Parametric study of the progressive collapse of 2D framentisires
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SUMMARY. In this paper we study the response of 2D framedcstmes made of reinforced
concrete to the sudden removal of columns. For comparaasons, the 2D frames are considered
as part of 3D structures with same overall structural madseaternal load potential. In particular,
we study two sets of 2D frames, with different height-bayorat of the structural cells. Each set
counts 3 frames with different hierarchical leveldefining structures that range from hierarchical
to homogeneous. Hierarchical structures have massivepyistructure consisting of few large el-
ements while homogeneous structures are made of many thirtisial elements. Employing an
algorithm based on Discrete Elements, we simulate progeessllapse until the final stage, consid-
ering collisions between the structural elements and vhighground. We point out the mechanisms
that trigger progressive collapse when the columns aregtad when they are weak. We quantify
the robustness in terms of Reserve Strength RAS@ and show the influence of andn on the
RS R, that depends on the activated collapse mechanism and extde of the initial damage.

1 INTRODUCTION

Local accidental damage to structures can lead to catéstrepenarios if progressive collapse
is triggered [1]. The ability of a system to prevent damageaging is calledobustness and is a
necessary requirement for large buildings. Presentlyymagasures to avoid progressive collapse
are known and under discussion. These measures genevallygreither the concept of redundancy
or that of compartmentalization. Providing redundancymsesctivating a large number of structural
elements in the stress redistribution process triggerdéoda damage. In this sense, structures made
of many tough elements, with tough connections and reiefibfy ties are preferred. On the other
hand, compartmentalizing a structure means subdividiirgat statically independent portions so
that, if some are damaged and collapse, the neighbourintgpsmwill not be torn down along
with the collapsed ones. Comparmentalization can be aetliby strategically arranging brittle
structural elements and connections. These measuresaéapal interventions and neglect the role
of the overall structural geometry towards the responsec¢ealldamage. Nevertheless, choosing
optimal geometries is advantageous since it permits tomagistructural robustness at the design
stage prior to improving it with specific local interventeanSome studies in the topic of structural
optimization towards damage can be found in the field of Eradlechanics, where e.g. [2] showed
that cellular structures are more tolerant to local flawkéiit cells are triangular or hexagonal rather
than rectangular.

In this work we focus on the effect of structural geometry@oustness, and precisely we answer
to two questions. The first one is whethen@amogeneous structure, made of many thin beams and



columns, is more robust tharhgerarchical one, with strong massive primary structure supporting a
weak secondary structure considered as external load.eEbed question is whether the height-bay
aspect ratio of the rectangular structural cells of regiuéaned structures influences the robustness.
In order to answer to these questions, we perform simulaten2D framed structures made of
reinforced concrete and damaged by the removal of strdetlements contained inside a damage
area, according to the Alternate Load Path Method ApproAtPi) [3]. In Section 2 we describe
the frames and define the initial damage area. The numeligaithm based on Discrete Elements
(DE) that we employed for the simulations is described inti8ac3. We finally show and discuss
the results of the simulations in Section 4.

2 DESCRIPTION OF THE STRUCTURES

We construct two sets of regular 2D frames made of reinfoooettrete (RC). The mechanical
parameters of concrete and steel are shown in Table 1. Theérdave same total height,; =
33m (see Figure 1) and different height-bay aspect ratio H/L of the structural cells. Namely,
A = 0.75 for the first set and = 1.33 for the second one. Each set consists of three frames with
identical total widthL;,; and differenthierarchical level n. n? is actually the number of structural
cells in a frame and we call a structungerarchical whenn is small andhomogeneous whenn is
large. The frames witlhh = 2 andn = 5 represent a reorganization of those with= 11 aimed
at creating a more massive primary structure supportingnastcondary structure (see Figure 1).
We neglect stiffness and strength of the secondary strithat we consider just as an additional
external load. Following this principle, we now explain hawg obtain the geometry and the loads
of the frames witm = 2 andn = 5 starting from the frames with = 11.
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Figure 1. Studied 2D frames with a) = 0.75 and b)\ = 1.33. The dotted region is the damage
area. The cohesion of the elements inside this area is slyddemoved to represent the initial
accidental damage.

For what concerns the geometry, each floor and column aof the5 frames corresponds to two



floors and columns of the = 11 frames, except for the first floor slab of the= 11 frame. This
first floor slab is simply deleted since it corresponds to & pisecondary structure in the= 5
frame that is directly carried by the ground (see Figure he $ame procedure permits to obtain the
geometry of the frames with = 2 starting from those with, = 5.

Parameter Symbol Units Value
RC, specific weight YRC kg/m? 2500
RC, Young modulus E. N/m? 3010°
RC, compressive yield stress (Section 4/1)  f. N/m? 35108
RC, compressive yield stress (Section 4]2)  f. N/m? 0.35106
RC, ultimate shortening €uc — 0.0035
Steel, Young's modulus E, N/m? 20010°
Steel, yield stress Iy N/m? 44010°
Steel, ultimate strain €u,s — 0.05

Table 1: Mechanical properties of reinforced concrete aael.s

The damage areas (dotted in Figure 1) contain the structlaalents that are initially removed
to represent an accidental damage event. The damage aheasane for frames with same so
that the columns and beams removed from frameswith11 correspond to the structural elements
removed from frames with = 5 andn = 2. In this way we represent accidental damage events
with a given amount of destructive energy or spatial extiékd,explosions or impacts. Very local
damage events like gross errors would be better representbe removal of single elements. Here
we don't perform simulations with very local damage evebtd,we discuss their effect in Sections
4.1 and 4.2 referring to the results shown in this paper aritlase obtained in [4].

Figure 2: a) Typical 3D structure and selected 2D frame; picgl 2D frame with corresponding
loaded portion of floor slabs (dashed region); c) cross@esdf columns and beams.

In order to define the cross sectional features of the stralatiements and the load, we consider
the 2D frame as part of a 3D regular framed structure witk n x n cells (see Figures 2.a and
2.b). The cross section of the columns is square, with édgeoportional toH with factor \..



The beams have rectangular cross section whose hiejghtproportional tol. with factor A, and
whose basé, is proportional tah;, with aspect ratio coefficierd, (see Figure 2.c and Table 2). The
area of reinforcemem is proportional to the area of the cross section with faptofsee Table 2)
and is arranged as shown in Figure 2.c. The thickmegssf the floor slabs of the 3D structure is
proportional tol. with factor \;. Differently from . and);, ) is hot constant but decreases with
This assumption is justified by the fact that large floors galhedo not consist of a homogeneous
slab in RC but are lighter composite structures. Thus thektigss of an equivalent slab grows less
than proportionally to the bay. We adopt the expressionsfshown in Table 2 to guarantee that the
total mass of the structural elements of a 3D framed straatith given overall sizé;,; and L;;
and slenderness of the calldoes not depend om. In this way, we can compare the performances
of frames whose primary structures have the same mass.

Parameter Symbol| Units| Value, A =0.75 | Value, A =1.33
Slenderness of the columns Ae — 1/10

Slenderness of the beams b — 1/10

Slenderness of the slabs As — 1/20 — x(L — Lp=11)

Aspect ratio of the beams O - 2/3

Fraction of reinforcement (columng) p; . — 0.0226 (818 for n=11)

Fraction of reinforcement (beams)| pss — 0.0029 (414 for n=11)

Bay of the structural cell when n=1{L L,,—1; m 4 2.25

x factor for slabs slenderness X — 0.00055 0.003

Table 2: Geometric parameters of the cross sections.

We consider a uniformly distributed external load at eacbrflaf the 3D secondary structure.
The external load on frames with = 11 consists of a dead load = 2850N/m? due to internal
walls, pavements, plaster, etc., plus a live Iéaeg= 2000N/m?. Differently, the primary structures
represented by frames with= 5 andn = 2 support 3 and 1 floors of secondary structure respec-
tively. Therefore the external load carried by the primaryctures ist - (G + Q) whenn = 2 and
2. (G+ Q) whenn = 5. This load scaling provides a constant total potential gyef the external
load on undeformed structures with differenand same.

Considering now the 2D frame in Figure 2.b, the external jpadunit length on the beams is
obtained multiplying the load per unit area with We convert the load into an extra mass per unit
length by dividing it by the gravity acceleration. Furthemm, an additional extra mass per unit
length on the 2D frames comes from the floor slabs of the 3DdrarRor frames withh = 11, this
additional extra mass iggchs L, Whereyge is the specific weight of RC (see Table 1). According
to the principle that we followed for the external load, wetke extra mass given by the floor slabs
on the primary structures tb (ygchs L) for frames withn = 2 and to2 - (yrchs L) for frames with
n = 5. In this way we overestimate the weight of the secondaryctirae’s floor slabs, since their
bay is smaller than that of the floor slabs of the primary $tnmgc We also neglect the beneficial load
carrying contribution of the primary floor slabs since wesider them just as an external load on the
2D frames. Overestimating the weight of the secondary fltadrssand neglecting the load carrying
contribution of the primary floor slabs leads to underestinadi the strength of the 2D frame as part
of a 3D system. Nevertheless, in Section 4.1 we explain whyovet expect these assumptions to



significantly affect the robustness indicator we refer to.

3 MODEL DESCRIPTION

The Discrete Elements model that we use in this work is bas¢f]oWe subdivide the columns
and the beams of the 2D frames in 10 linear elastic - perfedtigtic Euler-Bernoulli (EB) beam
elements, with ultimate elongation and rotation threshdlde linear elastic regime of the EB ele-
ments is described in [6]. Damping is applied to the elastit pf the elongation and the bending
strain by means of the damping coefficiemtsand~yg (see Table 3).

Parameter Symbol| Units Value, A\ =0.75 | Value, A\ = 1.33
n=2| n=5| n=11 n=2| n=5| n=11
EB element elongation damping v, Ns/m | 100 | 100| 100 | 100| 100| 100

EB element bending damping VB Nms 100 | 10 | 10 | 100| 10 | 10
EB. el. elongation threshold gth — = Eus

EB. el. shortening threshold gth — = Euc

EB. el. plastic rotation thresholg ¢ rad 0.1

Sphere — sphere Hertz coef ficients

Stiffness Y 10'N/m3] 10 ] 2 [ 05[] 10| 2 [ 05
Normal damping coefficient Yn 10Ns/m| 10 | 2 | 0.2 | 10 2 |02
Tangent damp. coef. (Coulomb) u 10°Ns/m| 1 1 1 1 1 1
Tangent damp. coef. (dynamic] 10°Ns/m| 1 1 1 1 1 1
Rolling damping coef. Y Nms 50 | 50 | 50 | 50 | 50 | 50
Sphere — ground Hertz coef ficients

Stiffness Y9 10'N/m3] 5 5 5 5 5 5
Normal damping coefficient v 10Ns/m| 5 1 1 5 1 1
Tangent damp. coef. (Coulomb) 9 10°Ns/m| 5 5 5 5 5 5
Tangent damp. coef. (dynamic) ~7 10°Ns/m| 5 5 5 5 5 5

Table 3: Damping coefficients and ultimate thresholds oEBeelements. Hertzian contact param-
eters.

The plastic regime can be entered because of axial fofaa bending momenB3. For the
sake of simplicity, we consider uncoupled plasticity in tieig and in axial direction. Therefore,
axial plasticity occurs when the axial force inside the EBne¢ént overcomes the compression or
the tension yield threshol®y? and NV (see Table 3). If this happens, an additional compressive or
tensile straire?! is added to restor& = NY or N = NY. We setN¥ = A, f, referring to the yield
strain of steelf, and neglecting the contribution of concrete in tensidfy. = A€ f. refers to the
compressive strength of concrefeand neglects the contribution of steel under compressite. T
bending momenB; at thei!” edge node of an EB elemerit£ 0, 1) overcomes the yield threshold
BY, an additional plastic rotatiomfl is added at nodéto restorel B;| = BY. It is worth noting
that adding a plastic rotation e.g. at ndileodifies eitherB, and B;. If BY is overcome at both
the edge node® and1, additional plastic rotations are added at both nodesjrstilrder to obtain



|Bo| = BY and|B;| = BY. Neglecting the contribution of concrete, we &tto:
BY = t$pt A° fuh® + ABY, (1)

where the superscriptmeans that we refer to the generic EB element, that can bereesggf either

a column or a beam. In (1), is the fraction of reinforcement in tension, i%.for the columns and

% for the beams (see Fig. 2.c),andh are the area and the height of the cross section /aRd
takes into account the beneficial effect B# brought by compression inside the EB element. We
setABY imposing:

N  ABY
A°E,  t¢peAcheEy’

(2)

whereFE,. andE; are the Young’s moduli of concrete and steel. If the plastingation and rotations
satisfy the breaking rules:

Epl |¢fl| >1 pl 3
e o) + max o = for P >0, 3)
et ¥
—|€th —7 + max Sﬁzh >1 for ePl <0, 4)
C

the element is considered to fail and is thus immediatelyorexd from the system. In (3) and (4),
" andefl are the elongation breaking threshold of an EB element isi¢@nand compression.
¢t is the ultimate plastic rotatiors¥ = NY/(E.A°) ande?¥ = NY/(E.A¢) are the axial strain

corresponding to tensile and compressive yielding.

We represent the volume of the structural elements by digkesnding each node. The diameter
of the k*" disk is equal to 8% of the length of the shortest EB element connected to hodEhe
massM;, is obtained summing the contributions from the mass of theeleBhents connected to
nodek and from an extra mass given by the external load and the flabr(see Section 2). The
rotational inertia of a disk is computed considering being uniformly distributed.

Therefore, the generic’” node is subjected to the effect of the gravity acceleratiodf and
to forces transmitted by the EB elements connected to it. difmamics of the system is described
by means of a direct time integratiof*5order Gear Predictor-Corrector algorithm, with time step
1-107%s. The failure of a sufficiently large number of EB element distonnect portions of
the structure that fall and can collide with other structetaments or with the ground. Collisions
are considered by means of Hertzian overlapping, i.e. sdpibnd tangential forces are added
to nodes whose surrounding disks partially overlap [6]. €bmetact forces are proportional to the
overlapping area and to the relative velocities of the dolty disks with stiffness modulug and
damping coefficients (see Table 3).

4 SIMULATIONS AND RESULTS:

We run the simulations scaling the external load and thengtjht of the frames by a load mul-
tiplier 1, which is the control parameter of our system. Giygnve initially set the frames to static
equilibrium. Then we apply the initial damage removing th2 élements inside the damage area
(see Figure 1) and we simulate the subsequent dynamic resplve varyu between a minimum
valuep,. and a maximum valug,,. (. is the largest load multiplier for which the damaged streetu
does not suffer any further failure after the initial damay®henyu < p. the frame is perfectly
robust towards the initial damage,, is the smaller load multiplier for which the structure cplas



before the initial damage. When> ., the intact structure collapses before attaining statidibgu
rium and thus is unable to carry the scaled service load. When u < u,, the structure undergoes
progressive collapse after the initial damage. Dependinthe activated collapse mechanism, on
the collapse evolution and on the final outcome can be partial or total collapse. We qbatite
structural robustness of the frames evaluating the Re&treagth RatidRS R:

RSR = e, (5)
Hu
In the following we discuss the influence afandn on p., p,, and on theRSR. In particular, in
Section 4.1 we study frames with columns that are stronger the beams. In this case after the
initial damage the beams above the damage area fail in bgadithtrigger progressive collapse. In
Section 4.2, we consider frames with weak columns that #feeinitial damage, progressively fail
under compression triggering pancake collapse.

4.1 Bending collapse mechanism

The results shown in this Section refer to the frames desdiiio Section 2 and for which we set
the compressive strength of the RCfto= 35N/mm?. This value off, leads to frames with strong
columns.
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Figure 3: Bending collapse of the studied 2D frames with &) 0.75 and b)\ = 1.33 for n=2,5,11.

These frames collapse after the initial damage if bendiitgréaof the beams above the damage
area is triggered (see Figure 3).The bending collapse mésrhas local since it only involves the
portion of structure directly above the damage area. Neekass, ifi; is sufficiently large and still
smaller thar.,,, the horizontal forces exerted by the falling central mortof the structure on the
lateral portions can tear these latter down (see Figuret#)tatal collapse. We call:,; the smallest
1 for which this secondary mechanism is activated. This meisharelies on the plastic properties
of the structural elements and thus can be avoided by oppalsteompartmentalizing the structure.
Of course, frames witlhh = 2 can only experience total collapse after the bending meshmis



triggered and thus for them,; = ..
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Figure 4: Snapshots of the a) partial and b) total collap$eofes with\ = 1.33, after the triggering
of a bending mechanism.

Figure 5 shows thak has beneficial effects on the strength of the structure,n.¢he i val-
ues. This result agrees with the results in [4], obtained leams of linear elastic static analyses.
Differently, hierarchical structures (smai) are less strong than homogeneous ones (lajgbut
according to the assumptions that we discussed at the enectib8 2 we expect that hierarchical
structures can actually be stronger than what this resditates. Of course, what is interesting in
Figure 5 are the trends of., 1,; and ., since their absolute value can be increased employing
stronger structural elements.
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Figure 5: Relevant load multipliers and RSR for frames that undergo progressive collapse after
bending failure of the beams. The continuous lines refér400.75, the dashed lines td = 1.33.

Figure 5 also shows that tHeS R is not influenced by, and grows as decreases. Therefore,
hierarchical structures are more robust than homogenewsstowards accidental damage events



with given destructive energy or spatial extent. In thisecage don’t expect that the assumptions
discussed at the end of Section 2 as well as the eventual gmeiu of stronger structural elements
can significantly change the values of tR& R that we obtained. The reason is that if the structural
elements are stronger, either andy,, grows and thus, according to (5), we expect a compensative
effect on the final value of th& SR. The RSR is larger in hierarchical structures because when a
bending collapse mechanism occurs, the entity of the stegléstribution inside the beams above the
damage area depends on thenber of columns that are lost at a storey.. This is due to the fact
that the inter-columns bay in the intact structuré ishile in the damaged structure itis (r;.+1).
Therefore, in agreement with [7], we expect that the hidviaad leveln does not influence thRSR
when a bending collapse mechanism is triggered by a singlenctoremoval.

4.2 Pancake collapse

Now we consider the same frames analysed in Section 4.1 baetwhe compressive strength
of the RC to a very small value, i.¢/. = 0.35N/mn?. In this way, the columns get much weaker
than the beams. The frames undergo total pancake colldggered by progressive failure of the
columns under compression (see Figure 6). We adopt suchtaemmesty small value of. because
this is the simplest way to implement systems where the cetugime much weaker than the beams.
We could have obtained the same result by reducing the ceati®s of the columns or increasing
the reinforcement or the cross sections of the beams.

b)

Figure 6: Snapshots of the pancake collapse of frames with-a)).75 and b)A = 1.33.

The results show that neither the hierarchical leveior \ influence theRSR in this case.
When pancake collapse is triggered, tR8 R only depends on th&action of columns that are
lost at one storey;.. In our simulations we always remou¢3 of the columns at the first three
storeys (see Figure 1) and thus we always obfa#f = 0.55 — 0.65. Therefore, hierarchical and
homogeneous structures are equally robust towards pacoctkpse triggered by a damage event
with given destructive power or spatial extent. Differgnifia single column is lost after a very local
damage event, we expect homogeneous structures to be nboist sincef;. would be smaller for
them. Finally, it is worth noting that th&S R towards pancake collapse is remarkably higher than



the RS R towards bending failure (cf. Figure 5). If the beams wouldrdmitely stiff, we would
expectRSR = 1 — fj. thatin our case would lead tBSR = 2/3. We obtained a slightly smaller
RS R because the bending compliance of the beams produce a Bigdé&s concentration inside the
columns that are closer to the initial damage area (see [4]).

5 CONCLUSIONS

Regular framed structures with small height-bay aspea rabf the structural cells are less
strong than structures with high Nevertheless\ does not influence the robustness towards the ini-
tial removal of structural elements, measured by the Res8inength Ratid?SR. The influence of
the hierarchical levet on theRS R depends on the collapse mechanism that can be activatée. If t
structure collapses because of a bending mechanisn®.$t#¢ depends on the number of columns
that are lost at a storey. Therefore, if the initial damage &@iven destructive power or spatial
extent like explosions or impacts, hierarchical structuaee more robust than homogeneous ones.
Differently, if the initial damage brings to the loss of aglecolumn, hierarchical and homogeneous
structures are equally robust. If the structure undergaesgke collapse triggered by progressive
failure of the columns under compression, &R depends on the fraction of columns that are lost
at a storey. In this case, hierarchical and homogeneoudstes are equally robust towards initial
damage with given spatial extent, while homogeneous sirestare more robust towards the loss
of a single column. Bending or pancake collapse as well asrediate mechanism involving both
can be activated depending on the relative strength of aodtand beams in the structure. Neverthe-
less, since thé& S R towards pancake collapse is remarkably larger thamti& towards bending
collapse mechanisms, hierarchical structures shoulddfenped in robustness oriented design.
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