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SUMMARY. The waveguide geometry of numerous structures used in civil and mechanical engi-
neering can be exploited for the use of guided waves in damage detection. The present study exam-
ines the response of a bar to an impulsive force along its axis and points out the differences emerging
when the bar has a damage of notch-type. Relationships between the damage parameters and the
amplitude and time-delay of the reflected and transmitted waves are exploited to formulate a dam-
age characterization procedure. The presented procedure is tested analytically and experimentally in
different damage configurations.

1 INTRODUCTION
In recent years, methods based on wave propagation gained increasing attention for the nonde-

structive evaluation and health monitoring of various kinds of onedimensional waveguides, such as
pipes, beams, ropes, multiwire strands, rockbolts. The interaction of guided waves with discontinu-
ities in the waveguide is a topic that has stimulated a great deal of interest. The ability of waves to
locate cracks in onedimensional waveguides is widely documented and the effect of defect size on
the reflection and transmission has been investigated by many researchers [1]-[2].

Significant efforts have been devoted to ensure that only the desired propagation modes are ex-
cited and work in non-dispersive regions. The dispersion characteristics and cutoff frequencies of
elastic waves generated by an impulse in various waveguides were experimentally observed by [1],
providing useful considerations for the choice of the wave frequencies and propagating modes that
are more favorable for application to a given geometry in nondestructive evaluation.

Initial practical testing on pipes was done using the longitudinal mode [3] in its nondispersive
region over the cutoff frequency. However, later testing employed the torsional mode. This has the
advantage that there is no other axially symmetric torsional mode in the frequency range, in contrast
to the longitudinal mode, so axially symmetric torsional excitation will only excite one propagation
mode [4]. Here, the reflection coefficients from crack and notches of varying depth, circumferential
and axial extent when the torsional mode is incident are determined using FE models, with a com-
parison to experimental results. In the case of notches having finite axial extent, interferences from
the start and end of the notch cause a variation of the amplitude of the reflected signal as a function
of the notch length. FE models are used to generalize the results previously obtained [5], by deriving
approximate formulae relating the reflection coefficients to the notch characteristics.

As shown in a recent paper [6] collecting a wide number of references, in the majority of the
literature testing is restricted to low frequencies, which may be sufficient if one is interested in
locating the defect and not in characterizing it. The objective of the present study is examining
the problem of damage identification of notch type in onedimensional axial waveguides in selected
operative cases, focusing the attention on the defect characterization. The direct problem is studied,
showing that the wave generated by an impulsive force interacts with the two changes in the cross
section, generating other waves in the bar. Relationships exist between the amplitude and time delay
of transmitted and reflected waves and the damage characteristics. Hence, the inverse problem of
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damage characterization can be solved by using the experimental time-histories.
A procedure of damage identification based on the comparison between analytical and experi-

mental quantities is presented, which uses both reflected and transmitted signals . The procedure is
tested using pseudo-experimental and experimental data in different damage configurations.

2 MODELLING OF THE IMPULSIVE RESPONSE IN A DAMAGED BAR
The response of a cylindrical damaged bar to an impulsive force along the longitudinal axis is

considered. The damage consists in a sharp reduction of the cross-section of a certain length. The
damage is then characterized by three parameters: position xd, extension a and ratio between the
areas of the cross-section in the damaged and undamaged zones r = A2/A1 (Figure 1).
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Figure 1: Scheme of the damaged bar.

The equation of motion for the bar is the familiar wave equation:

∂2u

∂x2
=

1
c2
0

∂2u

∂t2
(1)

where u is the displacement in the axis direction and

c0 =

√
E

ρ
(2)

is the wave propagation velocity, E Young’s modulus and ρ mass density. To equation (1) the
D’Alembert’s solution pertains:

u(x, t) = f(t− x

c0
) + g(t +

x

c0
) (3)

so that longitudinal wave propagate at the velocity c0 without distortion.
The response of a semi-infinite bar to a transient load applied at its free end is the solution to

equation (1) with the following initial and boundary conditions:

u(x, 0) = 0
∂u(x, 0)

∂t
= 0 EA

∂u(0, t)
∂x

= p(t), (4)

where A is the area of the cross section. The solution to this problem is well known [7]:
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u(x, t) = f(t− x

c0
) = f(τ) = − c0

EA

∫ τ

0

p(ξ)dξ. (5)

The damaged bar can be divided into three regions, each with constant cross-section Ai, accord-
ing to Figure 1. The stress wave caused by the impulsive force interacts with the two changes in
the cross section (A and B in Figure 1), generating other waves in the bar. The amplitude of these
waves is indicated in the following formulae as R for reflected and T for transmitted waves, with a
subscript defining the change of section from which the wave is originating, as in Figure 1.

By exploiting the D’Alembert solution, the time-history of the reflected R(x, t) and T (x, t) trans-
mitted waves, respectively to regions 1 and 3, can be written as a superposition of wave components
with amplitudes governed by RAi and TBi:

R(x, t) =
∞∑

i=1

RAif(t +
2
c0

[xd − x + a(i− 1)]) (6)

T (x, t) =
∞∑

i=1

TBif(t− 1
c0

[x + 2a(i− 1)]). (7)

RAi and TBi can be expressed as a function of r by writing the boundary conditions, i.e. equilibrium
of forces and continuity of velocities where the change of section occurs [7]. Equations 6 and 7 are
expressions valid for different kinematic response quantities provided that the appropriate f is used.
The values of RAi and TBi rapidly decrease when i increases. The first three of these coefficients are
represented in Figure 2 as a function of r. The picture shows that RA2 is always negative, whereas
TB2 always sums to TB1. In the range of interest of damage intensity, which is 0.5 < r < 1, the
coefficients with i > 2 are negligible for R and i > 1 for T .
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Figure 2: Reflection and transmission coefficients.

Figure 3a represents with a continuous line the acceleration time-histories at the abscissae x1,
before the notch, and x2, after the notch, due to a wave generated by an impulse at x = 0. The
time-histories are obtained from equations (6), assuming i = 1, 2 and (7), assuming i = 1. These
reflection and transmission coefficients alone provide a satisfactory approximation of the acceler-
ation time-histories. This is proved in Figure 3a that reports also a comparison with a FE model,
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showing that the curves of the two models superimpose. Figure 3b represents the different roles
of the single wave components in the time-history. Each of them is reported with the same colors
and line styles as those used in Figure 2. According to their magnitude and sign these components
interact to provide the time-history of Figure 3a.

Figure 4 shows the acceleration time-histories of the reflected wave for different ratios between
minimum wavelength of the excitation λ and damage extension a. RA1 and RA2 interact in destruc-
tive and constructive interference as a function of the ratio λ/a . When a small λ is used (Figure
4a,b) they are well resolved, but when λ is large (Figure 4f), the destructive interference tends to hide
the presence of the notch. Therefore, it is mandatory to use a signal having a minimum wavelength
of the same order of magnitude of the notch extension. The smaller the extension, the smaller λ
is needed. This fact poses technological challenges in damage identification of small notches. For
intermediate λ (Figure 4c-e), the interference can be constructive. As a consequence of the interfer-
ence, the maximum amplitude of the reflected wave is not sufficient to solve the inverse problem of
damage identification. In fact, the same value of amplitude can be found for a broad range of r as a
consequence of destructive and constructive interference. In the transmitted signal, the importance
of TB2 tends to decrease for r > 0.15, as shown in Figure 2b.
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Figure 3: Time-histories of acceleration at points P1 and P2: comparison between FE model and
analytical results a) and contribution of the different wave terms to the time-history b).
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Figure 4: Time-histories of the reflected wave for different ratios λ/a.

3 DAMAGE IDENTIFICATION PROCEDURE
In real cases, the response is strongly dependent on damping. This must be taken into account

in order to formulate an effective identification procedure. The damping can be experimentally
measured on the undamaged bar. If a spatial exponential decay is assumed for the wave amplitude:

A(x) = A0 exp (−ξx), (8)

ξ can be determined by the ratio:

ξ =
1
x

ln
A0

A(x)
(9)

between the wave amplitudes in two points at a relative distance x. In this way, the amplitude
decrement due to damping can be isolated from the reflection and transmission phenomena.

Then, considering only the terms i = 1, 2 in (6) and i = 1 in (7), the model of the response is,
for the reflected and transmitted wave:

R(x1, t) ' RA1f(t +
2
c0

[xd − x1])e−2ξ[xd−x1] + RA2f(t +
2
c0

[xd − x1 + a])e−2ξ[xd−x1+a] (10)

T (x2, t) ' TB1f(t− x2

c0
)e−ξx2 , (11)
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where f(t) is the shape function of the incident wave.
By using the expressions (10) and (11), the inverse problem of damage characterization can be

formulated as follows: assuming that f(t), R(x1, t), T (x2, t) and ξ are known, determine a, r and
xd. An important point in the procedure consists in defining the function f , which depends on
the forcing function, according to equation (5). In experimental tests, the use of transient loads
generated by an instrumented hammer is very common. The time-history of this kind of excitation
is well approximated by the Gaussian function:

p(t) = Pe−b(t−t0)
2
, (12)

where b is a coefficient that governs the impulse duration and t0 the starting of the phenomenon in
time. Considering the fact that acceleration is a response quantity easy to measure and recalling
equation (5), the response a(x, t) can be written as:

a(x, t) = − c0

EA

dp

dt
= −2c0Pb

EA
(t− t0)e−b(t−t0)

2
, (13)

from which the function representing the incident wave is derived:

f(t) = −AI(t− t0)e−b(t−t0)
2
. (14)

Here, the presented procedure of damage characterization is based on the comparison between
analytical and experimental acceleration time-histories. The procedure consists in determining the
damage parameters in a prescribed order, that enables to obtain a unique solution. First of all, the
damping coefficient ξ is determined from the response of the undamaged bar, by measuring the
wave amplitudes at two locations and determining ξ from equation (9). Then, an optimal estimate
of damage intensity r is obtained from the amplitude of the transmitted signal (11):

TB1 =
4r2

(1 + r)2
. (15)

A unique value of r corresponds to TB1 in the range 0 < r < 1, as can be seen from Figure 2b. This
is not true for all values of r, however, the values of r outside the range 0 < r < 1 are not physically
consistent. Finally, after having calculated RA1 and RA2, which are functions of r according to:

RA1 =
1− r

1 + r
RA2 =

4r(r − 1)
(1 + r)3

, (16)

the extension a and position xd are determined from the reflected signal (10).

4 EXPERIMENTAL SETUP AND RESULTS
The experiments were carried out at the Laboratory of the Department of Structural and Geotech-

nical Engineering, Sapienza University of Rome. A PVC bar with circular cross section is used. Its
geometrical and mechanical properties are listed in Table 1. The bar is suspended by elastic wires to
approximate free conditions. The geometry of the experimental setup is depicted in Figure 5. The
structure is excited by an instrumented hammer at its right free end and its response measured by
three uniaxial piezoelectric accelerometers (Ch0, Ch1, Ch2). These have a bandwidth ranging from
0.25 to 8000 Hz, a dynamic range of ± 5000 g and a sensitivity of 0.9 mV/g. They were connected
to a data acquisition system with 16 bit A/D converter, and anti-aliasing filters.
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Figure 5: Experimental set-up, lengths in [cm].

The bar was tested in three different damage configurations, which are made by removing ma-
terial so that the transverse section of the damaged part preserves circular and the axis of the bar
straight. The configurations are described in Table 2, where Dd indicates the diameter of the dam-
aged part, and differ for intensity and extension of damage. The extension of the notch is scaled in
order to take into account the fact that the minimum wavelength contained in the signal generated
with the hammer is about 10 cm. The scaling of the notch is only due to technical limitations of
the present setup but does not affect the investigation on the effectiveness of procedure. If shorter
wavelength had been used, smaller notches would have been detected.

Table 1: Geometrical and mechanical properties of the PVC bar

E[MPa] ρ[kg/m3] L[cm] D[cm] c0[m/s]
4150 1400 200 2 1721.71

The comparison between the experimental response of the undamaged and damaged bars shows
that in the latter, the wave reflections from the discontinuities clearly appear. This is shown in
Figure 6, which presents the experimental time-histories of accelerations recorded at Ch1 and Ch2
for the undamaged (a) and damaged bar (b). A reflected signal appears in the time-history of Ch1.
When comparing the transmitted and reflected wave in the damaged case, also the dependence of
the response on the damage intensity and extension evidently appears. In fact, the amplitude of
the transmitted wave from a damage with greater intensity is smaller, as expected according to the
analytical results and shown in Figure 7a,b. With regard to the reflected wave, when the extension
of the notch is small, for the present impulse, constructive interference takes place (Figure 7c), but
when the two discontinuities are sufficiently far, the two reflections are resolved (Figure 7d). This
phenomenon had been predicted by the analytical model too.

First of all, the spatial exponential decay ξ is determined based on the response of the undamaged
bar. The unknown ξ is obtained by curve-fitting the experimental response to the model equation
(14). A mean value of ξ = 0.69 is obtained with a coefficient of variation cv = 6.42% calculated on
10 repetitions of the test. When ξ is known, the first step is the evaluation of the damage intensity
from the transmitted wave. By minimizing the difference between the experimental transmitted
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wave and the analytical response, equation (11), an amplitude TB1 is obtained, from which r is
determined, according to equation (??). Figure 8b shows that there is a good agreement between
the experimental and the curve-fitted response. For the sake of brevity, this comparison is illustrated
for the case D4 only. Then, the difference between experimental and analytical reflected wave,
expressed by equation (10), is minimized, which enables to evaluate the optimal values of xd and a.
Also for the reflected wave a good agreement between the experimental and curve-fitted response is
found, as is shown in Figure 8a.

Table 2: Geometrical characteristics of the notches

D1 D3 D4
Dd [cm] 1.7 1.4 1.4

r 0.72 0.50 0.50
a [cm] 10 10 15

0.0424 0.0426 0.0428 0.043 0.0432
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Figure 6: Comparison of two experimental time-histories in the undamaged a) and damaged D4 b)
cases.

As a whole, the identified characteristics of the damage agree with the actual values. This is
shown in Table 3, that reports the comparison between real and identified (with subscript i) damage
characteristics. The error is of some percent units and has the same order of magnitude for the
different identified parameters.
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Table 3: Identified damage characteristics

Dd Ddi % err xd xdi % err a ai % err
D1 1.7 1.6 5.9 35 36.8 5.2 10 10.7 6.7
D3 1.4 1.2 14.3 35 36.7 9.9 10 13.7 9.9
D4 1.4 1.2 14.3 35 37.4 6.9 15 14.5 2.8

5 CONCLUSIONS
The transient response of one-dimensional bar excited by an impulsive axial force is sensitive

to the presence of a discontinuity. This sensitivity can be exploited to define a damage identifi-
cation procedure based on a D’Alembert’s model of the response. Here, this procedure has been
presented for the case of a longitudinally excited bar. The main damage characteristics, which are
intensity, position and extension are determined by minimizing the difference between the model
and experimental response. A good agreement was found between real and identified values. This
is an interesting result that let the presented damage identification procedure emerge as an effective
technique of damage characterization.
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Figure 7: Experimental time-histories of transmitted a,b) and reflected c,d) waves in different dam-
age configurations.
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Figure 8: Comparison between analytical (bold line) experimental (line with crosses) time-histories
of reflected (a) and transmitted (b) waves for the case D4.
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