
On the Evaluation of the Shear Correction Factors: a Boundary 
Element Approach 
 
Agesilao Marinetti1, Giuseppe Oliveto1 
 
1Department of Civil and Environmental Engineering, University of Catania, 
Italy 
E-mail: amarinetti@unict.it, goliveto@unict.it 

 
Keywords: Shear correction factor, Timoshenko’s beam theory, Boundary element 
methods. 
 
 
SUMMARY. Three popular approaches for the evaluation of the shear correction factors to be 
used in the Timoshenko beam theory are considered and compared in terms of results obtained. 
Two of the approaches use the shear stresses of the beam under constant shear as the main 
ingredients for the evaluation of shear correction factors, while the third uses the Saint-Venant 
flexure function. In the paper, new results in terms of shear correction factors are derived 
analytically for a semi-circular cross-section with the shear force acting along a direction 
perpendicular to the axis of symmetry. For the same cross-section results are provided numerically 
when the shear force acts parallel to the axis of symmetry. A convergence study is performed in 
order to assess the accuracy of the solution obtained. Finally, the results in terms of shear 
correction factors obtained by the three approaches are compared qualitatively and quantitatively 
showing that the differences can be significant and that the choice of the most appropriate shear 
correction factor may be relevant.  

1 INTRODUCTION 
Shear correction factors are needed in elementary beam theories whenever shear strains may 

affect significantly the required solution. The applications may be of static or dynamic nature and 
have been expounded in the most popular textbooks on strength of materials, structural mechanics 
and dynamics of structures. Already in the late 18 hundreds Lord Rayleigh introduced rotary 
inertia in an attempt to match theoretical and experimental frequencies in beams. However, it was 
S. Timoshenko [1] who first derived a differential equation combining the effects of shear strains 
and rotary inertia which provides much better results in the evaluation of the vibration frequencies 
of beams when the effects of shear deformation and rotary inertia are significant. Later, 
Timoshenko’s beam theory has been applied to buckling analyses of compressed helical springs 
and rubber rods for vibration-free mountings, and laminated rubber bearings used in earthquake 
engineering for base isolation. Given this wide spectrum of applications, in a variety of fields 
ranging from statics to dynamics, it is unlikely that a single shear correction factor may satisfy all 
practical requirements. Even if the object of the exercise is the calculation of the frequencies of 
vibration of standard beams or columns the matching of the experimental frequencies may be a 
difficult problem. More accurate formulations for static and long wavelength dynamical 
applications have been derived in the second half of the last century. From the few available exact 
results it seems that one set of shear correction factors excels among the others when low-
frequency long-wavelength problems must be tackled, namely the set developed separately at 
different times and with different methods by N.G. Stephen [2] and by J.R. Hutchinson [3]. 



However, two other sets of correction factors are worth considering because of the simplicity of 
the physical assumptions on which they are based and of the popularity that they have gained 
within the scientific community. One due to G.R. Cowper , [4], can be considered with good rights 
as the precursor of the Stephen-Hutchinson (S-H) set of shear correction factors. The other method 
of deriving shear correction factors has been known for a long time in mechanics and in 
engineering and is based on the principle of energy equivalence. The best set of shear correction 
factors obtained so far using the energy equivalence approach is due to J.D. Renton [5].  

In this work we shall review three of the methods used in the literature to derive the shear 
correction factors that we consider well founded and will show a way to derive the ingredients 
needed for the actual calculation of the shear correction factors for those cross-sections for which 
those ingredients are not available analytically.  

2 REVIEW OF THREE POPULAR APPROACHES 
We shall review three of the most popular approaches for the evaluation of the shear correction 

factors. In the order we shall consider first the energy approach because it has been used for a long 
time, with approximate and exact distributions of shear stresses, and expressions for the shear 
correction factor can be found in classical textbooks on structural mechanics [6-7] and in research 
papers [5,8]. Second we consider the approach by G.R. Cowper based on the derivation of the 
Timoshenko beam theory from the three-dimensional theory of elasticity [4]. Its popularity is 
largely associated to the fact that it is mentioned in some classical books on structural mechanics 
[9]. The third approach that we shall review is due to N.G. Stephen [2] and to J.R. Hutchinson [3]. 
The same results obtained by N.G. Stephen were rediscovered some 20 years later by J.R 
Hutchinson starting from very different assumptions.  

2.1   The Energy Approach 
The energy approach is based on the equality of the elastic shear strain energy per unit length 

of beam in the Timoshenko beam theory and some accurate estimates of the same. In 
mathematical terms this can be expressed as follows: 
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This leads to the expression for the shear correction factor for symmetrical cross-sections: 
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The shear stress distributions appearing in equation (2) have been derived in [6-7] from 

approximate theories [10] and in [5] from exact solutions [11]. Shear stress distributions evaluated 
through numerical analyses may be used as well, as it has been shown by the first author [8].  



2.2   Cowper’s Approach 
G.R. Cowper [4] derived the Timoshenko beam equation from the three-dimensional theory of 

elasticity, obtaining an expression of the shear correction factor as a byproduct. This takes the 
following expression for symmetrical cross sections with shearing force applied along the axis of 
symmetry: 
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The function ( )yx,χ  appearing in equation (3) is the solution of a Neumann problem denoted 
as the “flexure problem” by A.E.H. Love ([11], page 332). Expressions for the flexure function are 
provided in analytical form by Love for some cross-sections and can be derived numerically for 
any cross-section by solving the flexure problem mentioned above. 
 

2.3   Stephen-Hutchinson’s Approach 
In 1980 [2] N.G. Stephen derived an expression for the shear correction factor by equating the 

centerline curvature of a Timoshenko beam to the curvature of a beam subjected to uniform 
gravity loading. The formula produced by Stephen is structurally similar to that derived by 
Cowper and differs only by the doubling of the first term in the denominator and by the addition of 
a third term again in the denominator.  
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The similarity and the differences may be accounted for by considering that two static 

solutions are used in the derivation of the shear correction factor in the two cases and these 
solutions are complementary to each other in the sense that one of the two differs from the other 
only by some additional terms. The solution used by Cowper is the one provided by A.E.H. Love 
for the beam with constant shear and includes the corresponding shear stresses distribution over 
the cross-section. The solution used by Stephen is again provided by Love [11] (Chapter XVI, 
pp.349-364) for a beam under uniformly distributed transverse load ; this is characterized by the 
same transverse shear stresses distribution as before but with the inclusion of the stress 
components xσ , yσ , xyτ  not present in the previous solution. 

In 2001 J. R. Hutchinson derived a new  formulation for the Timoshenko beam equation, by 
using some appropriate kinematical assumption in the dynamic formulation of the Hellinger-



Reissner principle and the shear stress distribution derived by Love for the cantilever beam with 
constant shear. By equating the first different dominant terms of the characteristic equations of the 
classical and new theories he derived the following expression for the shear correction factor of 
symmetrical cross-sections: 
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where the constant C is provided in terms of the shear stress distribution for the beam with 
constant shear. 
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It is clear that, as in the previous two approaches, the required shear stresses distribution may be 
provided analytically when exact or approximate closed form solutions are available or may be 
evaluated numerically by solving the appropriate Neumann problem as was shown in [8]. Soon 
after the publication of Hutchinson’s paper, Stephen [12] proved that expressions (4) and (6) are 
equivalent. 

3 ANALYTICAL RESULTS 
Whenever an analytical solution for the “flexure problem” as defined by Love is available, it 

can be used for the evaluation of the shear correction factor according to the three approaches 
described in the previous section. One set of shear correction factors obtained in this way was 
provided by Cowper for his approach. For the same set of cross-sections analogous analytical 
results were provided by the first author in [8] also for the other two approaches, namely Energy 
Approach and Stephen-Hutchinson Approach. In what follows, just to show the procedure, the 
shear correction factors are evaluated for the semicircular cross-section shown in Figure 1. 
 

  
 Figure 1: Cross section considered for the evaluation of shear correction factors. 
 

The solution of the “flexure problem” derived in the way shown by I.S. Sokolnikoff, [13], may 
be written as follows in terms of shear stresses: 
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3.1   The Energy Approach 
By substitution of the shear stresses given by equations (8) and (9) in expression (2) for the 

shear correction factor according to the energy approach, the following analytical result is found: 
 

( )

( ) ( ) ( )
2

1
22442

2

321212
1

9
8192

81
4096

15
64

3
4

3
7

6
7

1

ν
πππ

ν

ν

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−⋅+⋅
−

⋅
−

⋅
++⋅+

+
=

∑
∞

=n

x

nnn

k , (10) 

 

3.2   Stephen-Hutchinson’s Approach 
When expressions (8) and (9) for the shear stresses are used in equation (7) for the evaluation 

of the constant C  and then this is used in equation (6) , the following expression for the shear 
correction factor according to the Stephen-Hutchinson approach is found: 
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4 NUMERICAL RESULTS 
The evaluation of the shear correction factor for the problem shown in Figure 1 according to 

Cowper’s approach requires the evaluation of the flexure function ( )yx,χ  related to the function 
( )yx,Φ  introduced in reference [8] by the following equality: 
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The function ( )yx,Φ is evaluated numerically as shown in reference [8] by application of the 

Boundary Elements Method while equation (12) provides the needed flexure function. By 
introducing the results in expression (3) for the shear correction factor according to Cowper’s 



approach, a numerical integration scheme provides a set of numerical values depending on 
Poisson’s ratio ν . Polynomial interpolation by least squares error minimization provided the 
following analytical expression for the shear correction factor according to Cowper’s approach. 
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The same method has been used for the evaluation of the shear correction factors according to 

each of the above approaches considered for the cross-section shown in Figure 1 when the shear 
force is parallel to the y axis. The following interpolated expressions were found:  
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5 CONVERGENCE STUDIES 
It is obvious that the accuracy of the evaluated shear correction factors according to any of the 

approaches considered depends on the accuracy of the ingredients required for its evaluation, that 
is the shear stresses zxτ and zyτ  for the Energy and Stephen-Hutchinson’s approaches and the 
flexure function ( )yx,χ  in the case of Cowper’s approach. When these quantities are evaluated 
numerically, as in the cases considered in section 3, a convergence study is necessary for an 
assessment of the accuracy achieved. The convergence study has been conducted in energy terms 
with reference to the dimensionless shear elastic energy per unit length of beam defined as 
follows: 
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With reference to the second problem considered in section 4, the boundary element analysis 

has been conducted using isoparametric linear elements. The length of the elements was constant 
in the linear and in the circular parts of the boundary, possibly slightly different from one part to 
the other. The minimum number of boundary elements considered over a radius and over a quarter 
of circumference was 10 and this number was doubled iteratively so that in each analysis this 
number was 10, 20, 40 and 80. 

 

5.1   Exact energy estimate 
The energy defined above was calculated for each analysis and an estimate of the exact value 

was obtained by using the formula [18]:  
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The change in energy as the mesh is refined is shown in Figure 2 where it can be seen how the 
calculated energy approaches the estimated exact value as the number of elements increases. In 
terms of error relative to the estimate, the results shown in Figure 3 are obtained. It may be seen 
that when the mesh is sufficiently refined the accuracy that is obtained is independent of Poisson’s 
ratio. 
 

5.2   Convergence properties of the shear correction factors 
The convergence properties of the BEM solution are reflected also on the shear correction factors. 
With reference to the shear correction factor evaluated according to the energy approach, the 
variation of the results as a function of the mesh refinement is shown in Figure 4. 
 

                                            
Figure 2:Energy as a function of mesh size.                          Figure 3: Energy relative error. 

 

                                    
 Figure 4:Energy approach                                              Figure 5: Cowper’s approach. 

 
It may be seen that there is little difference in the results when using 40 or 80 elements on a 

radius and on a quarter of circle. Also, the mesh refinement appears to be more significant for 
small values of Poisson’s ratio while for values close to 0.5 even a coarse mesh produces good 
results. In the case of the shear correction factor evaluated according to Cowper’s approach, the 
situation is quite different. As it may be seen from the results shown in Figure 5 the rate of 



convergence appears to be independent of Poisson’s ratio and a rather fine mesh is required to 
obtain accurate results. The different behaviour in the two cases is due to the fact that the energy 
approach relies on the shear stresses for the definition of the shear correction factor while 
Cowper’s approach makes use of the flexure function ( )yx,χ . The behaviour described is 
confirmed by the results shown in Figure 6 relative to the shear correction factor evaluated 
according to Stephen-Hutchinson’s approach. 

 

5.3   Comparison of results from three different approaches 
An overall view of the behavior of the shear correction factor evaluated according to the three 

approaches considered is shown in Figure 7. The three approaches provide the same value of the 
shear correction factor for zero Poisson's ratio and increasingly diverging values as the Poisson's 
ratio increases. While the shear correction factor remains nearly independent of ν according to 
Cowper's approach, it increases as ν  increases according to Stephen-Hutchinson's approach and 
decreases according to the energy approach. The maximum difference between any couple of 
shear correction factors is calculated in percentage terms by dividing the maximum difference by 
the average value of the couple of values. The results are shown in Table 1 where it can be seen 
that the difference between Cowper's and the Energy approach is of the order of 11%, that 
between Cowper's and Stephen-Hutchinson's approaches is of the order of 7% while the difference 
between the Energy approach and Stephen's -Hutchinson's approach is of the order of 19%. 
 

                                      
Figure 6: Stephen-Hutchinson’s approach.               Figure 7: Comparison of  shear correction factors. 

 
The trend shown in Figure 7 and expressed quantitatively in terms of maximum differences in 

Table 1 is confirmed by the behavior observed in many other cross-sections, as is shown in 
reference [8]. 
 

Table 1:  Maximum differences between couples of shear correction factors /average value 
Approaches Energy Cowper’s Stephen-Hutchinson’s 
Energy 0.00 0.11 0.19 

Cowper’s 0.11 0.00 0.07 
Stephen-Hutchinson’s 0.19 0.07 0.00 

 
 



6 CONCLUSIONS 
In this paper three of the most popular approaches for the evaluation of the shear correction 

factor to be used in the Timoshenko beam theory have been considered. The idea behind each 
approach is quite clear and the results are quite different, apart for values of Poisson’s ratio close 
to zero whereby the three approaches converge to the same value. This should provide a clue of 
where the differences come from in order to eventually find a way to improve the coefficient even 
more. The energy approach is essentially a static one and cannot be expected to produce good 
results for dynamic problems. Cowper’s approach is of a dynamic nature and one should expect to 
obtain better results from it when applied to a dynamics problem. However, as it was clearly 
evidenced in the seminal paper by Cowper [4], some terms were neglected in deriving the 
Timoshenko beam theory from the three-dimensional theory of dynamic elasticity, namely the 
direct stresses xσ  and yσ . Stephen’s contribution [2] was an attempt to improve Cowper’s results 
by somewhat accounting of those missing terms. His strategy, although stemming from a static 
approach, succeeded in improving Cowper’s formula by keeping the same fractional structure, the 
same numerator, adding a third term in the denominator and doubling the second one. Two 
decades later J.R. Hutchinson, by using a dynamical variations approach, arrived at a different 
formula which N.G. Stephen immediately proved to be equivalent to his own, [12]. It is interesting 
to realize that Hutchinson did not include the direct stresses xσ and yσ  in his treatment, but his 
kinematical assumptions were much wider than the usual ones in elementary beam theory, 
considering  terms that account for the deformation of the cross-section within its plane. The 
overall result was to find an expression for the shear correction factor equivalent to the one 
derived by Stephen. This analysis leads to the conclusion that for dynamic analysis the most 
appropriate value for the shear correction factor should be the one provided by the Stephen-
Hutchinson formula. Comparisons with a few analytical results available in the literature shown by 
J.R. Hutchinson [3] and by the present authors [12] appear to confirm this insight, at least with 
reference to the evaluation of the low natural frequencies of elastic beams. 

The shear correction factors produced in the literature are generally derived by introducing 
exact or approximate expressions for the shear stresses or for some other related quantities into 
some general expressions as those shown in the present paper for the three considered approaches. 
It has been shown that the required ingredients for the evaluation of the shear correction factors 
can also be derived by numerically solving some Neumann problem over the cross-section, as was 
done in detail in reference [8]. New shear correction factors have been derived analytically 
according to the energy approach and the Stephen-Hutchinson formula for the semicircular cross-
section with shear force acting perpendicularly to the axis of symmetry. The corresponding 
coefficient according to Cowper’s approach has been derived numerically, although an analytical 
formula has been provided by fractional polynomial curve fitting using the least squares method. 
Similar formulae have been derived, according to the three approaches considered, when the shear 
force acts along the symmetry axis.  

However, numerical methods must be used carefully and the accuracy of the solution obtained 
must be checked. In the present work the convergence of the numerical procedure was checked in 
energy terms and on each of the evaluated shear correction factors. 

Finally, the results obtained according to the three approaches considered where compared 
against each other in a qualitative as well as in a quantitative way. The difference appeared to be 
an increasing function of Poisson’s coefficient and significant in engineering terms for large 
values of such coefficient. Therefore, the appropriate choice of the shear correction factor may be 
an important issue. 



While the Stephen-Hutchinson formula for the evaluation of the shear correction factor may 
appear as the most appropriate so far for dynamic analyses, there is not enough evidence that it 
might be as good when applied to static problems. The energy approach in such cases appears to 
be just as sound as the Stephen-Hutchinson one and so far it is not clear which one would be 
preferable. Besides, an investigation performed by the present authors, [12], seems to be pointing 
towards another set of shear correction factors.  
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