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SUMMARY. Oscillations induced by a moving mass on a moderately sagged suspended cable are 
studied. A linear continuum model is formulated, and both a standard Galerkin technique and a 
perturbation method are used to tackle the problem. This appear in the form of a parametric 
excitation problem, where the excitation frequency is related to the velocity of the travelling mass. 
A preliminary analysis is performed aimed to detect all the existing parametric excitation 
conditions of the mass-cable system, potentially leading to instability phenomena in which single 
modes are involved, or several modes interact. 

1 INTRODUCTION 
The dynamic of suspended cables has attracted the attention of many researchers as from the 

XVIII century (see, for instance, [1] for an historical reference). Cables are structural elements of 
great importance that find application in many engineering systems, among which suspended 
bridges, cableways and power transmission lines. Some studies are focused on the vibration 
analysis of suspended cables provided with fixed added masses, which can simulate sensors or 
non-structural elements (see, for instance, [2]-[3]). The addition of mass is a singularity source, 
that noticeably complicates the analysis of the system compared to the usual case of simple cable. 
In these last years the interest towards the dynamical response of structures excited by moving 
loads is widely increases, not only from a scientific point of view but also from a design 
perspective. The growth of this interest is to look into the design and construction of always more 
slender systems subjected to the action of travelling loads able to reach not negligible velocities. 
Many papers in the literature are devoted to the study of vibrations of elastic structures under 
moving loads (e.g., [4]); the behavior of taut strings has attracted attention as well, whereas to date 
dynamics of sagged suspended cables have been the subject of a remarkably lower number of 
papers. Wu & Chen [5] discuss dynamics of an horizontal extensible cable under a constant-
velocity load; the hypothesized system is solved by using the finite element method comparing 
different mass models (only weight force and translational inertia, with the successive addition of 
centripetal and Coriolis accelerations). Wang [6] shows an analytical-numerical study of 
vibrations on a taut inclined cable due to a mass able to accelerate, that is modeled as a rigid body: 
the differential equations of the motion are deduced superimposing small displacements on the 
catenary state of the cable, by considering also the mass-cable friction; the spatial dependence is 
eliminated by the Galerkin method. Sofi & Muscolino [7] propose an improved series 
representation of vertical cable displacements in order to reproduce more correctly the abrupt 
changes in cable configuration due to the presence of the mass (singularity): in such a way they 
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numerically analyze the in-plane response of suspended cables carrying an array of moving loads 
having arbitrary velocity, which are schematized as moving oscillator models. 

In the present work, the small oscillations induced by a moving mass on a horizontal, sagged, 
suspended cable, are dealt with. The main goal is not the evaluation of the response, as usual in the 
literature, but the analysis of the critical conditions causing incipient instability of the system. The 
equations of motion of the cable bearing a single mass, moving with constant velocity, are 
deduced by a variational approach, under the usual hypothesis of small sag-to-span ratio. They are 
found to depend on four dimensionless parameters, two describing the cable characteristics (the 
Irvine parameter  and the damping function fD), and two the mass features (the mass ratio μ and 
the velocity V). The analysis is carried out in two ways: (1) a numerical approach, based on a 
discrete Galerkin model and (2) an analytical approach, based on a perturbation method. The first 
analysis throws light on the mechanism leading to parametric excitation phenomena, and supplies 
a simple tool for detecting cable responses; the second analysis furnishes a parametric 
representation of the critical velocities and of the regions of instability. 

2λ

2 THE CONTINUUM MODEL 
Let us consider a cable as an elastic one-dimensional continuum of Cauchy, embedded in a 

two-dimensional space, subjected to its own weight, to inertial and viscous forces, traveled by a 
single point mass M. Two configurations of the cable are considered (Fig. 1): the reference 
(prestressed) configuration C0, occupied by the cable under its own load, and the actual 
configuration C, occupied by the cable during the motion of the mass. Only oscillations of small 
amplitude are studied here, so that the two configurations are assumed adjacent. Let 

0 0 0n be the (small) displacement field leading C0 to C , where 0 0 0 0( , ) ( , ) ( ) ( , ) ( )tu s t u s t a s v s t a s= +
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0 0[0, ]
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s L∈ is a
{ ( ), ( )}t na s a sG G  curvilinear abscissa referred to the C0 configuration, t is the time and 

 the intrinsic basis. 
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The equations of motion of the cable-mass system are obtained by the extended Hamilton’s 

principle: 
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where δT and δU are the first variations of the total kinetic energy T and of the (increment of the) 
total potential energy U, respectively, while δW is the work spent by the non-conservative 
damping forces Df . By truncating the strain-displacement relationships at the second-order, they 
read: 
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In Eqs (2) to (4): N0 is the axial prestress of the cable, m the cable mass per-unit-length, EA the 
axial stiffness, 0 0  the cable curvature in C0 and g the gravity constant; ( )k s 0 0 ( )s s t=  is the 
instantaneous position of the mass M and 0d d / /t V s t= ∂ ∂ + ∂ ∂  represents the total derivative, 
with 0: d / d tV s  the instantaneous (relative) velocity of the mass M; the dots and dashes denote 
partial differentiation with respect to the time t and the curvilinear abscissa s0, respectively; fDu and 
fDv are mechanical damping functions, which depend on velocities. 
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 Figure 1: Sagged suspended cable subjected to a moving mass.  
 

The following, simplifying assumptions, are introduced. (a) The two supports of the cable are 
at the same level (horizontal cable); (b) the sag-to-length ratio of the cable is small (i.e. 

0 0 1 8d L < , 0  being the cable sag), so that its static profile is approximated by a parabola with 
constant curvature 

d
2

0 0 0k d ; (c) the velocity V8 L=
G

 of the travelling mass M  is assumed 
constant, therefore 0s Vt= ; (d) the tangent component u  of the displacement is statically 
condensed. The resulting (integro-differential) equation of motion is found to be: 
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where 0 0[0, ] [ , ]0s s L− += ∪D . The relevant mechanical and geometric boundary conditions are: 
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to be enforced on 0 00 s L∂ = ∪ ∪D . In particular, the mechanical condition (61) establishes the 
equilibrium at the (moving) singular point 0s , at which the tangent 0v s( , )t′  is discontinuous. It 
involves the gravitational term Mg , and the sum of three accelerations acting on the point mass 

,M  namely, the centripetal, the Coriolis, and the driving acceleration due to cable motion, 
respectively. These latter terms can be indifferently evaluated, all together, at 0s + or 0s − .  

It is convenient to recast Eqs (5) and (6) in nondimensional form. The following positions are 
introduced: 
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Omitting the tilde the equations of motion become: 
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where 2
0 0 0(8 )EA N d Lλ = ⋅ 2  is the Irvine’s parameter [1] governing the classical cable linear 

dynamics, 0( )M mLμ =  is the mass ratio, 0 /V V N m=�  is the dimensionless velocity of mass, 
equal to the ratio between the true velocity and the celerity of the taut string. Moreover, the star 
superscript on μ  is used for distinguishing gravitational from inertial masses; thus, the travelling 
force model is deduced from Eq. (8) by letting *0, 0μ = μ ≠ . 

3 DISCRETE MODEL 
A discrete model is derived via the Galerkin approach. The resulting equations permits to 

highlight the role of the travelling mass on the system dynamic, and to numerically attack the 
problem. Since the goal of this paper is to analyze global behaviors of the system, the standard 
Galerkin method is applied, by renouncing to a more refined description of the local 
discontinuities, as e.g. performed in Ref [7]. The transversal displacement is assumed as: 
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where kφ  are the eigenfunctions of the undamped cable (without traveling mass), taken from the 
linear theory (e.g., [1]) and kq  their time-varying amplitudes. The first  modes are taken into 
account (symmetric or anti-symmetric, uncoupled in the linear theory, or both). When the method 
of weighted residuals is applied to Eqs (8) (with damping neglected), one obtains: 
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where d  and b are the residuals in the domain and at the boundary. Using the orthogonality 
properties of eigenfunctions and reintroducing a modal damping in the discrete equations, the 
following N degree-of-freedom linear system is deduced: 
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0

2
0dj jm = φ∫ being the modal mass, ωj the j-th circular frequency and ξj the j-th modal damping 

ratio. Equations (11)-(12) display the mechanism of the parametric excitation. Since the 
coefficients of the matrices P,Q and R are products of eigenfunctions (and their derivatives) 
sampled at a moving abscissa Vt, and since the eigenfunctions are linear combinations of harmonic 
functions (having spatial frequency jω or zero [1]), the matrices P,Q and R are multi-periodic 
functions of time, of (forcing) frequencies :jk j kV±Ω = ω ±ω

+

*ˆ

(for antisymmetric and symmetric 
modes) and Ωj:=V ωj (for symmetric modes only). Therefore, parametric resonances involving one 
or more modes (combination resonances) can be predicted for critical values of the velocity V. 
Their study will be carried out ahead, via a perturbation approach. 

Parametric excitation is exclusively due to inertial effects (indeed, it is proportional to μ). In 
particular, the centripetal acceleration modifies the structural stiffness, the Coriolis acceleration 
interacts with the mechanical damping and the driving acceleration changes the mass matrix. The 
classical term accounting for gravitation effect only appears as an externally applied force in the 
right member of these equations.  

4 PERTURBATION SOLUTION 
The Multiple Scale perturbation Method (MSM) is directly applied to the partial integro-

differential equations (8), to find a first-order uniform expansion. The same results, of course, 
could be obtained by applying the MSM to the discretized equations (11). However, in view of 
further developments, the continuous approach is preferred here, since it is able to determine 
changes in spatial oscillation shapes at higher orders, which cannot be accounted for in the 
standard Galerkin approach. 

4.1 Formulation 
The displacement is expanded in series of a perturbation parameter ε<<1, 
0 0 0 0 1 2 1 0 0 1 2 , where independent time scales are introduced 

th=εht (h=0,1,2,...), so that the first and second time-derivatives are expressed as 
D=d0+εd1+ε2d2+… and D2= +2εd0d1+ε2( +2εd0d2)+…, with dh=∂/∂th. Moreover, it is assumed 
that the (gravitational and inertial) mass ratios are small, 
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Equations (13) admit the following generating solution: 
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where Aj are complex amplitudes, which are unknown functions of the slow times, and c.c. denotes 
the complex conjugate. By substituting Eq. (15) into the right side of Eqs (14), the projection of 
these forcing terms acting over D and ∂D on the k-th mode φk(s0) leads to the following expression 
of the k-th generalized force: 

 

 

( )

( )( )

( )( ) ( )( )

0 0

0

0 0

*
i i i2

0 1 1 ,0 ,11 ,12

i ( )22
,21 ,22

1

i ( ) i2 2
,31 ,32 ,31 ,32

ˆ
( , ,...) 2i e 2i d e i e

2
ˆ

i 1 e
4

i 1 e i 1 e

k k

j j k

j j k

t t
k k k k k k k k k

k
N t V

j j k j k j
jk

t V t
k j k j k j k j

p t t A A
m

A V
m

V V

ω ω

⎡ ⎤ω − ω +ω⎣ ⎦

=

⎡ ⎤ω + ω −ω ω⎣ ⎦

μ 0 kt Vω⎡ ⎤= − ξ ω − ω − α + α + α +⎣ ⎦

μ ⎡− ω α + α − +⎢⎣

+ α + α + + α − α −

∑

( )( )

( ) ( )

( )( )

0

0 0

0

( )

i ( )2
,21 ,22

i i2
,41 ,42 ,41 ,42

1

i22
,41 ,52

1

,41

i 1 e

ˆ
i e i e

2

ˆ
i 1 e

2

i

j j k

j j k

j k j k

j j

V

t V
k j k j

N t V t V
j j kj kj kj kj

jk

N t V
j j kj kj

jk

j kj

V

A
m

A V
m

⎡ ⎤− ω −ω⎣ ⎦

⎡ ⎤ω + ω +ω⎣ ⎦

⎡ ⎤ ⎡ ⎤ω − ω ω + ω⎣ ⎦ ⎣ ⎦

=

⎡ ⎤ω − ω⎣ ⎦

=

+

⎤+ α − α + +⎥⎦
μ ⎡ ⎤− ω α + α + α − α +⎢ ⎥⎣ ⎦

μ ⎡− ω α + α − +⎢⎣

+ α − α

∑

∑

( )( ) 0 0i i2 2
,52 ,41

1

ˆ
1 e e c.c.j j j

Nt V t
kj j j

jk
V A

m
⎡ ⎤ω + ω ω⎣ ⎦

=

μ⎤+ + α ω +⎥⎦ ∑

 (16) 

 
where the damping function fD associated to φj has been considered orthogonal to φk. The 
coefficients α in Eq. (16) are related to the cable modal shapes (their expressions are here not 
reported for the sake of brevity). The general form (16) is derived from symmetric modes; when 
anti-symmetric modes are considered, the sole first summation remains (according to the fact that 
anti-symmetric modes have zero mean value). This circumstance leads to some differences in the 
evaluation of resonant terms. 



4.2 Critical velocity analysis 
In order to eliminate secular terms in Eq. (14), it needs to remove the harmonic ωk in Eq. (16). 

The first summation (and related c.c.) is examined first. By defining :jk j kV±Ω = ω ±ω  as forcing 
frequencies, it appears that summed combination resonance ( )j k jk or difference 
combination resonance 

±ω +ω = Ω
( )j k jk

±ω −ω = Ω  occur [8,9], when V assumes one of the following 
critical values: 
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Equation (17) defines four critical velocities valid for both symmetric and anti-symmetric modes. 
Modal interactions (i.e. combination resonance) can occur for any Vcr; single-mode parametric 
excitation can in principle occur just when Vcr=1, but relating terms in Eq. (16) actually disappear 
owing to the balancing of the three inertial terms. Of course, Vcr=1 also produces external 
resonance, via the gravitational mass; this latter, however, is responsible for response 
magnification only.  

The second and third summation (and related c.c.) in Eq. (16) are now checked. If the forcing 
frequency is defined as Ωj:=V ωj, summed or difference combination resonances ( )j k jω ±ω = Ω  
occur at the critical velocities: 
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Therefore, four additional critical velocities ( / , / )j k j j k kω ±ω ω ω ±ω ω exist for symmetric 
motions only, all different from 1, involving the j-th and k-th modes, except for 1:2 internal 
resonance conditions (ωk=2ωj) that imply Vcr=1: in this specific case a difference combination 
resonance appears in place of the single-mode excitation. Modal interaction manifests for any Vcr, 
whereas parametric resonance on a single mode can just occur when Vcr=2.  

It is important to note that, for all critical velocities, Eqs (17) and (18),  entails 
difference combination resonance, and summed combination resonance. 

1crV <
1crV >

The antisymmetric natural frequencies, equal to ωj=2πj, j=1,2,... (coincident with that of the 
taut string), are independent of the cable elasto-geometric quantities, and therefore also the critical 
velocities posses this property. In contrast, the symmetric frequencies do depend on the λ2 Irvine’s 
parameter, and they are different from that of the taut string, for which ωj=(2j-1)π. By taking, e.g., 
λ2=20 (i.e. below the first cross-over point), one obtains ωj=5.06, 9.54, 15.73, 22.00, 

, , ,  Table 1 shows the critical velocities relevant to the first eight anti-
symmetric modes; Table 2 collects the critical velocities for the first eight symmetric modes when 
λ2=20. The more significant results is the existence of a large number of parametric internal 
resonances as a function of the velocity of the travelling mass, similarly to the case of the elastic 
beam subjected to moving masses [10]. 

9π∼ 11π∼ 13π∼ 15 .π∼

5 INSTABILITY REGION ANALYSIS  
Once the (V-dependent) resonant terms in Eqs (16) are zeroed, Amplitude Modulation 

Equations (AME) governing the motion of the complex amplitudes on the 1t -scale are obtained. 
When the perturbation parameter is reabsorbed, and coming back to the true time t , they appear in 
the following form: 
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where A is a vector collecting the amplitudes, and L1, L2 are complex matrices depending on the 
cable and mass parameters. In particular, in order to investigate the neighborhood of the critical 
velocities, a (small) detuning parameter : ( ) /cr crV V Vσ = −  is introduced. Finally, f is a vector of 
known terms, dependent on the gravitational mass ratio μ* and σ; it is different from zero 
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 Table 1: Critical velocities for the first eight anti-symmetric modes of the cable. 
 

Vcr k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 
j=1 1,2        
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 Table 2: Critical velocities for the first eight symmetric modes of the cable (λ2=20). 
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 coefficients of the L1 , L2 matrices (not reported here) reveals that: (a) if the Inspecti he
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on of t

city is non-critical, the AME contain damping terms only so that all the amplitudes decay in 
time (this denoting that the response is of ε-order, i.e. of the same order of the excitation); (b) if, in 
contrast, the velocity is equal to a critical value, coupling terms appear in the AME, potentially 
leading to order-1 responses (i.e. much larger than the excitation). Anyway, at particular critical 
velocity, just few modes participate to the leading motion, according to Tables 1-2, so that the 
analysis can be limited to these interacting components, since the remaining ones decay. 

Since the AME are a linear homogeneous problem (when 1crV ≠ ), the response is governed by 
its eigenvalues only, so that the motion either extinguishes (stable equilibrium) or diverges 
(unstable equilibrium) in time. By evaluating the couples of values (μ,σ) for which the real part of 
the eigenvalues vanish, the boundaries of the instability regions are determined. Of course, the 
linear analysis performed here just permits to check the stability, not to evaluate the (post-critical) 
response in the unstable region, for which a nonlinear analysis is necessary. 

A further analysis of the coefficients shows that: if 1crV < , then L2=0, whereas if 1V >  then 
L rtain c

cr
iscuss2

the li
0≠ , so that the AME appear as generalization of ce oupled Hill’s equations d ed in 

terature [9]. According to those results, close to difference combination resonances ( 1)crV <  
the response is stable, while close to summed combination resonances ( 1)crV >  instability 
domains do exist. A deeper investigation, however, is necessary to confirm this property. 

As a first example, a summed combination resonance is analyzed concerning the 
antisymmetric modes. Setting the velocity at the critical value 2crV = , from Table 1 two cases are 
pointed out: resonance between modes (1,3) and resonance between modes (2,6). Obviously, other 
resonances would appear if Table 1 were extended (e.g. (3,9)), with the further consequence that 
resonances involving three or more modes (e.g.,(1,3,9)) would occur. Here, however, the 
truncation at the first eighth modes is imposed. Damping ratio is selected according to the 
Rayleigh model, setting it equal to 0.5% for the first two modes. Figure 2.a shows the instability 
domain for the modes 1,3 (continuous line) and for the modes 2,6 (dashed lines); bold round 
points concern numerical solutions, obtained by a direct integration of the Galerkin discrete model 
(11)-(12), reduced to modes 1,3. Figures 2.b and 2.c presents two time-histories deriving from the 
integration of the discrete model for μ=0.08, V=VA=1.56 and V=VB=1.7, respectively, using an 
integration time equal to 50 times the traveling time T=1/V of the mass (in practice, the load is 
considered periodically appearing again on the cable at the end of each travel). The agreement 
between numerical and perturbation results appears remarkable. The inclination of the instability 
region is due to forcing zero-frequencies : 0,kk k kV V−Ω = ω −ω = ∀  in Eq. (16). The relevant 
terms account for the increment of modal mass (see in Eq. (12 and for the reduction of the 
modal stiffness (see kkR in Eq. (127)) produced by M, t both reduce the natural frequencies and, 
consequently, the critical velocities. 

6 CONCLUSIONS 

kkP
tha

5)) 

In this paper a linear continuum model for a travelling mass on a suspended horizontal cable is 
proposed. The first results obtained through a perturbation technique highlight as the traveling 
mass model shows not only the classical external resonance (due to the gravitational load) but also 
a large number of parametric internal resonances between cable modes, which allows to identify 
several critical velocities leading to possible dynamic instability. In fact, the effective loss of 
stability may be insignificant because of the finite length of the structure and the consequent 
limited time duration of excitation; nevertheless, the response amplification appears of vital 



interest both from a conceptual point of view and, also in practice, for series of moving loads 
traversing the cable. A preliminary analysis, devoted to a specific instability domain, points out the 
good accuracy of the perturbation solution compared to direct numerical integrations of the 
discrete equations of motion. 
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 Figure 2: (a) Instability regions ( 2crV = ), (b)-(c) Time-histories related to A- and B-values. 
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