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SUMMARY. A comparison is presented between some explicit approximated solutions and the cor-
responding numerical results regarding the nonlinear oscillations of a slender masonry column, sub-
jected to periodic excitations with variable amplitudes and frequencies.

1 INTRODUCTION
The analysis of masonry structures subjected to time–dependent loads is a matter of growing

interest for researchers, not only for its technical applications in earthquake engineering but also for
the great difficulties involved in their mathematical modelling. In fact, the dynamic behaviour of ma-
sonry buildings depends on many parameters, such as the mechanical characteristics of constituent
materials and the soil, the construction type and geometry and the kind of acceleration applied to
the structural supports. Moreover, masonry materials typically exhibit different behaviour under
tensile and compressive stresses. A number of nonlinear mechanical models have been proposed
during recent years; these are mainly based on the use of elastic–plastic constitutive equations or ho-
mogenization techniques for masonry [1, 2, 3] or the definition of macro–elements [1, 4] to reduce
computational effort. However, the choice of constitutive models able to realistically simulate the
dynamic and static behaviour of masonry structures is still an open problem.

Experimental tests [2, 3] show that the dynamic behaviour of simple masonry elements, such
as panels or columns, is strongly influenced by their slenderness (i.e. the ratio between length and
height). In fact, for growing slenderness, the influence of shear forces on dynamic equilibrium
tends to decrease and the nonlinearities are essentially due to the opening of cracks. Moreover,
the amount of the energy dissipated during the movement also decreases with slenderness. This
particular behaviour can be modeled reasonably using the constitutive equation of masonry–like
materials [5], by wich masonry is represented as a nonlinear elastic material with zero tensile strength
and infinite compressive strength. This nonlinear elastic equation has been implemented in the finite
element code NOSA and successfully applied to the static analysis of several historical masonry
buildings [5] and the dynamic analysis of masonry pillars and beams [6].

Some approximate explicit solutions to the dynamic problem have recently been proposed [7, 8]
for beam–columns, by using a masonry–like constitutive equation expressed in terms of generalized
stresses and strains [9]. The equation of the motion has been solved using a variational approach
based on the averaged Lagrangian of the system [10, 11].

In the present work a nonlinear dynamic analysis is performed of a rectangular cross – sectional
masonry column, hinged at the supports and subjected to a constant axial load and periodic excita-
tions of variable frequency and amplitude – see Figure 2). The influence of slenderness and damping
on the beam’s response is investigated as well. The numerical results obtained via the code NOSA
[5] are compared with the corresponding explicit solutions [7, 8].
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Figure 1: The constitutive equation for a rectangular section made of masonry–like material with
infinite compressive strength.

2 THE ANALYTICAL METHOD
Let us consider a rectilinear beam made of masonry–like material with zero tensile strength,

infinite compressive strength, Young’s modulus E and density ρ and having a rectangular cross
section of height h and width b. Then, under the classical Euler–Bernoulli hypothesis, the strain is
described by the extensional strain ε and the change in curvature χ of the beam’s axis. Moreover, by
considering solely the longitudinal component of the stresses, the tensional field of the beam can be
described by two generalized forces, the axial force N and the bending moment B. We now consider
the beam to be loaded by a constant axial force N ; under such hypotheses, the dependence of the
bending moment on the curvature is given by the constitutive equation [7, 9]

f(χ) = c2χ, |χ| ≤ αel, (1)

f(χ) = c2αel Sign(χ) (3− 2
√

αel

|χ| ) |χ| > αel, (2)

with

f(χ) =
B

ρbh
, αel = − 2N

Ebh2
, c =

√
EJ

ρbh
, (3)

where αel represents the curvature corresponding to the elastic limit and EJ is the bending stiffness.
Equations (1) – (3) are represented in Figure 1), where, denoted by Σ the set of all generalized
admissible stresses for the section defined by |B| ≤ − 1

2Nh, Σ1 is the subset of Σ with |B| ≤
− 1

6Nh, in which the section is not cracked and Σ2 ∪ Σ3 is the complement of Σ1 (relative to Σ).
Let v(x, t) be the transverse displacement at time t of the point having abscissa x along the

beam’s axis (Figure 2). We assume that v and its derivative vx with respect to x are small, so that
the curvature is given by

χ + vxx = 0. (4)
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Let p(x, t) be the transverse load per unit length acting along the beam and C the viscous damp-
ing coefficient. Thus, the motion equation is

v̈ − fxx +
Cv̇ − p

ρbh
= 0, (5)

where the dot represents the derivative with respect to time. The Lagrangian L associated to the
system can be expressed by

L =
[
1
2

v̇2 − f ′χxvx + χf − F

]
ρbh + p v, (6)

where F (χ) is a primitive function of f(χ) with F (0) = 0 [7, 10].
With the aim of finding some approximate solutions to (5), we can describe the beam’s behaviour

by means of some parameters, whose variation in space and time can be considered ”slow”. Let us
limit the problem to studying excitations in the primary resonance of the first mode (i.e. excitation
frequency near the beam’s fundamental elastic one), which take the form

p(x, t) = k sin [2π(νe + λ)t] , (7)

where νe represents the fundamental elastic frequency of the beam, λ is a variable parameter ex-
pressing the nearness of the exciting frequency to the fundamental elastic one and k is the excitation
amplitude. Provided that no internal resonance phenomena are allowed, the solution can be ex-
pressed through the simple unimodal expression

v(x, t) = A(t)φ(x) sin [2π(νe + λ)t + β(t)] , (8)

where φ(x) is the first elastic vibration mode of the beam and amplitude A and phase displace-
ment β are the slowly varying parameters of the system, describing the nonlinear response of the
beam. Most classical perturbation methods, such as the multiple–scale one, use series developments
and periodicity conditions to solve the problem. The following approach, instead, is based on an
averaging technique leading to the equations [10, 11, 12]

(
∂L̄
∂Ȧ

).

− ∂L̄
∂A

= Q̄A, (9)
(

∂L̄
∂β̇

).

− ∂L̄
∂β

= Q̄β , (10)

with

L̄ =
∫ Te

0

∫ L

0

L dx dt, Q̄A =
∫ Te

0

∫ L

0

−Cv̇
∂v

∂A
dx dt, Q̄β =

∫ Te

0

∫ L

0

−Cv̇
∂v

∂β
dx dt, (11)

where Te is the beam’s fundamental elastic period, L is given in (6), v in (8) and the integrals on the
elastic period are performed by taking the parameters A and β to be constant. Q̄A and Q̄β in (9) and
(10) are small with respect to the conservative terms and are calculated by using the hypothesis of
modal damping.

Equations (9), (10) become a system of two nonlinear differential equations in the variables A
and β, having the form

C1
dΘ
dA

+ Aβ̇ + C2k cos(λt− β) = 0, (12)

Ȧ + C3ζA− C4k sin(λt− β) = 0, (13)
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where ζ is the modal damping coefficient, Θ is a function of A, L and αel, and C1, C2, C3, C4

are constant coefficients. Since A and β are slowly oscillating functions, the system (12) – (13)
can be easily solved numerically. If interested only in the stationary part of the motion, we can put
Ȧ = 0 and β̇ = 0 and transform (12) – (13) into a system of transcendent equations. Moreover, by
putting k = 0, from (12) we can obtain the function β̇(A) that describes the variation of the beam’s
fundamental frequency with the amplitude A of the motion. All results depend on the dimensionless
parameter α = αel ·L, which comprises all the data regarding the beam’s geometry and the axial
force acting.

Further details can be found in [7, 8], while [10, 11] present a theoretical justification of the
method.

3 THE NUMERICAL METHOD
This section briefly recalls the constitutive equation of masonry–like materials and a numerical

procedure for dynamic analysis of masonry constructions. Greater details can be found in [5] and
[6].

Masonry is assumed to be a nonlinear elastic material characterized by Young’s modulus E > 0,
Poisson ratio ν with 0 ≤ ν < 1

2 , infinite compressive strength and zero tensile strength. We denote
by Sym the vector space of symmetric tensors with inner product A ·B = tr(AB), where A,B ∈
Sym and tr is the trace. The subsets of Sym constituted by the negative and positive semidefinite
tensors are called Sym− and Sym+, respectively. We assume that the infinitesimal strain E ∈ Sym
is the sum of an elastic part Ee ∈ Sym and an orthogonal inelastic part Ef ∈ Sym+, called fracture
strain

E = Ee + Ef , (14)

and that the Cauchy stress T depends linearly and isotropically on Ee,

T =
E

1 + ν
[Ee +

ν

1− 2ν
tr(Ee)I], (15)

with I the identity tensor. Lastly, we assume that T and Ef satisfy the conditions

T ∈ Sym−, (16)
Ef ·T = 0. (17)

The constitutive equation (14)–(17) has been implemented in the finite – element code NOSA to
model the structural behaviour of masonry structures [5, 6].

In [6] a numerical procedure is proposed for solving the dynamic problem of masonry structures
via the finite-element method. The equation of motion is integrated directly. More precisely, time
integration is performed of the system of ordinary differential equations obtained by dividing the
structure into finite elements. In particular, at each time step a system of the type

K[u(t)]∆u + C∆u̇ + M∆ü = ∆f, (18)

is solved via the Newmark method. In (18), u(t) is the vector of nodal displacements at time t, ∆f
is the load increment and ∆u, ∆u̇ and ∆ü are respectively the incremental nodal displacements,
velocities and accelerations. K, C and M are the stiffness, damping and mass matrices of the
structure, respectively. In conformity with Rayleigh’s assumption, we have C = γM +δK, where γ
and δ are constants to be determined from the linear elastic vibration frequencies of the structure and
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Fixed parameters:

L = 6 m; b = 1 m;
ρ = 1800 kg/m3; E = 3 · 109 Pa;
N = 100 KN.

For ζ = 0.02 and λ = 0:

h [m] k [N/m]
0.30 100 200 300 400 600 800
0.40 100 200 300 400 600 800
0.50 100 200 300 400 600 800

For ζ = 0.05 and λ = 0:

h [m] k [N/m]
0.40 100 200 300 400 600 800

For ζ = 0.02 and k = 400 N/m:

h [m] λ [Hz]
0.40 -1.5 -1.25 -1 -0.75 -0.5 0 0.25 0.5

Figure 2: Geometry of the beam and data used for numerical tests.

the corresponding damping ratios. The Newton-Raphson scheme is applied to solve the nonlinear
algebraic system obtained at each time step, and the tangent stiffness matrix is calculated by using
the explicit expression of the derivative of the stress with respect to the strain.

4 COMPARING ANALYTICAL AND NUMERICAL RESULTS
The numerical tests have been performed using the scheme shown in Figure 2). Three values

were chosen for slenderness, with the corresponding section height h equal to 0.30 m, 0.40 m and
0.50 m; two values of damping ratio ζ were considered, 2% and 5%. The beam is subjected to
a sinusoidal load of variable amplitude k and frequency (νe + λ); for the three slenderness val-
ues chosen, the numerical values of the linear fundamental frequency are νe(0.3 m) = 4.9 Hz,
νe(0.4 m) = 6.5 Hz and νe(0.5 m) = 8.1 Hz. For all tests, null initial displacements and velocities
have been imposed to the beam. With the aim of optimizing the comparisons between the analytical
and numerical results, different kinds of elements were tested, while varying the number of elements
as well. Lastly, the eight–node isoparametric thin shell element described in [5] was chosen, and the
beam divided into 120 finite–elements.

Figures 3) and 4) show the displacements of the mid–point of the beam for h = 0.40 m,
k = 400 N/m and different values of the damping ratio ζ. In both cases, the analytical and nu-
merical results are quite consistent. Note that after a brief transient the oscillations tend toward a
stationary behaviour. Figures 5), 6) instead show the stress σx at the extrados of the mid–section
vs. t for h = 0.40 m, k = 400 N/m and different values of the damping ratio ζ. Figures 7) and 8)
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Figure 3: Displacements of the mid–section of the beam vs. time t for ζ = 0.02, k = 400 N/m,
h = 0.4 m.
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Figure 4: Displacements of the mid–section of the beam vs. time t for ζ = 0.05, k = 400 N/m,
h = 0.4 m.
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Figure 5: Stress σx at the extrados of the mid–section of the beam vs. time t for ζ = 0.02, k =
400 N/m, h = 0.4 m.
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Figure 6: Stress σx at the extrados of the mid–section of the beam vs. time t for ζ = 0.05, k =
400 N/m, h = 0.4 m.
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Figure 7: Maximum stationary displacement of the beam vs. k for λ = 0 and different values of h.
nonlinear, numeric nonlinear, analytic linear elastic.

show the stationary amplitude A vs. k for different values of h and ζ. The nonlinear values are quite
different from the corresponding linear ones and all curves tend to exhibit very marked softening
behaviour. It is worth noting that the curves related to different damping values in Figure 8) tend to
become coincident for large values of k. The numerical values are a bit lower than the correspond-
ing analytical ones: numerical tests tend to exhibit a more softening behaviour. Figure 9) shows the
phase displacements β vs. k; numerical values are obtained by using the Fast Fourier transform. The
analytical solution shows two branches; however, for all numerical solutions, phase displacements
are on the lower branch. The horizontal line for β = π

2 represents the linear elastic solution. Lastly,
Figure 10) shows a comparison among the linear elastic frequency response function (dashed curve),
the corresponding analytical nonlinear function (continuous curve) and the results of the numerical
tests with variable frequency excitations (red curve). The differences between the linear and nonlin-
ear responses are considerable, particularly in the range centred on the linear fundamental frequency.
The nonlinear analytical curve presents the typical shift towards low frequencies characteristic of all
systems exhibiting softening behaviour. Moreover, for excitation of given frequency and amplitude,
the curve presents more than one solution, depending on the initial conditions. In our tests, for the
chosen initial conditions, the numerical solution presents a jump to about 5.6 Hz, between the upper
to the lower branch of the analytical curve.

5 CONCLUSIONS
We have presented explicit and numerical solutions to the dynamic problem of a masonry–like

column, subjected to a constant axial force and a sinusoidal transverse excitation. We have inves-
tigated the dependence of the solution on various parameters such as the slenderness and damping
ratio of the structure, and the amplitude and frequency of the excitation. The analytical and numeri-
cal results have proved to be consistently in good agreement. The numerical methods enable solving
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Figure 8: Maximum stationary displacement of the beam vs. k for λ = 0, h = 0.4 m and different
values of ζ. nonlinear, numeric nonlinear, analytic linear elastic.

100 200 300 400 500 600 700 800
k @N�mD

-
Π
�����
2

-Π

Β

h = 0.3 m h = 0.5 m

Figure 9: Stationary values of β vs. k for λ = 0, ζ = 0.02 and different values of h.
nonlinear, numeric nonlinear, analytic linear elastic.
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Figure 10: Maximum stationary displacement of the beam vs. the excitation frequency ν for ζ =
0.02 and k = 400 N/m, h = 0.4 m.

problems for very general conditions of geometry and loading. However, the analytical solutions,
albeit limited to some particular cases, provide synthetical descriptions of nonlinear phenomena and
contribute to better understanding the overall behaviour of masonry structures.
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