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SUMMARY. In this paper we study the response of 2D framed structures made of reinforced
concrete to the sudden removal of columns. For comparative reasons, the 2D frames are considered
as part of 3D structures with same overall structural mass and external load potential. In particular,
we study two sets of 2D frames, with different height-bay ratio λ of the structural cells. Each set
counts 3 frames with different hierarchical leveln, defining structures that range from hierarchical
to homogeneous. Hierarchical structures have massive primary structure consisting of few large el-
ements while homogeneous structures are made of many thin structural elements. Employing an
algorithm based on Discrete Elements, we simulate progressive collapse until the final stage, consid-
ering collisions between the structural elements and with the ground. We point out the mechanisms
that trigger progressive collapse when the columns are strong and when they are weak. We quantify
the robustness in terms of Reserve Strength RatioRSR and show the influence ofλ andn on the
RSR, that depends on the activated collapse mechanism and on theextent of the initial damage.

1 INTRODUCTION
Local accidental damage to structures can lead to catastrophic scenarios if progressive collapse

is triggered [1]. The ability of a system to prevent damage spreading is calledrobustness and is a
necessary requirement for large buildings. Presently, many measures to avoid progressive collapse
are known and under discussion. These measures generally involve either the concept of redundancy
or that of compartmentalization. Providing redundancy means activating a large number of structural
elements in the stress redistribution process triggered bylocal damage. In this sense, structures made
of many tough elements, with tough connections and reinforced by ties are preferred. On the other
hand, compartmentalizing a structure means subdividing itinto statically independent portions so
that, if some are damaged and collapse, the neighbouring portions will not be torn down along
with the collapsed ones. Comparmentalization can be achieved by strategically arranging brittle
structural elements and connections. These measures require local interventions and neglect the role
of the overall structural geometry towards the response to local damage. Nevertheless, choosing
optimal geometries is advantageous since it permits to maximize structural robustness at the design
stage prior to improving it with specific local interventions. Some studies in the topic of structural
optimization towards damage can be found in the field of Fracture Mechanics, where e.g. [2] showed
that cellular structures are more tolerant to local flaws if their cells are triangular or hexagonal rather
than rectangular.

In this work we focus on the effect of structural geometry on robustness, and precisely we answer
to two questions. The first one is whether ahomogeneous structure, made of many thin beams and
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columns, is more robust than ahierarchical one, with strong massive primary structure supporting a
weak secondary structure considered as external load. The second question is whether the height-bay
aspect ratio of the rectangular structural cells of regularframed structures influences the robustness.
In order to answer to these questions, we perform simulations on 2D framed structures made of
reinforced concrete and damaged by the removal of structural elements contained inside a damage
area, according to the Alternate Load Path Method Approach (ALPM) [3]. In Section 2 we describe
the frames and define the initial damage area. The numerical algorithm based on Discrete Elements
(DE) that we employed for the simulations is described in Section 3. We finally show and discuss
the results of the simulations in Section 4.

2 DESCRIPTION OF THE STRUCTURES
We construct two sets of regular 2D frames made of reinforcedconcrete (RC). The mechanical

parameters of concrete and steel are shown in Table 1. The frames have same total heightHtot =
33m (see Figure 1) and different height-bay aspect ratioλ = H/L of the structural cells. Namely,
λ = 0.75 for the first set andλ = 1.33 for the second one. Each set consists of three frames with
identical total widthLtot and differenthierarchical level n. n2 is actually the number of structural
cells in a frame and we call a structurehierarchical whenn is small andhomogeneous whenn is
large. The frames withn = 2 andn = 5 represent a reorganization of those withn = 11 aimed
at creating a more massive primary structure supporting a thin secondary structure (see Figure 1).
We neglect stiffness and strength of the secondary structure that we consider just as an additional
external load. Following this principle, we now explain howwe obtain the geometry and the loads
of the frames withn = 2 andn = 5 starting from the frames withn = 11.

Figure 1: Studied 2D frames with a)λ = 0.75 and b)λ = 1.33. The dotted region is the damage
area. The cohesion of the elements inside this area is suddenly removed to represent the initial
accidental damage.

For what concerns the geometry, each floor and column of then = 5 frames corresponds to two
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floors and columns of then = 11 frames, except for the first floor slab of then = 11 frame. This
first floor slab is simply deleted since it corresponds to a part of secondary structure in then = 5
frame that is directly carried by the ground (see Figure 1). The same procedure permits to obtain the
geometry of the frames withn = 2 starting from those withn = 5.

Parameter Symbol Units V alue
RC, specific weight γRC kg/m3 2500
RC, Young modulus Ec N/m2 30·109

RC, compressive yield stress (Section 4.1) fc N/m2 35·106

RC, compressive yield stress (Section 4.2) fc N/m2 0.35·106

RC, ultimate shortening ǫu,c − 0.0035
Steel, Young’s modulus Es N/m2 200·109

Steel, yield stress fy N/m2 440·106

Steel, ultimate strain ǫu,s − 0.05

Table 1: Mechanical properties of reinforced concrete and steel.

The damage areas (dotted in Figure 1) contain the structuralelements that are initially removed
to represent an accidental damage event. The damage area is the same for frames with sameλ, so
that the columns and beams removed from frames withn = 11 correspond to the structural elements
removed from frames withn = 5 andn = 2. In this way we represent accidental damage events
with a given amount of destructive energy or spatial extent,like explosions or impacts. Very local
damage events like gross errors would be better representedby the removal of single elements. Here
we don’t perform simulations with very local damage events,but we discuss their effect in Sections
4.1 and 4.2 referring to the results shown in this paper and tothose obtained in [4].

Figure 2: a) Typical 3D structure and selected 2D frame; b) typical 2D frame with corresponding
loaded portion of floor slabs (dashed region); c) cross sections of columns and beams.

In order to define the cross sectional features of the structural elements and the load, we consider
the 2D frame as part of a 3D regular framed structure withn × n × n cells (see Figures 2.a and
2.b). The cross section of the columns is square, with edgebc proportional toH with factor λc.
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The beams have rectangular cross section whose heighthb is proportional toL with factorλb and
whose basebb is proportional tohb with aspect ratio coefficientδb (see Figure 2.c and Table 2). The
area of reinforcementAs is proportional to the area of the cross section with factorρs (see Table 2)
and is arranged as shown in Figure 2.c. The thicknesshs of the floor slabs of the 3D structure is
proportional toL with factorλs. Differently fromλc andλb, λs is not constant but decreases withL.
This assumption is justified by the fact that large floors generally do not consist of a homogeneous
slab in RC but are lighter composite structures. Thus the thickness of an equivalent slab grows less
than proportionally to the bay. We adopt the expressions forλs shown in Table 2 to guarantee that the
total mass of the structural elements of a 3D framed structure with given overall sizeHtot andLtot

and slenderness of the cellλ does not depend onn. In this way, we can compare the performances
of frames whose primary structures have the same mass.

Parameter Symbol Units V alue, λ = 0.75 V alue, λ = 1.33
Slenderness of the columns λc − 1/10
Slenderness of the beams λb − 1/10
Slenderness of the slabs λs − 1/20 − χ(L − Ln=11)
Aspect ratio of the beams δb − 2/3
Fraction of reinforcement (columns) ρs,c − 0.0226 (8φ18 for n=11)
Fraction of reinforcement (beams) ρs,b − 0.0029 (4φ14 for n=11)
Bay of the structural cell when n=11 Ln=11 m 4 2.25
χ factor for slabs slenderness χ − 0.00055 0.003

Table 2: Geometric parameters of the cross sections.

We consider a uniformly distributed external load at each floor of the 3D secondary structure.
The external load on frames withn = 11 consists of a dead loadG = 2850N/m2 due to internal
walls, pavements, plaster, etc., plus a live loadQ = 2000N/m2. Differently, the primary structures
represented by frames withn = 5 andn = 2 support 3 and 1 floors of secondary structure respec-
tively. Therefore the external load carried by the primary structures is4 · (G + Q) whenn = 2 and
2 · (G + Q) whenn = 5. This load scaling provides a constant total potential energy of the external
load on undeformed structures with differentn and sameλ.

Considering now the 2D frame in Figure 2.b, the external loadper unit length on the beams is
obtained multiplying the load per unit area withL. We convert the load into an extra mass per unit
length by dividing it by the gravity acceleration. Furthermore, an additional extra mass per unit
length on the 2D frames comes from the floor slabs of the 3D frames. For frames withn = 11, this
additional extra mass isγRChsL, whereγRC is the specific weight of RC (see Table 1). According
to the principle that we followed for the external load, we set the extra mass given by the floor slabs
on the primary structures to4 ·(γRChsL) for frames withn = 2 and to2 ·(γRChsL) for frames with
n = 5. In this way we overestimate the weight of the secondary structure’s floor slabs, since their
bay is smaller than that of the floor slabs of the primary structure. We also neglect the beneficial load
carrying contribution of the primary floor slabs since we consider them just as an external load on the
2D frames. Overestimating the weight of the secondary floor slabs and neglecting the load carrying
contribution of the primary floor slabs leads to underestimate of the strength of the 2D frame as part
of a 3D system. Nevertheless, in Section 4.1 we explain why wedon’t expect these assumptions to
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significantly affect the robustness indicator we refer to.

3 MODEL DESCRIPTION
The Discrete Elements model that we use in this work is based on [5]. We subdivide the columns

and the beams of the 2D frames in 10 linear elastic - perfectlyplastic Euler-Bernoulli (EB) beam
elements, with ultimate elongation and rotation threshold. The linear elastic regime of the EB ele-
ments is described in [6]. Damping is applied to the elastic part of the elongation and the bending
strain by means of the damping coefficientsγL andγB (see Table 3).

Parameter Symbol Units V alue, λ = 0.75 V alue, λ = 1.33
n=2 n=5 n=11 n=2 n=5 n=11

EB element elongation damping γL Ns/m 100 100 100 100 100 100
EB element bending damping γB Nms 100 10 10 100 10 10
EB. el. elongation threshold εth − = εu,s

EB. el. shortening threshold εth
c − = εu,c

EB. el. plastic rotation threshold ϕth rad 0.1
Sphere − sphere Hertz coefficients
Stiffness Y 107N/m3 10 2 0.5 10 2 0.5
Normal damping coefficient γn 106Ns/m 10 2 0.2 10 2 0.2
Tangent damp. coef. (Coulomb) µ 104Ns/m 1 1 1 1 1 1
Tangent damp. coef. (dynamic) γt 104Ns/m 1 1 1 1 1 1
Rolling damping coef. γw Nms 50 50 50 50 50 50
Sphere − ground Hertz coefficients
Stiffness Y g 107N/m3 5 5 5 5 5 5
Normal damping coefficient γg

n 106Ns/m 5 1 1 5 1 1
Tangent damp. coef. (Coulomb) µg 104Ns/m 5 5 5 5 5 5
Tangent damp. coef. (dynamic) γg

t 104Ns/m 5 5 5 5 5 5

Table 3: Damping coefficients and ultimate thresholds of theEB elements. Hertzian contact param-
eters.

The plastic regime can be entered because of axial forceN or bending momentB. For the
sake of simplicity, we consider uncoupled plasticity in bending and in axial direction. Therefore,
axial plasticity occurs when the axial force inside the EB element overcomes the compression or
the tension yield thresholdNy

c andNy (see Table 3). If this happens, an additional compressive or
tensile strainεpl is added to restoreN = Ny

c or N = Ny. We setNy = Asfy referring to the yield
strain of steelfy and neglecting the contribution of concrete in tension.Ny

c = Aefc refers to the
compressive strength of concretefc and neglects the contribution of steel under compression. The
bending momentBi at theith edge node of an EB element (i = 0, 1) overcomes the yield threshold
By, an additional plastic rotationϕpl

i is added at nodei to restore|Bi| = By. It is worth noting
that adding a plastic rotation e.g. at node0 modifies eitherB0 andB1. If By is overcome at both
the edge nodes0 and1, additional plastic rotations are added at both nodes, still in order to obtain
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|B0| = By and|B1| = By. Neglecting the contribution of concrete, we setBy to:

By = tesρ
e
sA

efyh
e + ∆By, (1)

where the superscripte means that we refer to the generic EB element, that can be a segment of either
a column or a beam. In (1),ts is the fraction of reinforcement in tension, i.e.3

8
for the columns and

1

2
for the beams (see Fig. 2.c),A andh are the area and the height of the cross section, and∆By

takes into account the beneficial effect onBy brought by compression inside the EB element. We
set∆By imposing:

−
N

AeEc

=
∆By

tesρ
e
sA

eheEs

, (2)

whereEc andEs are the Young’s moduli of concrete and steel. If the plastic elongation and rotations
satisfy the breaking rules:

εpl

(εth − εy)
+ max

|ϕpl
i |

ϕth
≥ 1 for εpl > 0, (3)

−
εpl

|εth
c − εy

c |
+ max

|ϕpl
i |

ϕth
≥ 1 for εpl < 0, (4)

the element is considered to fail and is thus immediately removed from the system. In (3) and (4),
εth andεth

c are the elongation breaking threshold of an EB element in tension and compression.
ϕth is the ultimate plastic rotation.εy = Ny/(EcA

e) andεy
c = Ny

c /(EcA
e) are the axial strain

corresponding to tensile and compressive yielding.
We represent the volume of the structural elements by disks surrounding each node. The diameter

of thekth disk is equal to 80% of the length of the shortest EB element connected to nodek. The
massMk is obtained summing the contributions from the mass of the EBelements connected to
nodek and from an extra mass given by the external load and the floor slab (see Section 2). The
rotational inertia of a disk is computed consideringMk being uniformly distributed.

Therefore, the generickth node is subjected to the effect of the gravity acceleration on Mk and
to forces transmitted by the EB elements connected to it. Thedynamics of the system is described
by means of a direct time integration 5th order Gear Predictor-Corrector algorithm, with time step
1 · 10−6s. The failure of a sufficiently large number of EB element candisconnect portions of
the structure that fall and can collide with other structural elements or with the ground. Collisions
are considered by means of Hertzian overlapping, i.e. repulsive and tangential forces are added
to nodes whose surrounding disks partially overlap [6]. Thecontact forces are proportional to the
overlapping area and to the relative velocities of the colliding disks with stiffness modulusY and
damping coefficients (see Table 3).

4 SIMULATIONS AND RESULTS:
We run the simulations scaling the external load and the selfweight of the frames by a load mul-

tiplier µ, which is the control parameter of our system. Givenµ, we initially set the frames to static
equilibrium. Then we apply the initial damage removing the EB elements inside the damage area
(see Figure 1) and we simulate the subsequent dynamic response. We varyµ between a minimum
valueµc and a maximum valueµu. µc is the largest load multiplier for which the damaged structure
does not suffer any further failure after the initial damage. Whenµ < µc the frame is perfectly
robust towards the initial damage.µu is the smaller load multiplier for which the structure collapses
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before the initial damage. Whenµ > µu the intact structure collapses before attaining static equilib-
rium and thus is unable to carry the scaled service load. Whenµc < µ < µu the structure undergoes
progressive collapse after the initial damage. Depending on the activated collapse mechanism, on
the collapse evolution and onn, the final outcome can be partial or total collapse. We quantify the
structural robustness of the frames evaluating the ReserveStrength RatioRSR:

RSR =
µc

µu

. (5)

In the following we discuss the influence ofλ andn on µc, µu and on theRSR. In particular, in
Section 4.1 we study frames with columns that are stronger than the beams. In this case after the
initial damage the beams above the damage area fail in bending and trigger progressive collapse. In
Section 4.2, we consider frames with weak columns that, after the initial damage, progressively fail
under compression triggering pancake collapse.

4.1 Bending collapse mechanism
The results shown in this Section refer to the frames described in Section 2 and for which we set

the compressive strength of the RC tofc = 35N/mm2. This value offc leads to frames with strong
columns.

Figure 3: Bending collapse of the studied 2D frames with a)λ = 0.75 and b)λ = 1.33 for n=2,5,11.

These frames collapse after the initial damage if bending failure of the beams above the damage
area is triggered (see Figure 3).The bending collapse mechanism is local since it only involves the
portion of structure directly above the damage area. Nevertheless, ifµ is sufficiently large and still
smaller thanµu, the horizontal forces exerted by the falling central portion of the structure on the
lateral portions can tear these latter down (see Figure 4) until total collapse. We callµpt the smallest
µ for which this secondary mechanism is activated. This mechanism relies on the plastic properties
of the structural elements and thus can be avoided by opportunely compartmentalizing the structure.
Of course, frames withn = 2 can only experience total collapse after the bending mechanism is
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triggered and thus for themµpt = µc.

Figure 4: Snapshots of the a) partial and b) total collapse offrames withλ = 1.33, after the triggering
of a bending mechanism.

Figure 5 shows thatλ has beneficial effects on the strength of the structure, i.e on theµ val-
ues. This result agrees with the results in [4], obtained by means of linear elastic static analyses.
Differently, hierarchical structures (smalln) are less strong than homogeneous ones (largen), but
according to the assumptions that we discussed at the end of Section 2 we expect that hierarchical
structures can actually be stronger than what this result indicates. Of course, what is interesting in
Figure 5 are the trends ofµc, µpt andµu, since their absolute value can be increased employing
stronger structural elements.
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Figure 5: Relevant load multipliersµ and RSR for frames that undergo progressive collapse after
bending failure of the beams. The continuous lines refer toλ = 0.75, the dashed lines toλ = 1.33.

Figure 5 also shows that theRSR is not influenced byλ and grows asn decreases. Therefore,
hierarchical structures are more robust than homogeneous ones towards accidental damage events
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with given destructive energy or spatial extent. In this case, we don’t expect that the assumptions
discussed at the end of Section 2 as well as the eventual employment of stronger structural elements
can significantly change the values of theRSR that we obtained. The reason is that if the structural
elements are stronger, eitherµc andµu grows and thus, according to (5), we expect a compensative
effect on the final value of theRSR. TheRSR is larger in hierarchical structures because when a
bending collapse mechanism occurs, the entity of the stressredistribution inside the beams above the
damage area depends on thenumber of columns that are lost at a storeynlc. This is due to the fact
that the inter-columns bay in the intact structure isL while in the damaged structure it isL ·(nlc+1).
Therefore, in agreement with [7], we expect that the hierarchical leveln does not influence theRSR
when a bending collapse mechanism is triggered by a single column removal.

4.2 Pancake collapse
Now we consider the same frames analysed in Section 4.1 but weset the compressive strength

of the RC to a very small value, i.e.fc = 0.35N/mm2. In this way, the columns get much weaker
than the beams. The frames undergo total pancake collapse triggered by progressive failure of the
columns under compression (see Figure 6). We adopt such an extremely small value offc because
this is the simplest way to implement systems where the columns are much weaker than the beams.
We could have obtained the same result by reducing the cross section of the columns or increasing
the reinforcement or the cross sections of the beams.

Figure 6: Snapshots of the pancake collapse of frames with a)λ = 0.75 and b)λ = 1.33.

The results show that neither the hierarchical leveln nor λ influence theRSR in this case.
When pancake collapse is triggered, theRSR only depends on thefraction of columns that are
lost at one storeyflc. In our simulations we always remove1/3 of the columns at the first three
storeys (see Figure 1) and thus we always obtainRSR = 0.55 − 0.65. Therefore, hierarchical and
homogeneous structures are equally robust towards pancakecollapse triggered by a damage event
with given destructive power or spatial extent. Differently, if a single column is lost after a very local
damage event, we expect homogeneous structures to be more robust sinceflc would be smaller for
them. Finally, it is worth noting that theRSR towards pancake collapse is remarkably higher than

9



theRSR towards bending failure (cf. Figure 5). If the beams would beinfinitely stiff, we would
expectRSR = 1 − flc that in our case would lead toRSR = 2/3. We obtained a slightly smaller
RSR because the bending compliance of the beams produce a higherstress concentration inside the
columns that are closer to the initial damage area (see [4]).

5 CONCLUSIONS
Regular framed structures with small height-bay aspect ratio λ of the structural cells are less

strong than structures with highλ. Nevertheless,λ does not influence the robustness towards the ini-
tial removal of structural elements, measured by the Reserve Strength RatioRSR. The influence of
the hierarchical leveln on theRSR depends on the collapse mechanism that can be activated. If the
structure collapses because of a bending mechanism, theRSR depends on the number of columns
that are lost at a storey. Therefore, if the initial damage has a given destructive power or spatial
extent like explosions or impacts, hierarchical structures are more robust than homogeneous ones.
Differently, if the initial damage brings to the loss of a single column, hierarchical and homogeneous
structures are equally robust. If the structure undergoes pancake collapse triggered by progressive
failure of the columns under compression, theRSR depends on the fraction of columns that are lost
at a storey. In this case, hierarchical and homogeneous structures are equally robust towards initial
damage with given spatial extent, while homogeneous structures are more robust towards the loss
of a single column. Bending or pancake collapse as well as intermediate mechanism involving both
can be activated depending on the relative strength of columns and beams in the structure. Neverthe-
less, since theRSR towards pancake collapse is remarkably larger than theRSR towards bending
collapse mechanisms, hierarchical structures should be preferred in robustness oriented design.
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