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SUMMARY. The catenary problem for extensible caisleevisited in this paper. The deformed
shape of the elastic cable is derived in a hoveimag extending the classic procedure for heavy
cables with vertical loads to the case of generalignted spatial loads. By writing the equilibrium
equation of a cable element in vector form, thatfmosvector in the deformed configuration has
been written in closed vector form for the follogithree cases: distributed spatial loads, one
point load generally oriented in the three-dimenalspace, and finally in the case of many point
loads; the final expression can be applied to ergging problems in a simple manner.
Applications are proposed, in order to show théulisess of the solutions which have been found.

1 INTRODUCTION

The circumstance that a chord under self weightunable to maintain its rectilinear
configuration in spite of the tension which candpplied at its ends, was known already in 1638
by Galileo Galilei; however, in Galilei opinion themnfiguration of the chord was parabolic, in
accordance with the flight path of a projectile. [The mathematical treatment of the cable theory
began in the latter half of the seventeenth centilihe initial problem was to determine the
equilibrium position of an inextensible string harggbetween two points and subjected to various
systems of loads. In particular the catenary probieeans to find the equilibrium shape of the
cable under self weight, supposed to be a parabpl&alilei. The non parabolic shape of the
chord was noted by Jungius (1669) but he was ntd @b find out the real mathematical
expression of the curve. The problem was propogethkob Bernoulli in thécta Eruditorum[2]
and, after this date, was tackled and solved segardy Huygens, via pure geometric
considerations, and by Leibniz (1691) [3-5] andalohBernoulli, Jakob’s brother, via the integral
calculus; all the three solutions were publishethmActa (1691). The name “catenary” it seems
was due to Huygens, which use it in a letter tdh& in 1690. All the mentioned works did not
take into account cable extensibility. Bernoulliothrers were the first which formulated the
differential equation of equilibrium of the elastiable, following the law postulated by Hooke
(1675). Also Euler contributed to the study on ¢h&enary, after a suggestion of Daniel Bernoulli;
he uses the variation calculus, the “method oflfeeuses”, and showed that the equilibrium
configuration is determined by the lowest positidrthe barycentre of mass, i.e. by the minimum
of potential energy of the gravity forces [6,7].



Although the analytical expression of the solutionthe elastic catenary is today well known
and literature on cable structures [8] reports dhibject, it seems interesting to re-examine the
classic solution, in order to obtain more genekaressions, as will be presented in this work. In
particular, a novel procedure will be proposed,clthfollows that proposed in Irvine's book [8],
but is extended to anyway oriented point or digted forces; proposing a compact vector form of
the solution. The proposed form, which differs édasably from other proposed solutions, is
extended to the case of many point loads, maimgiaicompact general expression, which makes
it of easy application in engineering problems.

Finally, in order to show the usefulness of thepps®ed equations, two numerical applications
are presented, with reference to cables with diffetoad conditions. The first application shows
the case of a heavy cable under the action ofresvesisal distributed load. In the example, the
final shape is obtained. The second example prepasmethod for the correct definition of the
shape of a suspended bridge in the erection stagssd on the found equations derived herein.

2 SOLUTION FOR EXTENSIBLE CABLE WITH CONSTANT DISTRIBTED LOADS

The catenary equation for extensible cables whatlbviis Hooke’s law will be derived in this
paragraph. Although the subject is presentedsimédar manner as the one reported by Irvine [8],
the approach differs because the general caseswibdied loads ik and y directions will be
considered. In addition, the equations are companta vector form, very suitable for numerical
analysis. This form is amenable to applicatiorhireé dimensional cases.

Figure 1: Un-stretchedC,) and stretchedC, ) configurations of the elastic cable.

With reference to Fig. 1, the equilibrium of theébleain the stretched sta@ , up to abscissa
S,» leads to the equation:

T(%)j—::R—p% 1)

Vector R:[H,V,W]T collects the reaction forces at the left end o ttable, whereas
x(s)=[Xs). X9, £9] and p=[p,. p, pZ]T. The cable tensionT(s)) is obtained by



taking the modulus of the two sides of Eq. (1):

T(3)=[|R-ps| )

in which the norm operatcHr[H] has been introduced. The Hooke’s law states:

T(s)= EAT L 8- E/{di;—q @

Taking into account the Hooke's law, Eg. (3), ansing the chain rule of differentiation
dx/dg =(dk/ ds)( ds/ d3, the following equation is obtained:

& _R-ps Mﬂ_ (4)
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After integration Eq. (4) becomes:
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In order to solve the integrdl= I—p%dsJ one can perform the following steps:

Rewrite | in the following form:

- RIp| - plo's,

(6)
[ IR~ ps,

Take into account the equalifp|” =p'p , so that:

I R(p"p)- p(p'R) + p(R"p) - p(p’ P%
[ol*IR- ps, |

ds, (7)

Divide the latter integral in two fractional parts:

:I[R(p P-p(p'R) , PR )~ p(p' p)%] 5 )

[oIR=pss[ [ol*IR-ps]

Resort to Lagrange rulax(bxc) =b(a'c)-c(@'b) (whereX is the cross product), so
that:
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Multiply and divide the first addend by the quaynﬁﬂR— ps, ||| o - P (R- p%)]/” pl:

_ I[—pxmxmuR—psonuw—pr—pso) L
? R-ps, R-ps|[ol-p (R-p3)
o IR=ps T TR=psIel- o)
p (R-ps)' p
+ ——— |d§,
Iof* IR=ps] ]
which, after some manipulation, gives:
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Recall that for a vector function(s) the following equation holds:
v v
=T (12)
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so that assuming(s,) =R —ps, the quantity in the brackets in the first addefthe integral is
written as:
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—(R-pg)) ++——"—(R-psg) Ps (13)
( [l ds, |R-ps| ds [R-ps-= || I

whereas, for the second addend:
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So operating, the integrhlbecomes:
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which admit the following solution:
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wherec is the integration constant. Due to the extenigbilf the cable the curvilinear abscissa in
the stretched configuration can be evaluated bynse&Eq. (3), which allows us to write:

(16)

5(s)=] (T‘S’ J ds (17)

It is interesting to note that the vector methddved us to easily analyse three-dimensional cases.
The constant vector can be determined by imposing the boundary candit s, =0, so that
Eqg. (5) can be finally rewritten as follows:

X(SO):EA, %-ﬁp%
px(pxR) | P (R=ps) [y 'R
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The unknown vectoR must evaluated imposing the coordinates of the pidt of the cable,
namely ins, = L,, by employing a numerical method such as the Nesaphson. Onc&® has

been calculated, the elastic catenary can be wréxplicitly. In a non dimensional form, the Eq.
(18) can be written as follows:
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where the following positions have been made:

%=x/ly; §=5/l; R=[HV,W=R/ E§ p=p |/ Ef (20)

3 SOLUTION FOR EXTENSIBLE CABLE WITH POINT LOADS

The effect of concentrated load? is introduced by redefinition of the equilibriumguation as
follows:

T g =R-ZRUs5)Ps (21)

The score identifies the abscissa of the load egipdin point. In the previous equation, the
unitary step functiold has been introduced. Thus, the same proceduveopsty described can
be directly extended to the case of concentratadislo

3.10ne point load

For a singular point load, & <'§ the solution is the same found for cables withy ahétributed
load, Eq. (18). Fors, =75, the solution is:

x(so)=—Ab %‘_'% P(s- %)-Z—E%ps

{2 R’]Iog{uR— o-pa]- ELE R R | } @

_IIpFIJIZ (IR-P-ps |-|R])+¢c

The constant vector can be defined by imposition of the continuityg, so that the solution for
the cable with one point load and distributed lodgiss, =5, is written as follows:
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The vectorR is derived by enforcing cable end positionsat L,. A formal simplification can
be introduced by defining the operator:

T(R—(
Q) =||R—(-)||—% (24)

and denoting witll(s,) the integral function otJ(s)), so that the solution is rewritten in the
whole domain0< s, < L, as follows:
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3.2Many point loads

The general case with many point loads, arbitraiignted, and constant distributed load, is
now considered. Assume that the point lo&l¢j =1,..,i,..N ) are applied at points,; . The
following non dimensional equation governs the [fishape of the cable, in the interval

g),i < SJ SL%Hl:

+ (26)
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The solution in the first cable segment, beforefifst point load, is given by Eqg. (19), whereas
the solution in the last cable segment, after #sé point load, is still given by Eg. (26) assuming

i =N. It is clearly inexact to use the above equatifmnsone load per time and sum finally the
partial solutions.



4 APPLICATIONS

Some examples are presented in this paragraphrdier @ show the applicability of the
proposed equations.

4.1Heavy inclined elastic cable under constant wimavfalong z

The cable un-deformed length lig =460m; the cable is suspended in two points, whose
coordinates arex, =[0,0,0] and x, =[400,150,0] m; in non dimensional formx, =[0,0,0]
and X, =[0.869565, 0.326087,0. The stiffness isEA =3.8610 N, the self weight is
p, =144.43N /m. The wind load, neglecting turbulence, is defimedsidering only a constant
velocity U, =30m/sec the air density is assumed to pg =1.25Kg /nT, the cable diameter is
b =22cm and the drag coefficient@, =1.2. The wind load isp, =0.5p,C,U? = 148.50N /m;
for simplicity, a wind acting in the direction has been considered. Therefore, thelaliséd non-
dimensional load i=10"[0,1.71952,1.76801. The solution for the reaction vector is
R=10"[1.54976,1.4846,0.9289.. Fig. 2 show the deformed shape of the cable.

a) b)

0
0
(= 0.2
(=~ 0.2
0
0.2
0.4
0-406 0.1 0.05 0
X 0.8 010.0g <
Z
c) d)
0 : - ' - 0
= 0.2 e 0.1
0.4 0.2
0 02 04 06 0.8 0 02 04 06 038
X X

Figure 2. Deformed shape of an inclined cable usdinweight and constant aloagvind.



4.2Final shape of a suspended bridge

As an example the cables of the designed Messiat Btidge is considered. The four main
cables are constituted by 44352 steel wires each3 mm diameter. Each cable has a cross
section area o\® =1.00825 . The total area of the four cablesAg=4.032997 . Assume
the steel density to bp, = 7850Kg /n?, and the Young modulus & = 210" N /n? (in reality,
the elastic modulus of the cable is slightly lovlean the elastic modulus of the material). The
weight per unit length of the cable g =310,575KN /m. The total weight of the bridge deck is
70500KN and the total weight of the hangers is about 28BKaN . Thus the sum of weight of
deck and hangers is equal to 705258641

The suspended weight, taking into account a distarid. =3300m between the supports at
the same level, i, =213715N /m; this distributed load is applied on the horizdmi@jection
of the cable and can be reported to the curviliaacissa through the following expression:

__dx
py,d - pyd_s

(27)
where thex(s) is still to be determined. We know a priori thaithe stretched configuration the
sag in the midpoint has to lwe=300 m. The deck is divided inttN segments of equal length
Ax =L/ N, so to simulate the construction stages, eachhadhwis represented by a point load of
intensity p,Ax. Curvilinear abscissag correspondent to thd +1 X values are required, and
concentrated loads are applied at poifgst s,,)/2. The coordinates of the end point are:
x, =[3300,0,0] m. The problem can be formulated by means of Eq. i(2@hich L, and R are
unknown  quantites. Two  conditions can be imposedx(L,,R)=x, and
x(L,/2,R)=[3300/2, 300,0]m. Besides, the following equations can be writte{g) = iAx.
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Figure 3: Sag and tension versus construction stagesag; b) horizontal component of cable
tension H (continuous line) and vertical comporiéiitashed line).



Due to the planarity of the problem, the whole ¢gus are not required. The equations have to
be solved contemporarily, by means of methodsNigaiton-Raphson, to obtain the quantitlgs
H,V, § (i=2,..,N). For the sake of the example, it hagnbdivided the deck into N=31 parts, so
that the deck segment length/Ag =106.452m. The final sag of 300 m is obtained by an initial
length L, =3361.32m , and the cable tension components in the finalgestaare:

H =2.39091118N, V =8.74600118 N . If we adopt a parabolic approximation of the natg,

the horizontal component of cable tensiorHis = 2.37896118N . In the initial stage, when they
are only the cables the cable tension componeetsHar1.46406118N , V =5.21970118N .
The parabolic approximation gives =1.45191118 N . Fig. 3a shows the sag variation in the 16
considered construction stages, starting from tltegpan to the piers. The initial value is 291.181
m; the sag increases to a maximum value of 10.99hen the middle span segments are placed
and decreases of 5.654 m to reach the final valug0® m. Fig. 3b shows the variation for
horizontal and vertical components of cable tension

5 CONCLUSIONS

A model for obtaining the deformed shape of antelasble under general load conditions has
been proposed. The model differs from other appresdecause it allows to take into account
distributed loads generally oriented and not omlf-®ad; besides the model accounts for point
loads, also generally oriented. The solution isegiin a vector form, which reduces to that
contained in classic literature when only verticads act on the cable. Particularly useful is the
solution for many point loads, which is also giviena closed compact form. The possibility
offered by the method suggest as a further stirdyapplication to the mechanics of spatial cable
systems.
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