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SUMMARY. We investigate the buckling of a ‘Roorda’ frame by means of a direct one-dimensional
beam model. The frame is acted upon by a ‘dead’ load at the joint and is constrained there by an
out-of-plane linear elastic spring. The possibility of warping constraints at the beam ends is also
considered; the spring simulates the presence of braces in actual 3D frames. The numerical results
are compared with those already obtained by the authors for an infinitely stiff spring.

1 INTRODUCTION. DIRECT ONE-DIMENSIONAL MODEL
In the first years of the 20th century a new problem arose in the stability of structures, namely the

mixed buckling in bending and torsion of thin-walled members. The problem gained, and still re-
tains, much importance due to the widespread applications of thin-walled elements in many fields of
engineering, especially industrial (rack structures) and aero-spatial (frames supporting plates made
up of thin elements). The first researches in this field are those in [1, 2], where the different role
played by the shear centre and the centroid of the cross-sections was pointed out.

Afterwards, among the most significant works from the point of view of the physical and math-
ematical model we may quote [3], probably the first comprehensive book on the subject, and the
well-known monograph [4], where a wide range of examples is presented. Beside these works,
which in some sense constitute a starting point, there are a lot of papers dealing with the modelling
of thin walled beams have been published in the last 50 years or so.

Some years ago, one of the authors introduced a direct one-dimensional beam model suitable for
describing the behaviour of thin-walled beams with two axes of symmetry [5]. In a recent paper [6]
a refinement of the previous model has been introduced by some of the authors, in order to describe
the flexural-torsional buckling of beams with generic, non-symmetric cross-sections.

The aim of this contribution is to study the effect of lateral braces and warping constraints on the
buckling of thin-walled framed structures on the base of that model. To this aim we consider a simple
two-bar frame as an example of how more complex structures may behave when similarly loaded.
Such a frame, usually called ‘Roorda frame’, exhibits interesting interactions between flexural and
torsional modes occurring out of the plane where the frame originally lies.

The beams are considered constrained to the ‘ground’ with hinges allowing for the sole rotation
with axis perpendicular to the plane of the frame. In order to simulate the qualitative behaviour of a
3D frame, a linear elastic spring orthogonal to the plane of the frame is attached to the joint where
the two beams meet. Warping constraints are then considered and the stiffness of the spring is varied
to account for different grades of lateral restraint. The results are compared with the ones obtained
when the stiffness tends to infinity, reported in [7].

A ‘dead’ load acting at the joint and collinear to one of the beam axes is considered. We focus
on the buckling of a frame composed of thin-walled beams with cross-sections exhibiting one axes
of symmetry: indeed, such beams (e.g. channels) are of widespread use, a standard example being
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the so-called rack structures. Moreover, the coupling between flexural and torsional buckling, so
important in these structures, is clearly put in evidence.

We summarise the model (details are in [6, 8]) and present the field equations for the problem at
first. In the following sections, some numerical results illustrated by graphs will be presented.

The reference shape consists of plane cross-sections orthogonally attached either to the centroidal
or to the shear centres axis, straight and parallel, directed along the x1-axis of an orthogonal cartesian
system with consistent right-handed unit vector basis (i1, i2, i3). Strain measures are

E = R>R′ = χ1i2 ∧ i3 + χ2i3 ∧ i1 + χ3i1 ∧ i2,

eo = R>p′o − q′o = ε1i1 + ε2i2 + ε3i3,

ec = R>p′c − q′c = eo + Ec = ε1ci1 + ε2ci2 + ε3ci3 =
= (ε1 + χ2c3 − χ3c2)i1 + (ε2 − χ1c3)i2 + (ε3 + χ1c2)i3,

α, η = α′,

(1)

where: o is the centroid, c is the shear centre and c = c − o = c2i2 + c3i3; qo(x1), qc(x1) are
the placement of the axes in the reference shape, po(x1, t), pc(x1, t) those in the present shape;
R(x1, t) is the cross-sections rotation; and α(x1, t) is the scalar coarse descriptor of warping. The
skew tensor E provides the curvature of the axes, the vectors eo, ec compare the tangents to the axes
in the present and reference shape. The torsion curvature is χ1, the bending curvatures are χ2, χ3;
the wedge product ∧ between vectors provides skew tensors; ε1 is the elongation of the centroidal
axis, ε2, ε3 are the shearing strains between this axis and the cross-sections. The displacement of
the centroidal axis and the rotation are decomposed as

u = po − qo = u1i1 + u2i2 + u3i3, R = R3R2R1 (2)

where the rotation R1 (amplitude ϕ1) is around i1; R2 (amplitude ϕ2) is around R1i2; R3 (ampli-
tude ϕ3) is around R2R1i3.

The external power is linear in the velocities with respect to the shear centre, the internal power
P i is linear in the same velocities and their x1-derivatives. The balance of power and a pull-back [6,
8] yield the balance of force and torque in the reference shape with respect to c, the auxiliary equa-
tions for bi-shear and bi-moment and the reduced internal power:

s′ + Es + a = 0, S′ + ES− SE + (q′c + ec) ∧ s + A = 0,

τ = β + µ′, P i =
∫ l

0

(
s · ėc + S · Ė + τω + µω′

)
;

(3)

the vectors a, s are bulk and contact forces; the skew tensors A, S are bulk and contact couples;
the scalar β is the bulk action spending power on warping; the scalars µ, τ are the bi-moment and
bi-shear ([3]), respectively, decomposed as:

s = Q1i1 +Q2i2 +Q3i3, S = S1i2 ∧ i3 + S2i3 ∧ i1 + S3i1 ∧ i2. (4)

Equations (1), (3)4, (4) imply

P i =
∫ l

0

[
Q1ε̇1 +Q2ε̇2c +Q3ε̇3c + S1χ̇1 + (S2 + c3Q1)χ̇2 + (S3 − c2Q1)χ̇3 + τω+ µω′

]
; (5)

the normal force Q1 acts at o, the shearing forces Q2, Q3 at c; S1 is the twisting couple, while
M2 = S2 + c3Q1, M3 = S3− c2Q1 are the bending torques, evaluated with respect to the centroid.

2



If ξ is a constant [3, 9, 10, 11, 5] the inner constraints

α = ξχ1, ξ ∈ IR, η = ξχ′1, eo = ε1q′o = ε1e1, ε2 = ε3 = 0 (6)

hold: cross-sections and shear axis do not remain normal (ε2c 6= 0, ε3c 6= 0, equations (1)).
If the beam is homogeneous and elastic, the material response depends on e, E, α, η and inner

constraints imply reactive contact actions [14]. Then the normal force, the bending torques and the
bi-moment are entirely active, while the shearing forces and the bi-shear have a reactive part; the
reactive twisting torque S1r contains the bi-shear, see also [3]. We make the standard assumption that
the shearing force and the bi-shear depend only on the shearing strain; thus, the constraint 6 imply
that they are purely constraint reactions. Thus, some actions are entirely active, others reactive; only
the twisting torque has both components [6, 8].

We adopt non-linear hyperelastic constitutive relations [12, 13]:

Q1a = Q1 = aε1 +
1
2
dχ2

1,

S1a = (k + dε1 + f2χ2 + f3χ3 + gη)χ1,

M2a = M2 = b2χ2 +
1
2
f2χ

2
1,

M3a = M3 = b3χ3 +
1
2
f3χ

2
1,

µa = µ = hη +
1
2
gχ2

1 .

(7)

The factors a, bj (j=2, 3), k, h are the extension, bending, torsion, warping stiffnesses, respectively;
the d, fj (j = 2, 3), g express the couplings between extension and torsion, bending and torsion,
warping and torsion, respectively [14, 15]. If the bulk action β vanishes, we obtain [6, 8]

τ = hξχ′′1 + gχ1χ
′
1,

S1 =(k + dε1 + f2χ2 + f3χ3)χ1 − hξ2χ′′1 + c3Q2 − c2Q3

(8)

Comparing equation (V.1.10)3 in [3] with ours one has

a = EA, bj = EIj (j = 2, 3), k = GIc,

d = EId, fj = EIfj
(j = 2, 3), hξ2 = EIω ;

(9)

E, G are the moduli in extension and shear; A is the cross-section area, Ij (j = 2, 3) the centroidal
principal moments of inertia; Ic is the torsion factor; Id is the polar inertia with respect to c; Iω is
the warping inertia (second moment of the sectorial coordinate with respect to the area) and If2 =∫

A
x3r

2, If3 =
∫

A
x2r

2, with xj (j = 2, 3) the coordinates of a point with respect to the centroid
and r its distance from the shear centre.

2 BUCKLING IN A ROORDA FRAME
Results for a ‘Roorda frame’ made of I-beams as well as of channels constrained by an out-of-

plane rigid pin at the joint are in [7]. There is an in-plane, flexural (Euler-like) buckling mode and
another flexural-torsional: one of the bars undergoes torsion, the other bends out of the plane. Here
we study a Roorda frame composed of channels constrained by an out-of-plane linear elastic spring.
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Figure 1: Two-bar Roorda frame.

The bars AB (‘beam’) and BC (‘column’) are hinged to the ‘ground’ in A and C and clamped at
the common joint B, Figure 1. A ‘dead’ load of magnitude λ acts at B and we may apply standard
techniques [13, 12]. A global basis and local abscissas are indicated; the subscripts I, II distinguish
the beam and the column, respectively. We imagine various warping constraints at A, B, C.

The fundamental equilibrium path is, provided I is the identity,

uf
I = 0, Rf

I = I, αf
I = 0, ef

I = 0, Ef
I = 0, ηf

I = 0,

sf
I = 0, Sf

I = 0, τ f
I = 0, µf

I = 0,

uf
II = −λ

a
x1i1, Rf

II = I, αf
II = 0, ef

II = −λ
a
i1, Ef

II = 0, ηf
II = 0,

sf
II = −λi1, Sf

II = 0, τ f
II = 0, µf

II = 0 .

(10)

The bifurcated path is written in terms of differences

ub
I = u, Rb

I = R + I, αb
I = α, eb

I = e, Eb
I = E, ηb

I = η,

sb
I = s, Sb

I = S, τb
I = τ, µb

I = µ

ub
II = u− λ

a
x1i1, Rb

II = R + I, αb
II = α,

eb
II = e− λ

a
i1, Eb

II = E, ηb
II = η,

sb
II = s− λi1, Sb

II = S, τb
II = τ, µb

II = µ

(11)
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A static perturbation provides the first-order field equations in terms of displacement components

b3u
′′′′
2 = 0,

b2u
′′′′
3 = 0, (AB)

hξ2ϕ′′′′1 − cϕ′′1 = 0,

b3u
′′′′
2 + λ

a− λ
a

(u′′2 − c3ϕ′′1) = 0,

b2u
′′′′
3 + λ

a− λ
a

(u′′3 + c2ϕ
′′
1) = 0, (BC)

hξ2ϕ′′′′1 +
dλ− ac

a
ϕ′′1 + λ

a

a− λ
(c2u′′3 − c3u′′2) = 0 .

(12)

Equations (12) plus boundary conditions constitute an eigenvalue problem providing the critical
values λc and the mode shapes u2c, u3c, ϕ1c. The effect of different spring stiffnesses as well as

Figure 2: Three-dimensional view.

of warping constraints at the beam ends on the critical loads has been investigated numerically by
means of the commercial COMSOL Multiphysics code. The beams composing the frame have cross-
sections exhibiting one axis of symmetry; in particular we choose a channel (U-shape) with outer
dimensions 100 mm (web) and 60 mm (flanges) and uniform thickness of 3 mm. By assuming the
local coordinate systems as in Figure 2, the geometric and inertia quantities of the cross-section are
obtained by standard calculations and well-known tables, e.g. [4, 16]

• U100:
a = 642 mm2E; b3 = 1054726 mm4E; hξ2 = 446086956 mm6E; k = 1875 mm4G;
d = 2370581 mm4E; b2 = 236653 mm4E; c3 = −41 mm; c2 = 0 mm;
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Let Young’s and shear modulus be E = 206 GPa, G = 79 GPa.
In 3D frames actual hinges may be assumed as cylindrical and the out-of-plane movement of

nodes is constrained by braces. Therefore we consider B to be constrained along the unit vector k
and the hinges in A, C to allow the sole rotation around k:

u = 0, ϕ1 = 0, ϕ2 = 0, M3 = 0 in A and C

uI = uII, RI = RII,

SI = SII, uI · k =
r

s
, (I− k⊗ k)(sI − sII) = 0 in B

(13)

where r is the constraint reaction of the spring at the joint B and s is the spring stiffness. Because

Figure 3: The spring simulating an actual frame.

of the phenomenon we wish to model, on the basis of standard results of the mechanics of structures
we assume, see Figure 3, that

r = R
12EI2
L3

2

(14)

withR a scalar multiplier. By varying the value ofR in (14) we represent the effect of combination of
braces of different length in actual three-dimensional frames on the considered frame. To investigate
the influence of warping on buckling, additional constraints have been assumed: once all three ends
A, B, C are supposed free to warp (case a.), then all three are supposed constrained against warping
(case b.). This equals to the boundary conditions

case a. µ = 0 in A, B and C;
case b. α = 0 in A, B and C.

We consider frames in which both the length of the beam and of the column equals 2 000 mm;
results have been obtained for each of the boundary cases a.–b. above. Two buckling modes are
possible, depicted in Figure 4 for the case a. above: the first, denoted by the subscript 1, is char-
acterized by the fact that the buckled axes remain in-plane both for the beam and the column; the
beam undergoes Euler-like buckling about the axis of greater inertia, while the column undergoes
bending about the axis of greater inertia and torsion. It is remarkable, and it was to be inferred, that
this mode is not affected by the variation of the braces stiffness multiplier R. The second buckling
mode, denoted by the subscript 2, is out-of-plane: both the beam and the column undergo bending
about the axis of smaller inertia and torsion; the buckling modes are easily seen to be influenced by
the value of the braces stiffness multiplier R. It is easy to see, and the relevant picture is not broght
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Figure 4: Buckling modes for various braces stiffness multiplier.

here for the sake of space, that similar buckling modes exist for the case b. above, the only difference
being in the zero slope of the torsion mode due to the constrained warping at the beam ends.

R λ1 λ2

0.05 95374.13128 64937.97421
0.1 95374.13128 70563.47893
0.5 95374.13127 113209.959
1 95374.13128 158011.8016
2 95374.13128 208359.3581
5 95374.13128 236020.6425

10 95374.13128 242016.9179
50 95374.13128 245842.6284

100 95374.13128 246269.4108

Table 1. Buckling load for the frame, all ends free to warp.

When all ends are free to warp (boundary case a. above) the buckling load is shown in Table 1;
as already remarked, the in-plane buckling load λ1 is not affected by the braces stiffness multiplier,
which, on the contrary, clearly affects the out-of-plane buckling load λ2: the stiffer the brace, the
greater the value of the critical load multiplier, until it reaches the same value obtained by the authors
in the case of null out-of-plane displacement imposed, see [7].

The numerical data contained in Table 1 are arranged in a graph in Figure 5. It is apparent
how, for the considered geometry, the out-of-plane critical load becomes quickly dominant when
the brace stiffness increases (i.e., roughly speaking, for moderately short lateral braces) so that the
lowest critical load is that of the in-plane buckling mode. This is, of course, of importance in the
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Figure 5: Critical loads vs. braces stiffness multiplier, warping free.

applications, since it implies that design against buckling can be limited to design against standard
Euler buckling and flexural-torsional buckling of single elements (the column, in this case). On the
other hand, it is apparent that for modest brace stiffness (i.e., roughly speaking, for ‘long’ lateral
braces) the first critical load attained is that of out-of-plane buckling, which is strongly mixed. This
is also of importance in the applications.

R λ1 λ2

0.05 244115.3233 65215.35557
0.1 244115.3233 70840.68069
0.5 244115.3235 113489.0777
1 244115.3238 158301.5494
2 244115.3244 208658.2766
5 244115.3268 236285.505

10 244115.3363 242267.0749
50 244115.3122 246082.1201

100 244115.3143 246507.6497

Table 2. Buckling load for the frame, all ends constrained against warping.

When all ends are constrained against warping (boundary case b. above) the buckling load is
shown in Table 2; again, the in-plane buckling load λ1 is not affected by the braces stiffness multi-
plier, while the opposite happens for the out-of-plane buckling load λ2. Again, the stiffer the brace,
the greater the critical load, until it reaches the same value obtained by the authors in the case of null
out-of-plane displacement imposed [7]. Remark how for this system constrained against warping,
hence stiffer with respect to the preceding one, the critical loads are higher than the corrisponding
ones for the system without warping constraints, in favour of security. This effect is more remarkable
for the in-plane buckling.

The numerical data contained in Table 2 are arranged in a graph in Figure 6. For the considered
geometry and the range of the brace stiffnes multiplier in the figure, the out-of-plane critical load
is always lower than the in-plane one, irrespective of the stiffness of the lateral braces. This is, of
course, of importance in the applications, since it implies that design against buckling cannot be
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Figure 6: Critical loads vs. braces stiffness multiplier, warping constrained.

limited to design against standard Euler buckling.

3 FINAL REMARKS
In this contribution we have described qualitatively and quantitatively by a direct one-dimensional

beam model and standard static perturbation techniques the buckling of a plane Roorda frame con-
strained against lateral buckling by a linear elastic spring simulating the effect of actual lateral braces.
We have evaluated both the buckling modes and the critical loads for various lateral restraints and
warping constraints at the frame ends and joint for a frame composed of members with channel sec-
tions, showing that for the considered geometry the lateral mixed buckling remains very important
and the stiffness of lateral braces as well as warping constraints play a very important role.

Further developments of the present study are in due course and will investigate the effect of
the length ratio between beam and column, as well as of other constraints at the beam ends and of
different possibilities of lateral restraint.
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