape funciwagaken of tensor product form; they
read:

'y, 7)=¥(n)oe(y) £(y,7)=¥()o 2 (y) (10)

where® (1) = {¥,,(7), (m = 1,2,..., Np)} is a basis of a space of finite elements on the time
interval, and®(y) = {¢.(y), (n = 1 2,...,Nr)} is a basis of a space of finite elements on
boundanyf; iv) tensor product : RV x RNt _, RN7xNr is defined as(a ® b)c = (b - ¢)a for
allc € RMr,

2.1 Definition and representation of shape functions in time
Shape function¥,,,(7) are defined over a decomposition of the time axis with ngdgs (m =
1,2,...,Np)} andty = 0. Let T}, be the generici{; + 1)-nodes interval of the decomposition and



chose ovefl}, a local basigp(r) = {¢;(7), (j = 1,2, ..., Ny + 1)} wherey, (1) is a polynomial
(usually lagrangian) of degre¥€;, with compact suppofty. Collect in setZ,,, = {Tk}kN:TT the (two
at most, i.e Nz, < 2)intervals sharing vertek,,; then¥,, is defined as:

_ ww(k,m) (T) TE Tm
W) = { o) 7 S (11)
where the indexv(k, m) selects the local basis function @i such thaty,,(¢,,) = 1. By con-
struction, ¥, (7) € C°(R), and its compact supporti,,. Collecting into vectob,,,, Suitable
constants and defining with = {1, 7,72, ..., 7"}, shape function) . »(7) in definition (11)
reads:

ww(k’,m) (T) = XTy (T) bw(k,m) T (12)
wherexr, (7) is the characteristic function of interval,.

2.2 Definition and representation of shape functions in space

LetI';, be a flat tessellation of boundaly @); C I'j, its generic trapezoidal aral, a generic
node ofl',. Collectin setQ,, := {Q; s.t. a, € Q;} all panels ofl';, sharing nodes,, (see Fig.
1). Choose ove®); a local (lagrangian) basig; = {¢1, ¢2, ..., o} and denote withp, ),
1 <w < M the unique element @b; such thatp,,(; »)(a,) = 1. Define shape functios,, (x) (see
Fig. 1) as a piecewise continuous function olgrwhose value is zero outsid2,,, as follows:

¢n € CO(Fh) supp(pn) = Qn ¢n|Qj = Puw(j,n) (13)
A suitable choice of an orthogonal cartesian coordinateesysallows an effective representa-
tion for ¢, (;j.n) (¥)-

Let £ = {y1,y2,ys} define a local coordinate system such that: i) a vertex oktrajplal@; is
the origin; ii) the plang; = 0 contains();; iii) plane y, = 0 contains one base of trapezoida);
iv) planeys = 0 is orthogonal to the parallel sides@f;. In £, @Q; is defined by:

Qi ={yeR’sty; =0;0<y><Typ;ays <ysz < by + 75 }

whereq andb denote the slopes of the two slanted side§o¢f(see Fig. 1) and; the intersection
with axisys. Shape functiom,,; ) (y), denoting withd = y — x, » = ||d|| and using the binomial
expansion rule, can be straightforwardly rearranged iridhma:

T T
ot d) =al) TXPdy @ da X )

VED) w(g,m)

(14)

where:

do = {1,dg,d2,...dY}, X\ = ( (=1 )xﬂ—i) i0=1,2,...1+ Ny; a=23

« i—1 «

2The choice of an orthogonal coordinate system is arbitragabse the jacobian is unit and no distortions are intratiuce
with regard to the Hadamard’s finite part.
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Figure 1:Shape functions in space. a) Loga); »)(x) and globalp,, (x) shape functions.; b) Local
coordinate systend and shape function definition.

Here N,, stands for the degree of polynomial shape functipps; .y and aw(J ny? af()j n) are
suitable vectors of constants.
3 MAIN RESULT
By means of (12, 14), integrals (8) can be recast in the form:
th
Z b (k,m) ° / Pw(y, n)( ) G7's (X7 Yith — T) T XT (T) dr dFy (15)
0
—Zb (kom) * £ojn) (% ths Th)
having denoted W|t|ﬂ£fj n) (x,tn, T1) the vector of components:
e (tn Th) = a) TXO K (x4, T) XO T2 (16)
w(g,n)\* hyLk w(j,n) 1 sUhy Lk w(J n)

where | = 0,1,2,..., N} is the degree of the monomial in vectorT and K™ ¢ R7Nr x
RO+N)x(1+Nw) s the matrix:

Yoy — T2 bda+ Ky, 73
K" X Jth, Tx) = / / *(d t}uTk) ® do ® d3 dds dds a7
adz+Ka,o

which collects integration in space of the “time integragttorg™*:
th

g™ (d, tp, Ti) = Grs(d;ty, — 1) T X1, (T) dT (18)
0

In definition (17)K,0 = aw2 — 23 = 0 and K 3, = bxs — 23 + y3 = 0 denote the equations of
the two slanted sides @j; (see Fig. 1).



Vectorg™™ has a distributional nature, due to the definition of Gre&nitionG,.s. As a conse-
guence, evaluation of (18) has to be performed as a limitgg®within a suitable functional space,
which appears to b€73. The basic distributions:

O"H(t—17—-=%

_OH(t-7- )
arm

are required to evaluagg;®(d, ¢, T}). It can be proved - see [1] for detail - that:

, Tt xr, (1) > n=1,2,3 (29)

< %5 (=7~ 1) PHH( ~7) > = (20)
H(t = D)H(tx — ¢+ =) = tid (£t - E)
2 r

< %5 (=7 1) PH(H( ) > = (21)

o(1-5)-a--3) ===

Considex¢ Q;. By means a suitable recursive relationship - which comesom the binomial
expansion rule KK"*(x, ¢, Ty ) is reduced to the combination of a set of two basic integrals:

"a—To . b—x3 N ra—To " b—x3 dg
/ d2 / rP d3 ddg ddQ y / d2 / m ddg ddg

—a—x2 —b—x3 —a—x2 —b—x3

(22)

dlz—xl

dlz—xl

with h, h, p € Ngandl =0, 1, 2.
Algebraic manipulations lead from (22) to the following tddr expression foK;j*(x, ¢, T}) in
the local coordinate systenfit

0=b, n=; | 2=V2""2

Ki*(ct, T) = —1= Ki(d,t.Th) |

23
0=a, n=0 ( )

da==z2 g =g,

with:

rs

= " " d 5 e " 1 "
K, (d,t,Tx) =L;° log(¢a +7) + A}® arctanh73 + 1% 17 “(d) + RIS+ S - +Pre (24)

where: I)Igs(d) is the Lebesgue integral of the functignoverQ; Il) Ly* , A7 |17 | Ry, S7 Py
are matrices of the same orderlf° detailed in [1].

4 CONCLUDING REMARKS

The present note aims at providing a closed form for analiitegrations involved in 3D space-
time hyperbolic BIEs. In it, analytical integrations haweeln performed for equations (3)-(4) in their
discrete form; both the singular and the regular part haea lbensidered, so that the closed form is
obtained as a function of the collocation point. The outcepresented in [1] are exhaustive for the
collocation approach as well as for the post-process réieat®on of primal and dual fields. The



results show that space-time variational formulations taltg advantage on the proposed method-
ology as well. With reference to the outer integral in spalce,approach pursued in [11] maps the
road to show the mutual cancelation of the singular termhénouter integration process. Besides
accuracy, the availability of the closed form for the appmeated primal and dual fields entails the
possibility of analytical manipulations - see e.g. [12] -igthare hardly possible with alternative
approaches. Closed forms obtained are amenable to extensitynamic fracture mechanics. The
use of fast integral operator techniques [13] seems to bsiljesn a way similar to steady state
problems. However, further investigations are requirealsgess conditions for their robustness and
accuracy. Broader impacts may result from the present rafiined results may have influence
on extremely modern and stimulating applications, e.g] fl4 they need to be extended in order
to comply with very promising techniques for time marchimfpemes. Furthermore, on the edu-
cational side, introductory courses in the boundary irstbgquations may benefit from the closed
form for equations (3)-(4), which may lighten the effort betnumerical approximation of hyper-
bolic problems via BEM to inexpert auditors.
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