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SUMMARY. This paper describes a wave and finite element (WF&hod for the numerical pre-
diction of wave propagation in axisymmetric structures rfafi segment of the structure is modelled
using conventional finite element methods, commonly usiegramercial package, and the mass
and stiffness matrices found. This typically involves agiénshell element or, especially for lami-
nate structures, a stack of solid elements meshed throedhitkness. Internal fluid can be included
straightforwardly. Periodicity conditions are then apgli An eigenvalue problem results, the solu-
tions of which yield the dispersion relations and the waveleso The circumferential order of the
wave can be specified in order to define the phase change a wagemces as it propagates across
the element in the circumferential direction. The resgléigenproblem then relates the wavenum-
ber and frequency. The WFE method is described and illustigtepplication to cylinders in vacuo
and filled with fluid and curved panels. These include varisagopic and laminated constructions.
Complex dispersion curves and wave modes are presentedsmodged. The method is seen to be
simple in application and provides accurate results witly {igle computational cost.

1 INTRODUCTION

Axisymmetric structures are present as a component in a eauoftsystems, both engineering
and bio—mechanical. Examples include pipes, human cifonlaacoustic ducts, aircraft fuselages
and aerospace structures to name a few. Knowledge of theprapagation characteristics in these
kind of structures is of importance in many applicationsdiesce and industry. Typical applications
include, amongst others, the transmission of structunexebeound, statistical energy analysis, shock
response and non—destructive testing. Theoretical utaahelisg of wave propagation also provides
the background necessary for the utilisation and a bettpkeimentation of many techniques. In
particular knowledge of high frequency wave propagatidiniglamental in ultrasonic and acoustic
emission technigues. More generally the wave approacHusbte in any case for which mid—high
frequencies are involved, that is when the size of the sirads large compared to the wavelength
and the computational cost of Finite Element (FE) analyéighe structure as a whole becomes
impractically large. The primary characteristics of thesaes are the dispersion relationship, that
is the relationship between frequency and wave headingtavétvenumber, and wave modes, which
are related to the cross—sectional displacements andahferces.

Analysis of wave motion typically involves assumptions apgroximations concerning stress,
strain and displacement states of the structure [1]. In rogses, such as isotropic thin cylinders,
analytical expressions for the dispersion curves can bed¢@] but analysis of wave motion gener-
ally requires the development of a mathematical model ghdifficult at best, especially for complex
constructions. Moreover, the accuracy of the solutiongddp upon whether the assumptions made



are valid. In particular at high frequency the underlyinguamsptions and approximations concern-
ing the stress—strain distribution in the solid generatlyalk down. As the frequency increases and
the wavelength starts to be comparable to the cross-sditiensions more refined models are re-
quired, e.g. [3, 4, 5]. Hence the analysis becomes incrglysiomplicated, while the computational
cost of standard numerical approaches, such as the Firtedst Method, becomes impractically
large. Difficulties in analytical approaches and limitasoof standard FE formulations have mo-
tivated the development of numerical approaches to préukctispersion properties, wave modes
and group and phase velocities in both structure and acdust, e.qg. [6, 8, 7, 9].

The main aim of this work is to describe a wave finite element BMfkethod for axisymmet-
ric structuredn vacuoand filled with fluid. Part of this work was already presentgdie same
authors in [10]. The method is an extension to axisymmetricctures of the WFE approach to 2—
dimensional structures of Mace and Manconi [11]. Compaoezinhilar methods, the WFE method
proposes a systematic and straightforward approach whitibines the theory of wave propagation
in periodic structures with conventional FE analysis. Ashslit is an application of FE analysis to
periodic structures, although in the cases consideredihetsres are homogeneous and hence the
periodicity of arbitrary length. The structures of intdresthe present work are homogeneous in
the axial and circumferential directions, but their prdjgsrcan vary in an arbitrary manner in the
radial direction. Examples include isotropic, laminated gandwich cylinders, eithém vacuoor
filled with fluid, and also the general case of curved pandte method requires the analysis of just
a small segment of the structure. The segment is discratiseg conventional FEs: just a single
rectangular shell finite element or a stack of solid elemsrgshed through the cross—section. This
allows a very substantial reduction in the number of DOFslived in the computation, particulary
when not only the structure but also the fluid is considerdd: Mass and stiffness matrices of the FE
model are then typically obtained using commercial FE pgekaThese matrices are subsequently
post—processed using periodicity conditions to obtainigarproblem whose solutions provide the
dispersion curves and the wave modes. Hence, making use afe@description, the approach en-
ables the evaluation of the wave characteristics up to magfuencies with great accuracy. The form
of the eigenproblem depends on the nature of the problemrat. hia particular for wave propa-
gation in a closed cylinder, where the wavenumber arounditobamference can only take certain
discrete values, the eigenproblem is a quadratic eigefgrobThe general approach proposed is
in contrast to the spectral finite element (SFE) method (8g9]) in which new elements, with a
space-harmonic displacement along the axis of the waveguidst be derived on a case-by-case
basis. The simple algebra involved in the method and thakibigsto use commercial FE packages
makes the WFE technique also suitable for industrial apipdics.

2 WFE FORMULATION FOR AXISYMMETRIC STRUCTURES

A schematic representation of axisymmetric structuresidsve in figure 1, wherey, r and «
are the cylindrical coordinated? is the mean radius andl is the thickness. The structures are
homogenous in thg and « directions but their proprieties can vary in an arbitrarynmer in the
r direction. A time harmonic disturbance at a frequencis assumed to propagate through the
structure with a helical pattern so that

wlr, @y, t) = W(r)el—kaah), @)

In equation (1), W (r) is the complex wave amplitude while, andk, are the components of the
wavenumbe¥ in the circumferential and axial directions. For real waweaersk, = kcos6 and
k, = ksin6@ whered is the direction in which the wave propagates. Exploiting pieriodicity of
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Figure 1: Examples of axisymmetric structures: (a) curveadeh (b) cylinderjn vacuoor filled
with fluid.

the structure, a prismatic segment of length subtending a small anglg,, is taken. Once the
‘period’ of the system is defined, it is meshed in such a wayithes an identical distributions of
nodes on both the andy faces. If the periodic lengths, and L, are small enough, the simplest
way to discretise the structural part of the segment is nbthusing either just one shell element or
generally using a stack of solid elements meshed througbrtss section as shown in figure 2. If
fluid is present 8—noded acoustic finite element are used st the fluid as shown in figure 2(b).

(b)

Figure 2. FE mesh of a small rectangular prismatic segmettieobxisymmetric structure: (&)
vacuoand (b) with fluid.

The standard FE equations of motion for the segment, asguimie harmonic behaviour, are
(K—-w’M)qg=H. 2)
When the fluid is considered, the mass and stiffness matriguiateon (2) are those obtained from
FE formulation for acoustic fluid—structure interactiorhel can be found in a number of texts on
the FE method, e.g. [12].
In the present analysis the curved segment in figure 2 hasrbedelled by FEA as being piece-

wise flat. Hence, in order to model the curvature, a transétion matrixR should be defined. The
mass and stiffness matrices in the global reference systethd curved segment then become

M =R MocR:
K =R KrocR,

whereM o andK ;o are the mass and stiffness matrices in local coordinatasjgtthe mass
and stiffness matrices of the flat FE model.
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Following the WFE procedure for 2—dimensional structurd$,[the degrees of freedom (DOFs)
of the FE model are arranged in a column vectas
g=[af a3 a; ail’, @
where the superscrifit denotes the transpose and wheyés the vector of the nodal DOFs of all the
element nodes which lie on thgth corner of the segment as shown in figure 3.
A similar expression is given for the nodal
forcesf Y
f=[f f2 f3 f1]". (5)
The vectorgy andf are then the concatenation
of the nodal DOFs and forces. Internal and edge
nodes can be included [11] but are not consid-
ered here. Since the structure is periodic in 2— x
dimensions of periodicity., and L,, the free

ds Ay

propagating wave in equation (1) can take the G b2
form of a Bloch wave [13]. The displacements Figure 3: Node numbering.
g on each side of the periodic element are therefore related by
O = Aali; O3 =Ay0i; Oy = Aay0y, (6)
where } }
Ao =€ ey N, =e " )
and
ta = kaLo and p, = kyL, (8)
are known as propagation constants. The nodal degreesedbimeare rearranged to give
q= ARq17 (9)
where
Ar =11 Xal Al AT (10)

In the absence of external excitation, equilibrium at nodmdlies that the sum of the nodal forces
of all the elements connected to node 1 is zero. Consequently

Arf=0, (11)

where
Ap =1 20 A (). (12)
Substituting equation (9) in equation (2) and premultiplyboth sides of equation (2) by, gives
5(‘*)7 )\cw )\y)ch = 0; 5(&)7 )\On )\y) = K(,uou ,Ufy) - W2M(/J,a, Ny)u (13)

where

are the reduced stiffness and mass matrices, i.e. the segmagnices projected onto the DOFs of
node 1 under the assumption of disturbance propagationexgietion (1). If there are DOFs per
node, the nodal displacement and force vectorsiarel, the element mass and stiffness matrices
aredn x 4n while the reduced matrices amex n.

Equations (13) gives different forms of the eigenproblefatieg A, A, andw, whose solutions
give FE estimates of the wave modes (eigenvectors) andrdisperelations for the continuous
structure.



3 NUMERICAL EXAMPLES

In this section numerical examples are presented to ilitesthe application of the WFE method.
Damping is neglected. Results are obtained by post—prioggSE models found using a commercial
FE package.

3.1 Laminated sandwich cylinder and laminated sandwich cupaatel in vacuo

Sandwich structures are often used for their low weight canegb to their high mechanical per-
formance. Modelling the dynamics of sandwich plates is \dfficult and they have been stud-
ied much less than orthotropic or isotropic panels. The wartdpanel analysed in this section
comprises two laminated skins sandwiching a foam core. Wuweskins each comprise 4 or-
thotropic sheets of graphite—epoxy with a lay—up-efl5/ — 45/ — 45/ + 45] and a total thick-
ness of 4mm. The material properties of the skinsffe= 144.48GPa,E, = E. = 9.63GPa,
Guy = Gy = Gy, = 4.128GPa,vyy, = v, = 0.02, vy, = 0.3 andp = 1389kg/m*. The core
is a 10mm polymethacrylamide ROHACELL foam whose mateniapprties are: Young modulus
E = 1.8 -10%Pa, Poisson’s ratio = 0.286, densityp = 110Kg/m3. The nondimensional thickness
of the sandwich construction fs/R = 0.018 with mean radius® = 1m. The WFE model was
realised using 18 SOLID45 elements in ANSYS, 4 for each skth®0 for the core, resulting in 57
DOFs after the reduction.

Similar sandwich composite curved panels were studied bpiig 4] and later by Ghinet and
Atalla [15] using a discrete layer theory. Heron assumedssital theory for sandwich structures
(a thick core that carries shear stress and thin skins thdt lwdoending and extension) while Gh-
inet and Atalla used Elge theory to describe the strain—displacement relatidhe two models
lead to47t" and42™? order dispersion systems respectively, which were sulesgtyusolved nu-
merically to determine the dispersion relations. In gengshutions to the dispersion equation are
pure real wavenumbers, representing propagating wavesirpaginary wavenumbers, representing
evanescent waves, and complex wavenumbers which cor@spomttenuating oscillatory waves.
Obtaining complex dispersion curves using the WFE methodtglifficult. For cylindrical struc-
tures itimplies just solving a standard linear eigenprobt®nsidering a standard linear companion
form of a quadratic polynomial eigenvalue.
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Figure 4: Dispersion curves for the laminated sandwichndylcal shell. Circumferential modes
@n =0 b)n=1: ..... complex valued wavenumbers... pure real and pure imaginary
wavenumbers.



Figure 4 shows the complex dispersion curves for waves pgaipay in the positivey direction
for circumferential orders, = 0 andn = 1. The ring frequency for this sandwich cylinder is
found at 622.7Hz. The dispersive behaviour is very complakx @annot be described simply in
terms of torsional, extensional and flexural waves alonewé¥er some features can be observed,
particularly concerning cut—off and cut—on with non zeroveraumber and bifurcations between
various wave modes. At higher frequencies, higher ordeesatart propagating which represent
higher order wave modes across the thickness. Higher ordeches are shown in figure 5 for
0 = 90°, or equivalently for the breathing mode shape. The chaiiatits of the wave modes can
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Figure 5: Dispersion curves for the laminated sandwich edifyanel. Heading directich = 90°
corresponding to circumferential mode= 0.
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Figure 6: Wave modes for the laminated sandwich curved pémgbranch 1 at 2kHz, deformation
in r andy directions; (b) branch 2 at 2kHz, deformatiorrianda; (c) branch 3 at 2kHz, deformation
in » andy directions; (d) branch 3 at 14kHz, deformation-iandy directions (not to scale).



be investigated by considering the eigenvectqisit the WFE eigenproblems), which represent the
deformations of the cross—section under the passage ofahe, \&nd the kinetic (or strain) energy
under the passage of the wave associated with the indivithgakes of freedom. The kinetic (and
strain) energyl" follows from the mass (and stiffness) matrices in equat8)raqd the eigenvectors
g, as

L= 3[(@V)*M@iwV)]; V=[a; Al Aydr Aadyay]”, (15)

where the superscrigt denotes the transpose conjugation. Figure 6 shows therndafions of
the cross—section for the first three propagating wave b figure 5 at 2kHz. From figure
6(a) it can be noticed that the wave of branch 1 at 2kHz inwlmedominantly bending of the
skins. Displacements in the radial direction are almosstaom, in the circumferential direction are
negligible while displacements in the axial direction arfisom bending and rotation of the laminae.
The skins and the core are moving in antiphase. For this wavedntributions in they, y andr
directions to the total kinetic energy are ~ 0%, I';, = 0.25%I andI', = 99.7%I" respectively.
Fig 6(b) shows that wave of branch 2 is a quasi shear wave fawhwih, = 100%I", ', ~ 0%I"
andT,. ~ 0%I'. The wave of branch 3, figure 6(c), resembles a quasi—extesilsivave mode
involving primarily displacements in thedirection (some Poisson contraction can be noticed). The
kinetic energies in the, y andr directions ard’,, ~ 0%I', I, = 93.4%I andl’, = 6.6%I". As
the frequency increases, branch 3 crosses branch 2 andhasiber changes: it approaches the
first branch. The wave mode represented by branch 3 at highdrey is evaluated at 14kHz and
it is shown in figure 6(d). This mode involves axial motion bétcore and a significant out—of—
plane displacement. Both axial and out—of-plane displacgsrare symmetric. The kinetic energy
is predominantly in the- direction, I, = 97.3%I", while the contribution in the; direction is
I, =2.7%I'. Deformations corresponding to higher order modes are sfirofigure 7 for branches
4 and 5 at 10kHz and for branch 6 at 14kHz. Branch 4, figure i&#)e first antisymmetric quasi—
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Figure 7: Wave modes for the laminated sandwich cylindrstedll: (a) branch 4 at 10kHz, defor-
mation ina. andr directions; (b) branch 5 at 10kHz, deformationjiandr directions; (c) branch 6
at 14kHz, deformation iy andr directions (not to scale).

shear wave mode. The kinetic energy for this wave is predantiyin the circumferential direction,
while the contributions to the total kinetic energy in thandr directions are negligible. Branch
5, figure 7(b), involves antisymmetric quasi—extensionatiom in the skins with some shear in the
core. The distribution of the kinetic energy iE;,, ~ 0%I, I', = 99.09%I andT', = 0.91%TI.
Branch 6, figure 7(b), involves primarily axial motion of there with Poisson contraction in the
direction. This wave resembles the wave of branch 5 at 10leHxpected from figure 5.

The dispersion curves for the non—closed curved sandwictlgan be represented in the form
w = f(ka,ky), that is the constant frequency contour in the wavenumizerepl As an example,
figure 8 shows the dispersion contours at 200Hz and 500Hz.clihves with larger wavenumbers
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Figure 8: Dispersion contour curves for the laminated saciiaurved panel: bold line00Hz; thin
line 500Hz.

in figure 8 involves wave motion primarily in thedirection. The lower branches correspond to
quasi-shear and quasi—extensional wave modes.

3.2 Airfilled sandwich cylinder

The sandwich panel analysed in this section is similar teehgiudied in section 3.2. The two
skins each comprise 4 orthotropic sheets with a lay—uptdb/ — 45/ — 45/ 4 45] and a total
thickness of 2mm while the core is again a 10mm polymethaoride ROHACELL foam. The
material properties of the skins afe, = E, = 54GPa,E, = 4.8GPa,G,, = G,, = 1.78GPa,
G2y = 3.16GPav,, = 0.06, v, = v,, = 0.313 andp = 2000kg/m?. The nondimensional
thickness of the sandwich constructioniigsR = 0.02, R = 0.7m. The fluid considered is air at
20°C. The WFE model is realised using 12 solid elements in ANSYfr4ach skin and 4 for
the core, and 30 fluid elements in ANSYS, resulting in 70 DOffer &he WFE reduction. Figure
9 shows complex dispersion curves for the fluid—filled cydéindacoustic fluid in rigid walled duct
and soft walled duct. Circumferential mode orders- 0 andn = 1 are shown. Figure 9 indicates
how complicated wave propagation can be for such cases. nilddual wave modes cannot be
described simply in terms of shear, extensional, flexurdl @oustic waves alone: all these mo-
tions become coupled. However, it can be noticed that theganéantly structure—borne flexural,
torsional and axial waves are still clearly evident and ttiditeonal branches are due to the many
predominantly fluid—borne waves that exist. koe 0, figure 9(a), coupling occurs at low frequency
between quasi—flexural branch and pressure release duet rhsdhe frequency increases coupling
then occurs between acoustic mode and quasi—extensiomalmade both for real and imaginary
branches. When the pipe vibratesiat 1, branches which are predominantly acoustic behave like
acoustic modes in a rigid walled duct at low frequency. Stmat branches which involve radial
motion couple with acoustic modes, for example the firstcstmal branch fok R > 4, which rep-
resents predominantly flexural wave modes, and the firstthramthe imaginary sub—plane which
represents predominately extensional motion (hencevesgaladial expansion and contraction).
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Figure 9: Air filled sandwich cylindet/R = 0.02, (a)n = 0 and (b)n = 1: ..... complex valued
wavenumbers,... pure real and pure imaginary wavenumbers, (grey thin)stoofluid in a
rigid walled duct, - - - - - (grey thin) acoustic fluid in a sofalled duct.

4 CONCLUDING REMARKS

In this paper the free wave characteristics of axisymmeirigctures were predicted using a
Wave Finite Element (WFE) method. The WFE method is a systenaatil straightforward ap-
proach which combines the theory of wave propagation iropéristructures with commercial finite
element tools. The technique involves the post—procesdiegement matrices of a small segment
of the structure, which is modelled using either a singldlglement or a stack of solid elements
meshed through the cross—section. Generally a 3—dimaidihmodel of a small segment of the
structure is realised and dispersion curves obtained at guracy and very small computation
cost. The full power of existing FE packages and their extenslement libraries can be utilised.
This makes the technique suitable for implementation inroencial finite element codes and suit-
able for industrial applications. In the first part of the pathe method was described. The method
was then illustrated by application to laminated sandwichstructionsin vacuoand filled with
fluid. The application of the method was seen to be straiglificd even in the complicated case of
a laminated sandwich cylinder for which fluid—structuresmatction was considered.
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