
Wave Propagation In Axisymmetric Structures From Finite Element
Analysis

Elisabetta Manconi1, Brian R. Mace2
1Department of Industrial Engineering, University of Parma, Italy
E-mail: elisabetta.manconi@unipr.it

2Institute of Sound and Vibration Research, University of Southampton, UK
E-mail: brm@isvr.soton.ac.uk

Keywords: waves, dispersion curves, finite elements, cylinders, curved panels, fluid–filled pipes.

SUMMARY. This paper describes a wave and finite element (WFE) method for the numerical pre-
diction of wave propagation in axisymmetric structures. A small segment of the structure is modelled
using conventional finite element methods, commonly using acommercial package, and the mass
and stiffness matrices found. This typically involves a single shell element or, especially for lami-
nate structures, a stack of solid elements meshed through the thickness. Internal fluid can be included
straightforwardly. Periodicity conditions are then applied. An eigenvalue problem results, the solu-
tions of which yield the dispersion relations and the wave modes. The circumferential order of the
wave can be specified in order to define the phase change a wave experiences as it propagates across
the element in the circumferential direction. The resulting eigenproblem then relates the wavenum-
ber and frequency. The WFE method is described and illustrated by application to cylinders in vacuo
and filled with fluid and curved panels. These include variousisotropic and laminated constructions.
Complex dispersion curves and wave modes are presented and discussed. The method is seen to be
simple in application and provides accurate results with very little computational cost.

1 INTRODUCTION
Axisymmetric structures are present as a component in a number of systems, both engineering

and bio–mechanical. Examples include pipes, human circulation, acoustic ducts, aircraft fuselages
and aerospace structures to name a few. Knowledge of the wavepropagation characteristics in these
kind of structures is of importance in many applications in science and industry. Typical applications
include, amongst others, the transmission of structure–borne sound, statistical energy analysis, shock
response and non–destructive testing. Theoretical understanding of wave propagation also provides
the background necessary for the utilisation and a better implementation of many techniques. In
particular knowledge of high frequency wave propagation isfundamental in ultrasonic and acoustic
emission techniques. More generally the wave approach is valuable in any case for which mid–high
frequencies are involved, that is when the size of the structure is large compared to the wavelength
and the computational cost of Finite Element (FE) analysis of the structure as a whole becomes
impractically large. The primary characteristics of thesewaves are the dispersion relationship, that
is the relationship between frequency and wave heading to the wavenumber, and wave modes, which
are related to the cross–sectional displacements and internal forces.

Analysis of wave motion typically involves assumptions andapproximations concerning stress,
strain and displacement states of the structure [1]. In simple cases, such as isotropic thin cylinders,
analytical expressions for the dispersion curves can be found [2] but analysis of wave motion gener-
ally requires the development of a mathematical model that is difficult at best, especially for complex
constructions. Moreover, the accuracy of the solutions depends upon whether the assumptions made
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are valid. In particular at high frequency the underlying assumptions and approximations concern-
ing the stress–strain distribution in the solid generally break down. As the frequency increases and
the wavelength starts to be comparable to the cross-sectiondimensions more refined models are re-
quired, e.g. [3, 4, 5]. Hence the analysis becomes increasingly complicated, while the computational
cost of standard numerical approaches, such as the Finite Element Method, becomes impractically
large. Difficulties in analytical approaches and limitations of standard FE formulations have mo-
tivated the development of numerical approaches to predictthe dispersion properties, wave modes
and group and phase velocities in both structure and acoustic fluid, e.g. [6, 8, 7, 9].

The main aim of this work is to describe a wave finite element (WFE) method for axisymmet-
ric structuresin vacuoand filled with fluid. Part of this work was already presented by the same
authors in [10]. The method is an extension to axisymmetric structures of the WFE approach to 2–
dimensional structures of Mace and Manconi [11]. Compared to similar methods, the WFE method
proposes a systematic and straightforward approach which combines the theory of wave propagation
in periodic structures with conventional FE analysis. As such, it is an application of FE analysis to
periodic structures, although in the cases considered the structures are homogeneous and hence the
periodicity of arbitrary length. The structures of interest in the present work are homogeneous in
the axial and circumferential directions, but their properties can vary in an arbitrary manner in the
radial direction. Examples include isotropic, laminated and sandwich cylinders, eitherin vacuoor
filled with fluid, and also the general case of curved panels. The method requires the analysis of just
a small segment of the structure. The segment is discretisedusing conventional FEs: just a single
rectangular shell finite element or a stack of solid elementsmeshed through the cross–section. This
allows a very substantial reduction in the number of DOFs involved in the computation, particulary
when not only the structure but also the fluid is considered. The mass and stiffness matrices of the FE
model are then typically obtained using commercial FE packages. These matrices are subsequently
post–processed using periodicity conditions to obtain an eigenproblem whose solutions provide the
dispersion curves and the wave modes. Hence, making use of a wave description, the approach en-
ables the evaluation of the wave characteristics up to high frequencies with great accuracy. The form
of the eigenproblem depends on the nature of the problem at hand. In particular for wave propa-
gation in a closed cylinder, where the wavenumber around thecircumference can only take certain
discrete values, the eigenproblem is a quadratic eigenproblem. The general approach proposed is
in contrast to the spectral finite element (SFE) method (e.g.[8, 9]) in which new elements, with a
space-harmonic displacement along the axis of the waveguide, must be derived on a case-by-case
basis. The simple algebra involved in the method and the possibility to use commercial FE packages
makes the WFE technique also suitable for industrial applications.

2 WFE FORMULATION FOR AXISYMMETRIC STRUCTURES
A schematic representation of axisymmetric structures is shown in figure 1, wherey, r andα

are the cylindrical coordinates,R is the mean radius andh is the thickness. The structures are
homogenous in they andα directions but their proprieties can vary in an arbitrary manner in the
r direction. A time harmonic disturbance at a frequencyω is assumed to propagate through the
structure with a helical pattern so that

w(r, α, y, t) = W (r)ei(ωt−kαα−kyy). (1)

In equation (1),W (r) is the complex wave amplitude whilekα andky are the components of the
wavenumberk in the circumferential and axial directions. For real wavenumberskα = k cos θ and
ky = k sin θ whereθ is the direction in which the wave propagates. Exploiting the periodicity of
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Figure 1: Examples of axisymmetric structures: (a) curved panel, (b) cylinder,in vacuoor filled
with fluid.

the structure, a prismatic segment of lengthLy subtending a small angleLα is taken. Once the
‘period’ of the system is defined, it is meshed in such a way that it has an identical distributions of
nodes on both theα andy faces. If the periodic lengthsLα andLy are small enough, the simplest
way to discretise the structural part of the segment is obtained using either just one shell element or
generally using a stack of solid elements meshed through thecross section as shown in figure 2. If
fluid is present 8–noded acoustic finite element are used to mesh the fluid as shown in figure 2(b).
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Figure 2: FE mesh of a small rectangular prismatic segment ofthe axisymmetric structure: (a)in
vacuoand (b) with fluid.

The standard FE equations of motion for the segment, assuming time harmonic behaviour, are
(

K − ω2M
)

q = f. (2)

When the fluid is considered, the mass and stiffness matrix in equation (2) are those obtained from
FE formulation for acoustic fluid–structure interaction. They can be found in a number of texts on
the FE method, e.g. [12].

In the present analysis the curved segment in figure 2 has beenmodelled by FEA as being piece-
wise flat. Hence, in order to model the curvature, a transformation matrixR should be defined. The
mass and stiffness matrices in the global reference system for the curved segment then become

M = R
T

MLOCR;

K = R
T

KLOCR,
(3)

whereMLOC andKLOC are the mass and stiffness matrices in local coordinates, that is the mass
and stiffness matrices of the flat FE model.
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Following the WFE procedure for 2–dimensional structures [11], the degrees of freedom (DOFs)
of the FE model are arranged in a column vectorq as

q = [qT
1 qT

2 qT
3 qT

4 ]T , (4)

where the superscriptT denotes the transpose and whereqj is the vector of the nodal DOFs of all the
element nodes which lie on thejth corner of the segment as shown in figure 3.

y

x

q1 q2

q3 q4

Figure 3: Node numbering.

A similar expression is given for the nodal
forcesf

f = [fT1 fT2 fT3 fT4 ]T . (5)

The vectorsq andf are then the concatenation
of the nodal DOFs and forces. Internal and edge
nodes can be included [11] but are not consid-
ered here. Since the structure is periodic in 2–
dimensions of periodicityLα andLy, the free
propagating wave in equation (1) can take the
form of a Bloch wave [13]. The displacements
q on each side of the periodic element are therefore related by

q2 = λαq1; q3 = λyq1; q4 = λαλyq1, (6)

where
λα = e−iµα ; λy = e−iµy (7)

and
µα = kαLα and µy = kyLy (8)

are known as propagation constants. The nodal degrees of freedom are rearranged to give

q = ΛRq1, (9)

where
ΛR = [I λαI λyI λαλyI]T . (10)

In the absence of external excitation, equilibrium at node 1implies that the sum of the nodal forces
of all the elements connected to node 1 is zero. Consequently

ΛLf = 0, (11)

where
ΛL = [I λ−1

α I λ−1
y I (λαλy)

−1I]. (12)

Substituting equation (9) in equation (2) and premultiplying both sides of equation (2) byΛL gives

D(ω, λα, λy)q1 = 0; D(ω, λα, λy) = K(µα, µy) − ω2M(µα, µy), (13)

where
K = ΛLKΛR; M = ΛLMΛR (14)

are the reduced stiffness and mass matrices, i.e. the segment matrices projected onto the DOFs of
node 1 under the assumption of disturbance propagation as inequation (1). If there aren DOFs per
node, the nodal displacement and force vectors aren × 1, the element mass and stiffness matrices
are4n × 4n while the reduced matrices aren × n.

Equations (13) gives different forms of the eigenproblem relatingλα, λy andω, whose solutions
give FE estimates of the wave modes (eigenvectors) and dispersion relations for the continuous
structure.
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3 NUMERICAL EXAMPLES
In this section numerical examples are presented to illustrate the application of the WFE method.

Damping is neglected. Results are obtained by post–processing FE models found using a commercial
FE package.

3.1 Laminated sandwich cylinder and laminated sandwich curvedpanel in vacuo
Sandwich structures are often used for their low weight compared to their high mechanical per-

formance. Modelling the dynamics of sandwich plates is verydifficult and they have been stud-
ied much less than orthotropic or isotropic panels. The sandwich panel analysed in this section
comprises two laminated skins sandwiching a foam core. The two skins each comprise 4 or-
thotropic sheets of graphite–epoxy with a lay–up of[+45/ − 45/ − 45/ + 45] and a total thick-
ness of 4mm. The material properties of the skins areEx = 144.48GPa,Ey = Ez = 9.63GPa,
Gxy = Gyz = Gxz = 4.128GPa,νxy = νxz = 0.02, νyz = 0.3 andρ = 1389kg/m3. The core
is a 10mm polymethacrylamide ROHACELL foam whose material properties are: Young modulus
E = 1.8 · 108Pa, Poisson’s ratioν = 0.286, densityρ = 110Kg/m3. The nondimensional thickness
of the sandwich construction ish/R = 0.018 with mean radiusR = 1m. The WFE model was
realised using 18 SOLID45 elements in ANSYS, 4 for each skin and 10 for the core, resulting in 57
DOFs after the reduction.

Similar sandwich composite curved panels were studied by Heron [14] and later by Ghinet and
Atalla [15] using a discrete layer theory. Heron assumed a classical theory for sandwich structures
(a thick core that carries shear stress and thin skins that work in bending and extension) while Gh-
inet and Atalla used Flügge theory to describe the strain–displacement relations. The two models
lead to47th and42nd order dispersion systems respectively, which were subsequently solved nu-
merically to determine the dispersion relations. In general solutions to the dispersion equation are
pure real wavenumbers, representing propagating waves, pure imaginary wavenumbers, representing
evanescent waves, and complex wavenumbers which corresponds to attenuating oscillatory waves.
Obtaining complex dispersion curves using the WFE method is not difficult. For cylindrical struc-
tures it implies just solving a standard linear eigenproblem considering a standard linear companion
form of a quadratic polynomial eigenvalue.
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Figure 4: Dispersion curves for the laminated sandwich cylindrical shell. Circumferential modes
(a) n = 0, (b) n = 1: ..... complex valued wavenumbers;..... pure real and pure imaginary
wavenumbers.
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Figure 4 shows the complex dispersion curves for waves propagating in the positivey direction
for circumferential ordersn = 0 andn = 1. The ring frequency for this sandwich cylinder is
found at 622.7Hz. The dispersive behaviour is very complex and cannot be described simply in
terms of torsional, extensional and flexural waves alone. However some features can be observed,
particularly concerning cut–off and cut–on with non zero wavenumber and bifurcations between
various wave modes. At higher frequencies, higher order waves start propagating which represent
higher order wave modes across the thickness. Higher order branches are shown in figure 5 for
θ = 90o, or equivalently for the breathing mode shape. The characteristics of the wave modes can
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Figure 5: Dispersion curves for the laminated sandwich curved panel. Heading directionθ = 90o

corresponding to circumferential moden = 0.
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Figure 6: Wave modes for the laminated sandwich curved panel: (a) branch 1 at 2kHz, deformation
in r andy directions; (b) branch 2 at 2kHz, deformation inr andα; (c) branch 3 at 2kHz, deformation
in r andy directions; (d) branch 3 at 14kHz, deformation inr andy directions (not to scale).
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be investigated by considering the eigenvectors (q1 in the WFE eigenproblems), which represent the
deformations of the cross–section under the passage of the wave, and the kinetic (or strain) energy
under the passage of the wave associated with the individualdegrees of freedom. The kinetic (and
strain) energyΓ follows from the mass (and stiffness) matrices in equation (3) and the eigenvectors
q1 as

Γ = 1
2 [(iωV)∗M(iωV)]; V = [q1 λαq1 λyq1 λαλyq1]

T , (15)

where the superscript∗ denotes the transpose conjugation. Figure 6 shows the deformations of
the cross–section for the first three propagating wave branches in figure 5 at 2kHz. From figure
6(a) it can be noticed that the wave of branch 1 at 2kHz involves predominantly bending of the
skins. Displacements in the radial direction are almost constant, in the circumferential direction are
negligible while displacements in the axial direction arise from bending and rotation of the laminae.
The skins and the core are moving in antiphase. For this wave the contributions in theα, y andr
directions to the total kinetic energy areΓα ≈ 0%Γ, Γy = 0.25%Γ andΓr = 99.7%Γ respectively.
Fig 6(b) shows that wave of branch 2 is a quasi shear wave for which Γα = 100%Γ, Γy ≈ 0%Γ
and Γr ≈ 0%Γ. The wave of branch 3, figure 6(c), resembles a quasi–extensional wave mode
involving primarily displacements in they direction (some Poisson contraction can be noticed). The
kinetic energies in theα, y andr directions areΓα ≈ 0%Γ, Γy = 93.4%Γ andΓr = 6.6%Γ. As
the frequency increases, branch 3 crosses branch 2 and its behaviour changes: it approaches the
first branch. The wave mode represented by branch 3 at high frequency is evaluated at 14kHz and
it is shown in figure 6(d). This mode involves axial motion of the core and a significant out–of–
plane displacement. Both axial and out–of–plane displacements are symmetric. The kinetic energy
is predominantly in ther direction, Γr = 97.3%Γ, while the contribution in they direction is
Γy = 2.7%Γ. Deformations corresponding to higher order modes are shown in figure 7 for branches
4 and 5 at 10kHz and for branch 6 at 14kHz. Branch 4, figure 7(a),is the first antisymmetric quasi–
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Figure 7: Wave modes for the laminated sandwich cylindricalshell: (a) branch 4 at 10kHz, defor-
mation inα andr directions; (b) branch 5 at 10kHz, deformation iny andr directions; (c) branch 6
at 14kHz, deformation iny andr directions (not to scale).

shear wave mode. The kinetic energy for this wave is predominantly in the circumferential direction,
while the contributions to the total kinetic energy in they andr directions are negligible. Branch
5, figure 7(b), involves antisymmetric quasi–extensional motion in the skins with some shear in the
core. The distribution of the kinetic energy is:Γα ≈ 0%Γ, Γy = 99.09%Γ andΓr = 0.91%Γ.
Branch 6, figure 7(b), involves primarily axial motion of thecore with Poisson contraction in ther
direction. This wave resembles the wave of branch 5 at 10kHz as expected from figure 5.

The dispersion curves for the non–closed curved sandwich panel can be represented in the form
ω = f(kα, ky), that is the constant frequency contour in the wavenumber plane. As an example,
figure 8 shows the dispersion contours at 200Hz and 500Hz. Thecurves with larger wavenumbers
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Figure 8: Dispersion contour curves for the laminated sandwich curved panel: bold line200Hz; thin
line 500Hz.

in figure 8 involves wave motion primarily in ther direction. The lower branches correspond to
quasi–shear and quasi–extensional wave modes.

3.2 Air–filled sandwich cylinder
The sandwich panel analysed in this section is similar to those studied in section 3.2. The two

skins each comprise 4 orthotropic sheets with a lay–up of[+45/ − 45/ − 45/ + 45] and a total
thickness of 2mm while the core is again a 10mm polymethacrylamide ROHACELL foam. The
material properties of the skins areEx = Ey = 54GPa,Ez = 4.8GPa,Gyz = Gxz = 1.78GPa,
Gxy = 3.16GPaνxy = 0.06, νyz = νxz = 0.313 andρ = 2000kg/m3. The nondimensional
thickness of the sandwich construction ish/R = 0.02, R = 0.7m. The fluid considered is air at
20oC. The WFE model is realised using 12 solid elements in ANSYS, 4for each skin and 4 for
the core, and 30 fluid elements in ANSYS, resulting in 70 DOFs after the WFE reduction. Figure
9 shows complex dispersion curves for the fluid–filled cylinder, acoustic fluid in rigid walled duct
and soft walled duct. Circumferential mode ordersn = 0 andn = 1 are shown. Figure 9 indicates
how complicated wave propagation can be for such cases. The individual wave modes cannot be
described simply in terms of shear, extensional, flexural and acoustic waves alone: all these mo-
tions become coupled. However, it can be noticed that the predominantly structure–borne flexural,
torsional and axial waves are still clearly evident and the additional branches are due to the many
predominantly fluid–borne waves that exist. Forn = 0, figure 9(a), coupling occurs at low frequency
between quasi–flexural branch and pressure release duct mode. As the frequency increases coupling
then occurs between acoustic mode and quasi–extensional wave mode both for real and imaginary
branches. When the pipe vibrates atn = 1, branches which are predominantly acoustic behave like
acoustic modes in a rigid walled duct at low frequency. Structural branches which involve radial
motion couple with acoustic modes, for example the first structural branch forkR > 4, which rep-
resents predominantly flexural wave modes, and the first branch in the imaginary sub–plane which
represents predominately extensional motion (hence involves radial expansion and contraction).
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Figure 9: Air filled sandwich cylinderh/R = 0.02, (a)n = 0 and (b)n = 1: ..... complex valued
wavenumbers,..... pure real and pure imaginary wavenumbers, ——– (grey thin) acoustic fluid in a
rigid walled duct, - - - - - (grey thin) acoustic fluid in a soft walled duct.

4 CONCLUDING REMARKS
In this paper the free wave characteristics of axisymmetricstructures were predicted using a

Wave Finite Element (WFE) method. The WFE method is a systematic and straightforward ap-
proach which combines the theory of wave propagation in periodic structures with commercial finite
element tools. The technique involves the post–processingof element matrices of a small segment
of the structure, which is modelled using either a single shell element or a stack of solid elements
meshed through the cross–section. Generally a 3–dimensional FE model of a small segment of the
structure is realised and dispersion curves obtained at great accuracy and very small computation
cost. The full power of existing FE packages and their extensive element libraries can be utilised.
This makes the technique suitable for implementation in commercial finite element codes and suit-
able for industrial applications. In the first part of the paper the method was described. The method
was then illustrated by application to laminated sandwich constructionsin vacuoand filled with
fluid. The application of the method was seen to be straightforward even in the complicated case of
a laminated sandwich cylinder for which fluid–structure interaction was considered.
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