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SUMMARY. The linear dynamics of many structural systems is characterized by multiple internal
resonances. Such systems may exhibit a high sensitivity of the eigenproperties with respect to a set
of significant mechanical parameters. This condition is recognized as the source of relevant pheno-
mena, as frequency veering and mode localization or hybridization. The leading idea of the present
work consists in systematically treating nearly-resonant Hamiltonian systems as perturbations of a
reference, unknown a priori, resonant system. Given a nearly-resonant experimental system, a multi-
parameter perturbation method is presented in order to, first, identify in the parameter space a close
resonant system (inverse problem), and, second, use the identified resonant system as suited initial
point to approximate the eigensolution of the systems originated by a generic multi-parameter pertur-
bation (direct problem). The conditions of existence and uniqueness of the inverse problem solution,
as well as the subsequent validity of the perturbation-based sensitivity analysis are discussed.

1 INTRODUCTION
The analytical models of several physical systems show that eigenvalues and eigenvectors stron-

gly depend on a set of mechanical parameters. This dependence can be effectively studied through
the analysis of the eigenvalue loci curves versus one or more significant parameters. Two curves
approaching to each other in a certain region of the parameter space may exhibit different typical
behaviours. The intersection of the curves for a critical parameter value, corresponding to a double
frequency, is known as a crossing condition. Otherwise the sudden divergence of the curves cau-
ses an avoided crossing, also known as a veering phenomenon. The eigenvectors associated to a
couple of veering eigenvalues completely interchange their shapes in a rapid but continuous way,
giving birth to a pair of parameter-evolving hybrid forms. Hence veering regions are qualitatively
characterized by high sensitivities of the eigensolution, that is large variation of the eigenvalues and
eigenvectors resulting from small changes in the control parameters. Research attention towards vee-
ring phenomena is called by different motivations; among them, the presence of internally-resonant
modes, potentially leading to strong energy exchange (with technical application in the field of pas-
sive control [1]), and the strict correlation with phenomena of vibration localization [2],[3].

The frequency veering has been often identified in assemblies of weakly-coupled equal subsy-
stems (pendulum chains, multi-span beams, bladed disks), as a consequence of imperfections distur-
bing the nominal structural periodicity. Both the weak coupling (mistuning) and the imperfections
(disorder) can be regarded as small perturbations of an ideal perfect (tuned and ordered) system,
with known eigensolutions. Therefore, the eigensolutions of close systems, with small mistuning
and disorder, can be approximated constructing asymptotical expansions based on perturbation me-
thods. The traditional approach, commonly used for conservative systems [2],[4], consists in in-
cluding the disorder into the unperturbed reference system, and then performing a single-parameter
analysis considering only the coupling as perturbation. Nonetheless, such perturbation scheme pre-
sents some drawbacks, relying essentially in the small-range validity of the achievable solutions.
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A refined approach consists instead in retaining both the disorder and the coupling as independent
perturbations of the tuned and ordered system, and then performing a multi-parameter analysis [5].
Among other features, this refinement allows the extention of the solution validity over a wider pa-
rameter range, together with the treatment of non-conservative discrete systems governed by nearly
defective matrices, which are the object of its original development.

The main line of the present study consists in applying the second approach to conservative
discrete system exhibiting multiple frequency veering, such as the paradigmatic mechanical model
presented in Figure 1a. The model is made of a principal sub-system, the rectangular body SP,
and two secondary sub-systems, the point bodies SS1 and SS2. The system could be intended as
a minimal sectional model of a cable-stayed or a suspended bridge, and was originally formulated
to synthetically reproduce the strong dynamical interactions which may couple the vertical/torsional
motion of the deck, represented by the principal system, and the transversal motion of many resonant
stay cables, represented by the secondary systems [6]. In certain parameter regions, the system
frequencies are found to exhibit important veering phenomena involving two, or even three modes
(Figure 1b), with different amount of localization (Figure 1c).

Aiming to analyze the eigensolution sensitivity in the critical regions of the parameter space
through the multi-parameter perturbation scheme, the real (or experimental) system is supposed to
be originated by the perturbation of an ideal, though unknown, non-defective system with double
or triple frequency. Differently speaking, the existence of a crossing close to the veering region
is postulated. According to this perturbation strategy, the paper tackles first the direct problem,
consisting in the description of the experimental system eigensolution as a generic multi-parameter
perturbation of the ideal system eigenvalues and eigenvectors. Then, focus is made on the solution
of an inverse problem, consisting in the identification of the unknown ideal system to be perturbed.
As dealing with an inverse problem, questions regarding the existence and uniqueness of the solution
are discussed, and the need of imposing compatibility conditions on the data, namely the eigenvalues
and the eigenvectors of the experimental system, is evidenced. Finally, the complete procedure is
effectively tested on the relevant case of a three dofs systems with two resonant, interacting modes
and a third mode with passive role.
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Figure 1: Paradigmatic mechanical system with multiple frequency veering: (a) sketch, (b) veering phenomenon
involving three frequency loci, (c) localization and hybridization on the modes.
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2 PERTURBATION ANALYSIS FOR THE EIGENSOLUTION SENSITIVITY
The mechanical model presented in the previous section can be considered a paradigmatic exam-

ple of a generic class of N -dimensional linear Hamiltonian systems. These systems are governed
only by the mass matrix M = [mij] and the stiffness matrix K = [kij] (where i, j = 1, . . . , N ), and
the associated eigensolution consists of real (and generally distinct) eigenvalues, listed in ascen-
ding order in the diagonal matrix Λ= diag(λ1, . . . , λN ), and a complete set of eigenvectors, listed
columnwise in the modal matrix Φ = {φ1| . . . |φN}. The eigensolution depends on the vector p,
collecting all the M independent parameters p1, . . . , pM defining the mass and stiffness coefficients.

Multi-parameter perturbation (MPP) methods represent a valid alternative to the computationally-
consuming numerical techniques of solution continuation (SC), applied in the previous section to
characterize the parameter-dependence of the eigensolution. The algorithm requires to fix an initial
point p0 in the M -dimensional parameter space Π , corresponding to a reference system S0, with
unperturbed governing matrices M0(p0), K0(p0), and known eigensolution Λ0(p0), Φ0(p0). A
close point p, corresponding to a new system S , can be treated as a perturbation of the initial point,
that is p = p0+εp1. It is worth noting here that p1 is a generic multi-parameter modification of
the initial point p0, whose (small) amplitude is regulated by the perturbation parameter ε�1. The
MPP method allows the construction of asymptotic expansions Λ0(p0)+εΛ1(p0,p1)+O(ε2) and
Φ0(p0)+εΦ1(p0,p1)+O(ε2), well-approximating the exact eigensolution Λ(p), Φ(p). The ap-
proximation is uniformly valid over a certain region around the initial point. The coefficients of the
asymptotic expansion are called eigensolution sensitivities.

On the light of these considerations, the frequency veering and modal hybridization can be reco-
gnized as particular phenomena characterized by rapid variations of the eigenvalues and the eigen-
vectors over a small range of the system parameters, that is high eigensolution sensitivities in certain
critical regions of the parameter space. The leading idea here consists in systematically treating
the nearly-resonant systems S∗, which are observed to exhibit these phenomena (therefore called
experimental, or real systems) as the perturbation of a resonant, though unknown, non-defective
system S̄0, with repeated frequencies (therefore called ideal system). The task is twofold; given a
resonant system S0, (i) the direct problem consists in determining the approximated eigensolution of
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Figure 2: Multi-parameter perturbation scheme (first order approximation): (a) direct problem for the
approximation of the real eigensolution, (b) inverse problem for the identification of the reference system.
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a nearly-resonant system S , by employing a generic multi-parameter perturbation of the S0 eigenso-
lution (see Figure 2a); otherwise, given an experimental system S∗, (ii) the inverse problem consists
in identifying the unknown unperturbed resonant system S̄0, by forcing the eigensolution of the per-
turbed system S̄ to match that of S∗ (see Figure 2b). It is worth noting that the multi-parameter
perturbation originating the nearly-resonant system is a priori unknown, and has to be identified too.

2.1 Direct problem
Since the starting point of the perturbation expansion can be built artfully, a set of independent

linear oscillators can be suitably chosen. Therefore, the reference system S0 is governed by a dia-
gonal stiffness matrix K0 = diag(k01, ..., k0N), and a unitary mass matrix M0 = I is assumed for
sake of simplicity. Systems with non-unitary mass matrix do not require an independent problem
statement, so that the effect of mass differences between the oscillators can be treated a posteriori.

The nearly-resonant close system S is generated by a small symmetric perturbation of the only
stiffness matrix K1 = [ k1,ij]. In view of the problem inversion, it is a priori convenient to include
all the stiffness coefficients in the vector p of the independent perturbation parameters. The mass
matrix is supposed instead to remain unperturbed, since any perturbation of the mass matrix could
be transformed in an equivalent perturbation of the stiffness matrix. The p-dependent eigensolution
of S , expanding and truncating at the first-order approximation, can be expressed as

Λ(p0,p1) = Λ0(p0) + εΛ1(p0,p1), Φ(p0,p1) = Φ0(p0) + εΦ1(p0,p1) (1)

Applying a classical perturbation scheme to the eigenproblem of the system S , that is expanding the
modal equation and collecting the terms of the same ε-power, the following equations are obtained

(K0 − λ0I)φ0 = 0 (2)

(K0 − λ0I)φ1 = −(K1 − λ1I)φ0 (3)

where the zeroth-order Eq.(2) is the modal equation of the unperturbed system S0, and furnishes the
trivial solution Λ0=K0. It simply states that the requested resonance conditions in the unperturbed
system S0 can be forced a priori imposing internal constraints among the diagonal terms of its
stiffness matrix K0. Moreover, it suggests a different physical interpretation of the perturbation
terms k1,ij, since the diagonal coefficients (i=j) can be recognized as mistuning term, whereas the
non-diagonal coefficients (i 6=j) can be recognized as coupling terms.

The solution of the first-order Eq.(3) gives instead the first-order correction of the eigenvalues
Λ1 = diag(λ11, ..., λ1N) and eigenvectors Φ1 = {φ1|...|φN}, as a function of the perturbation
parameters p. Both Λ1 and Φ1 are expected to depend non-linearly on the unperturbed p0 and,
due to the coalescence of the unperturbed eigenvalues, also on the parameter perturbation p1.

The eigensolution of the nearly-resonant system S could be certainly better approximated if the
expansion (1) is extended to higher orders. Moreover, it is expected that a better approximation in the
direct problem could ensure a greater accuracy of the inverse problem solution. On the other hand,
a higher-order solution of the direct problem may reduce the advantageous possibility to achieve
a closed-form solution of the inverse problem, which is generally nonlinear. In practice, the first-
order approximation is usually sufficient to balance these two competing requirements, and iterative
procedures can be suitably employed to rapidly reduce the approximation error.

To understand the behaviour shown by mechanical systems, like that presented in Figure 1 as
a paradigmatic case-study, a 3-dofs nearly-resonant system is investigated in the following. Focus
is made on the particular case of two close frequencies, corresponding to a couple of active modes
interacting to each other, and a third passive mode.
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Resonant system with a double eigenvalue

The direct problem states as follows: given the reference system S0, made of three uncoupled linear
oscillators, two of them being perfectly resonant, determine the first-order approximated eigensolu-
tion of the close nearly-resonant system S , obtained from a generic perturbation.

According to the statement, the solution of the zeroth-order Eq.(2) is requested to have a double
eigenvalue (λ01=λ02 6=λ03), corresponding to a complete set of eigenvectors

φ0,1 = φ0,11i + φ0,12 j, φ0,2 = φ0,21i + φ0,22 j, φ0,3 = φ0,33k (4)

where the unit vectors i={1, 0, 0}>, j={0, 1, 0}>, k={0, 0, 1}> have been introduced.
A generic perturbation is introduced including six independent coefficient of the stiffness matrix

k1,ij in the parameter vector p. Substituting the zeroth-order solution into the first-order Eq.(3), the
left-hand operator is found to be singular. Therefore, solvability conditions have to be imposed,
separately for the double (λ01=λ02) and the single eigenvalue (λ03). Once the first-order correction
of the eigenvalues Λ1 are determined in order to satisfy the solvability conditions, the equation can
be solved in the first-order correction of the eigenvectors Φ1. After reconstruction, re-absorbing the
perturbation parameter ε, the first-order approximation of the eigenvalues reads

λ1,2=k0,11+ 1
2(k1,11+k1,22∓∆12), λ3 =k0,33+k1,33 (5)

whereas the corresponding first-order approximation of the eigenvectors read

φ1,2 =
{

k1,11−k1,22∓∆12

2k1,12
, 1 ,− [ 2k1,23k1,12+k1,13(k1,11−k1,22∓∆12)]

2k1,12(k0,33 − k0,11)

}>

φ3 =
{

k1,13

k0,33 − k0,11
,

k1,23

k0,33 − k0,11
, 1

}>
(6)

where the auxiliary parameter ∆12=
√

(k1,11−k1,22)2 + 4k2
1,12 has been introduced.

A few advances can be pointed out from the direct problem solution towards understanding the
observed behaviour of mechanical systems:

i. The veering phenomenon, due to the splitting of the double eigenvalue, is originated by both
the mistuning and the coupling between the resonant oscillators. They equally affect the vee-
ring amplitude, that is the frequency difference ∆λ=λ2−λ1, which is exactly equal to ∆12.

ii. The modal hybridization phenomenon, due to the interaction between the eigenvectors φ1 and
φ2, depends only on the coupling between the resonant oscillators. In fact, if the coupling
term vanishes (k1,12=0), two possibilities arise: if a non-null mistuning term exists (k1,11 6=
k1,22), the resonance is lost (λ1 6= λ2), but the two oscillators remain uncoupled; otherwise
(k1,11 = k1,22), the initial condition of two resonant and uncoupled oscillators is recovered,
except for the shift of the double eigenvalue.

iii. The frequency veering phenomenon, due to the interaction between the eigenvalues of the two
resonant oscillators, does not depend on the coupling with the third non-resonant oscillator.
If a non-null coupling exists (k1,12 6= 0, or k1,13 6= 0), a small effect interests just the third
component of the resonant eigenvectors. This effect apparently grows as the third eigenvalue
approaches the resonant ones (k0,33'k0,11). Nonetheless, in this case the initial hypotheses,
on which the perturbation scheme is based, are essentially violated, and the achieved solution
is expected to rapidly lose validity.
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2.2 Inverse problem
Assume to experimentally, or pseudo-experimentally, know the eigenvalues Λ∗ = diag (λ∗

1, ...,
λ∗

N) and eigenvectors Φ∗ = {φ∗
1|...|φ

∗
N} of a nearly-resonant system S∗. According to the leading

idea of the present work, the existence of a close, though unknown, resonant system S0 is postulated,
and the experimental system S∗ is assumed to born from a certain unknown perturbation p1 of its
parameters p0. Once determined, S0 can be assumed as initial point for a generic multi-parameter
perturbation analysis, which is expected to well-approximate the eigensolution of each perturbed
system S close to S0, including the experimental system S∗ as particular case.

Determining the unknown resonant system S0, through the assessment of the unperturbed pa-
rameters p0, as well as determining the same unknown parameter perturbation p1, represents an
identification problem, which is governed by the nonlinear equations

Λ0(p0) + Λ1(p0,p1) = Λ∗, Φ0(p0) + Φ1(p0,p1) = Φ∗ (7)

in which the unknowns p0 and p1 are requested to satisfy the coincidence between the approximated
and the experimental eigensolution, as far as the approximation given by the maximum order of the
multi-parameter expansion can be considered acceptable.

The closed-form solution of the equations (7) expresses the unperturbed parameters and their
perturbation as a function of the experimental eigenvalues and eigenvectors

p̄0(Λ∗,Φ∗), p̄1(Λ∗,Φ∗) (8)

where the bar denotes identified values. Therefore, the stiffness matrix K̄0 (known p̄0) of the reso-
nant system S0, as well as its perturbation K̄1 (known p̄0, and p̄1) result completely assessed.

It is worth noting here that the inverse problem may suffer for non-existence and/or non-unique-
ness of the solution. If the existence of the solution is subordinated to solvability conditions to be
satisfied by the data, it means that not all the experimental nearly-resonant systems may be obtained
as perturbation of the resonant ideal system, at least in the class in which it is defined. Differently, if
the solution is non-unique, for instance when part of the parameters remain indeterminate, it means
that the same experimental nearly-resonant system may be obtained indifferently perturbing many
resonant ideal systems. The two conditions may also co-exist.

Resonant system with a double eigenvalue

The inverse problem states as follows: given the experimental system S∗ with two nearly-coincident
eigenvalues, identify (if it exists), a close system S0, made of three uncoupled linear oscillators, two
of them being perfectly resonant, whose first-order approximated eigensolution, due to an unknown
multi-parameter perturbation, exactly matches the experimental one.

Imposing the coincidence between the approximated eigensolution, as obtained from Eq.(5), and
the experimental eigensolution Λ∗ = diag (λ∗

1, λ
∗
2, λ

∗
3) and Φ∗ ={φ∗

1|φ
∗
2|φ

∗
3}, the set of nonlinear

equations governing the identification problem can be expressed in the form

λ1(k0,11, k1,11, k1,12, k1,22)=λ∗
1, φ1(k0,11, k0,33, k1,11, k1,12, k1,22, k1,13, k1,23) = φ∗

1 (9)

λ2(k0,22, k1,11, k1,12, k1,22)=λ∗
2, φ2(k0,22, k0,33, k1,11, k1,12, k1,22, k1,13, k1,23) = φ∗

2 (10)

λ3(k0,33, k1,33)=λ∗
3, φ3(k0,11, k0,33, k1,13, k1,23) = φ∗

3 (11)

in which, once the resonance condition (k0,11=k0,22) is forced, the 8 remaining independent unkno-
wns (2 coefficients of the diagonal matrix K0, and 6 coefficients of the symmetric matrix K1) have to
be determined from 9 independent experimental data (3 eigenvalues and 6 independent eigenvector
coefficients). The solution has to be sought by proper handling different equation subsets.
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The Eqs. (9)a, (10)a, (11)a, concerning the eigenvalues, are tackled first. For convenience, the
nearly coincident eigenvalues λ∗

1 and λ∗
2 are replaced, as equivalent experimental data, by their half-

sum λ∗
hs = 1

2(λ∗
1 + λ∗

2) and half-difference λ∗
hd = 1

2(λ∗
2 − λ∗

1). After simple algebra, these equations
give a partial solution for the independent coefficients of the diagonal matrix K0

k0,11+k0,22=2λ∗
hs−(k1,11+k1,22), k0,22−k0,11=2λ∗

hd+∆12, k0,33=λ∗
3−k1,33 (12)

Recalling that the initial system S0 possesses a double eigenvalue (k0,11=k0,22), Eq.(12a) gives

k0,11 = k0,22 = λ∗
hs − 1

2(k1,11 + k1,22) (13)

whereas Eq.(12b) furnishes a resonance condition involving the only coefficients of the matrix K1

(k1,11−k1,22)2 + 4k2
1,12 = (2λ∗

hd)
2 (14)

In the spirit of the inverse problem, this relation substantially states how the assigned veering ampli-
tude of the experimental eigenvalues 2λ∗

hd can be obtained perturbing the uncoupled resonant system
S0 with a mistuning (k1,11, or k1,22), or a coupling term (k1,12).

Each of the Eqs. (9)b, (10)b, (11)b, concerning the eigenvectors, includes three scalar equations.
Only two of them can be used to solve the inverse problem, since the third is automatically satisfied
once the experimental and the analytical eigenvectors are scaled according to the same normalization
rule. Here unitary-valued second (third) component is the criterion used to normalize the first and
second (third) eigenvector, as in Eqs.(6). The six remaining equations are separated, since three pairs
of coupled equations can be recognized and solved independently from each other:

1. the first scalar equations from the Eqs. (9)b, (10)b give the partial solution

k1,11−k1,22 = 2λ∗
hd

φ∗
21 + φ∗

11

φ∗
21 − φ∗

11

, k1,12 =
2λ∗

hd

φ∗
21 − φ∗

11

, (15)

2. the third scalar equations from the Eqs. (9)b, (10)b give the solution

k1,13 = (k0,33 − k0,11)
φ∗

23 − φ∗
13

φ∗
21 − φ∗

11

, k1,23 = (k0,33 − k0,11)
φ∗

11φ
∗
13 − φ∗

21φ
∗
23

φ∗
21 − φ∗

11

(16)

3. the first and the third scalar equations from the Eqs. (11)b give the solution

k1,13 = (k0,33 − k0,11) φ∗
31, k1,23 = (k0,33 − k0,11) φ∗

32 (17)

It is worth noting, from Eqs.(12), that part of the solution (the coefficient k1,33, together with one of
the coefficients k1,11 and k1,22) remains indeterminate. On the other hand, substituting the solution
(15) into the Eq.(12), after some manipulation, the resonance condition becomes

φ∗
11φ

∗
21=−1 (18)

which has to be satisfied by the experimental eigenvectors. Furthermore, the compatibilityconditions

φ∗
31 (φ∗

21−φ∗
11)=φ∗

13−φ∗
23, φ∗

32 (φ∗
21−φ∗

11)=φ∗
11φ

∗
23−φ∗

13φ
∗
21 (19)

have to be imposed on the experimental eigenvectors to force the coincidence of the different solu-
tions (16) and (17) obtained for the coefficients k1,13 and k1,23.

A complementary remark is that both the resonance (18) and the compatibility conditions (19)
have to be satisfied by the experimental eigenvectors in an approximate manner, as far as they have
been derived by the first-order approximated solution of the direct problem.
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Assuming the resonance and the compatibility conditions satisfied, a simple manipulation of the
Eqs.(15)-(17) leads to the general form of the inverse problem solution. Setting the indeterminate
coefficient k1,33=0 for sake of simplicity, the diagonal terms of the stiffness matrix K̄0 read

k̄0,11=λ∗
hs−k1,22−λ∗

hd

φ∗
11+φ∗

21

φ∗
11−φ∗

21

, k̄0,22=λ∗
hs−k1,22 − λ∗

hd

φ∗
11+φ∗

21

φ∗
11−φ∗

21

, k̄0,33=λ∗
3 (20)

and the terms of the symmetric stiffness matrix perturbation K1 are

k̄1,11=k1,22 − 2λ∗
hd

φ∗
11 + φ∗

21

φ∗
11 − φ∗

21

, k̄1,13=
(

λ∗
3 − λ∗

hs +k1,22−λ∗
hd

φ∗
11+φ∗

21

φ∗
11−φ∗

21

)
φ∗

23 − φ∗
13

φ∗
11 − φ∗

21

(21)

k̄1,21=− 2λ∗
hd

φ∗
11−φ∗

21

, k̄1,23=
(

λ∗
3−λ∗

hs+k1,22−λ∗
hd

φ∗
11+φ∗

21

φ∗
11−φ∗

21

)
φ∗

13φ
∗
21−φ∗

11φ
∗
23

φ∗
11−φ∗

21

(22)

where the second indeterminate coefficient k1,22 remains to be fixed arbitrarily. Among different
possible choices, two relevant assessments can be recognized

k1,22 = ±λ∗
hs

φ∗
11 + φ∗

21

φ∗
11 − φ∗

21

, k1,22 = 0 (23)

corresponding respectively to k̄0,11 ' λ∗
1,2 (the double eigenvalue of the identified resonant system

approximately equal to one or the other experimental eigenvalue of the nearly-resonant system), and
k̄0,11 ' λ∗

hd (the double eigenvalue of the identified resonant system equal to the half-sum of the
experimental eigenvalues of the nearly-resonant system).

The effectiveness and robustness of the identification procedure is illustrated by a numerical
example. A resonant system S∗

0 , governed by the stiffness matrix K∗
0, and affected by the arti-

ficial perturbation K∗
1 (originating a nearly-resonant system S∗), is used to generate the pseudo-

experimental eigenvalues Λ∗ and eigenvectors Φ∗. The inverse problem is solved using the Eqs.(20)-
(22), where the indeterminate coefficients are fixed according to Eq.(23)a (case A) or Eq.(23)b (case
B). Finally, the resonant system S̄0, governed by the stiffness matrix K̄0, as well as the perturbation
K̄1, requested to originate the nearly-resonant system S̄ , which should approximately match the
pseudo-experimental S∗, are identified. The pseudo-experimental data and the identification results
are reported in Tables 1 and 2-3, respectively. The two cases give obviously different solutions in
terms of the resonant system (compare the K̄0-columns in Tables 2-3) and its perturbation (com-
pare the K̄1-columns). Moreover, due to the approximation inherent to the perturbation analysis,
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Figure 3: Eigenvalues loci versus (a) the mistuning parameter k1,11 (fixing k1,12 =−0.0296), (b) the coupling
parameter k1,12 (fixing k1,11 =−0.5999), (c) in the k1,11 -k1,12 parameter space.
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Table 1: Pseudo-experimental nearly resonant system S∗, obtained perturbing the resonant system S∗
0 .

diag(K∗
0) K∗

1 diag(Λ∗
ex) diag(Λ∗

ap) Φ∗
ex Φ∗

ap

1.0000 -0.3000 0.0300 0.0300 0.6982 0.6985 1.0000 0.0491 0.0117 1.0000 0.0499 0.0150

1.0000 . . . 0.3000 0.0300 1.3010 1.3015 -0.0493 1.0000 0.0152 -0.0499 1.0000 0.0150

3.0000 sym . . . 0.3000 3.3008 3.3000 -0.0110 -0.0157 1.0000 -0.0146 -0.0082 1.0000

Table 2: Inverse problem solution (case A): identified resonant system S̄0 and nearly resonant system S̄ .

diag(K̄0) K̄1 diag(Λex) diag(Λap) Φex Φap

1.2995 -0.5999 0.0296 0.0234 0.6980 0.6982 1.0000 0.0487 0.0092 1.0000 0.0493 0.0117

1.2995 . . . - 0.0304 1.3005 1.3010 -0.0489 1.0000 0.0153 -0.0493 1.0000 0.0152

3.3008 sym . . . - 3.3015 3.3008 -0.0084 -0.0157 1.0000 -0.0110 -0.0157 1.0000

Table 3: Inverse problem solution (case B): identified resonant system S̄0 and nearly resonant system S̄ .

diag(K̄0) K̄1 diag(Λex) diag(Λap) Φex Φap

0.9996 -0.2999 0.0296 0.0269 0.6979 0.6982 1.0000 0.0485 0.0106 1.0000 0.0493 0.0117

0.9996 . . . 0.2999 0.0349 1.3004 1.3010 -0.0487 1.0000 0.0176 -0.0493 1.0000 0.0152

3.3008 sym . . . - 3.3017 3.3008 -0.0097 -0.0181 1.0000 -0.0110 -0.0157 1.0000

neither of the two identified resonant systems S̄0 exactly correspond to the unperturbed pseudo-
experimental system S∗

0 . To check the solutions, the respective identified perturbations have been
re-applied, and the perturbed eigensolution exactly (Λex ,Φex) or approximately (Λap,Φap) calcula-
ted. As expected, the exact (approximated) eigensolution approximately (exactly) matches the exact
pseudo-experimental eigensolution (Λ∗

ex,Φ∗
ex) of the perturbed system S∗.

Once identified, the resonant system S̄0 must be considered the initial point of a generic multi-
parameter perturbation, which obviously has to include the experimental nearly-resonant system S∗.
The Figure 3c shows the exact surfaces representing the eigenvalues loci around the resonant system
S̄0 (case A), in the two-dimensional parameter space defined by the mistuning k1,11 and the coupling
parameter k1,12. Making focus on the iso-k̄1,11 (Figure 3a) and the iso-k̄1,12 section (Figure 3b), the
correctness of the inverse problem solution can be appreciated looking at the experimental data
(circles), really lying on the eigenvalue loci, whereas the effectiveness of the perturbation scheme is
confirmed by the good agreement between the eigenvalue exact (continuous lines) and approximated
loci (dashed lines), over a wide parameter range.

3 CONCLUSIONS AND FUTURE DEVELOPMENTS
Perturbation methods are efficient tools to track the eigensolution sensitivity of internally-resonant

Hamiltonian discrete systems. Given an experimental nearly-resonant system, the paper tackles the
key point of identifying a resonant system, a priori unknown (inverse problem), suited to serve as
initial reference system for a multi-parameter perturbation analysis (direct problem). The effective-
ness of the designed procedure is successfully tested on the relevant case of a three dofs systems with
two resonant, interacting modes and a third mode with passive role. The compatibility conditions
for the existence and uniqueness of the inverse problem solution are discussed, and the validity of
the direct problem formulation is confirmed by numerical examples. The ongoing research is regar-
ding the generalization of the procedure for N -dofs systems, with multiple internal resonances and
several passive modes, and therefore, the straightforward extension to naturally continuous systems.
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To formulate such a general procedure, and in particular to avoid any undesired increase in the
dimension of the multi-parameter perturbation-based inverse problem, a simplified approach con-
sisting in neglecting the role of all the passive (non-resonant) degrees of freedom is under current
investigation. Further future developments will consider also that additional experimental data, as
for instance the modal participation factors, may reveal that the mass ratio between the resonant
modes has to assume asymptotic (small or large) values.
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APPENDIX
The direct problem presented in paragraph 2.1 deals with the approximated solution of the eigenpro-
blem (K−λI)φ=0. Such formulation is said to be the standard form of the eigenproblem, since the
governing equation depends on a real symmetric matrix only. The problem statement is consistent
with the hypothesis to assume the initial resonant system made of uncoupled oscillators with unitary
mass (M = I), so that the stiffness matrix K is sufficient to govern the problem. Nonetheless, the
illustrated multi-parameter perturbation technique can be easily generalized to describe the eigen-
solution sensitivity when the oscillators possess different masses, and the resulting eigenproblem is
formulated in the non-standard form (K−λM)ψ =0. In fact, since the corresponding mass matrix
M is real and positive definite, it can be decomposed as M = Q>Q, where Q is a real non-singular
matrix. If the mass matrix is diagonal M = diag(m1, ..., mN), the decomposition is unique, and
Q=diag(

√
m1, ...,

√
mN). Therefore, the non-standard eigenproblem can be reduced to an equiva-

lent standard form (K̂−λI)φ̂=0, where K̂=Q−>KQ−1, and φ̂=Qψ. It is worth noting that the
equivalent eigenproblems yield the same eigenvalues, but different eigenvectors. In conclusion, the
eigensolution based on the perturbation technique can be applied to resonant systems with generic
mass matrix with the steps: (i) decomposition of the mass matrix M = Q>Q and transformation
of the stiffness matrix K̂= Q−>KQ−1, (ii) perturbation-based solution of the equivalent standard
form eigenproblem (K̂−λI)φ̂=0, (iii) linear transformation of the eigenvectors ψ=Q−1φ̂.
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