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SUMMARY. Micro-polar and second order homogenization procedures for periodic elastic 
masonry are implemented to include geometric and material length scales in the constitutive 
equation. By the solution of the RVE equilibrium problems with properly prescribed boundary 
conditions the orthotropic elastic moduli of the higher order continua are obtained on the basis of 
an enhanced Hill–Mandel condition. A shear layer problem is analysed and the results from the 
heterogeneous models are compared with those ones obtained by the homogenization procedures; 
the second-order homogenization appears to provide better results in comparison to the micro-
polar homogenization. 
 

1 INTRODUCTION 
Classical homogenization methods have been proposed and applied to derive average 

properties of periodic masonry based on the properties of the constituents (brick/blocks, mortar) 
and their arrangements (see Mistler et al [1]).  In their standard form, however, these methods fail 
to include the scale of the heterogeneous masonry material in the resulting constitutive equations.  
To appreciate the influence on the overall response of the size of masonry units and of high stress 
and strain gradients and to prevent pathological localizations arising from the assumption of strain-
softening constitutive equations for the masonry components higher order or multi-field equivalent 
continua appear to be necessary.   

Overall constitutive equations of a two-dimensional micropolar continuum for periodic 
masonry have been obtained in [2-4] through a homogenization procedure based on an idealization 
of the masonry as an assemblage of rigid blocks represented as a Lagrangian systems composed of  
bodies interacting through linear elastic interfaces.  Although these approaches provide overall 
elastic moduli that depend in closed form on the mechanical and geometric characteristics of the 
components, the rigid blocks assumption seems rather restrictive in many cases when the brick 
compliance is comparable to the mortar one’s.  To include this effect a micro-polar computational 
homogenization of a representative unit cell (RVE) extracted from the periodic masonry made up 
of elastic brick units and mortar joints has been proposed in [5], where the rotational dof of the 
micropolar homogenised continuum has been identified through a heuristic evaluation of the mean 
local rotation of the brick units.  

Higher-order gradient theories for periodic, linear elastic media have been developed using an 
asymptotic solution of the microstructural problem in [6-8]. A computational procedures has been 
developed in [9]; the application to matrix-inclusion composite showed that higher-order terms 
become more important as the stiffness contrast between inclusion and matrix increases.   As 
observed in [9], the drawback of this approach, that provides a mathematically rigorous tool of 
higher-order modelling, is the computational burden. 



Different homogenization approaches for higher-order continua have been derived by 
attributing some specific polynomial displacement fields to the unit cell to be added to an 
unknown displacement fluctuation field that makes the unit cell in equilibrium with proper 
boundary conditions.  A couple-stress homogenization technique of periodic heterogeneous 
materials has been developed in [10,11], where the effects of boundary conditions on the 
representative volume element are analyzed and discussed.  The Cosserat homogenization 
technique proposed in [12] has been extended to periodic masonry in [13] in order to analyse 
different masonry patterns that cannot be considered by the previous approaches.  Here, the 
influence of the elastic mismatch between the components on the characteristic lengths of the 
equivalent orthotropic elastic continuum has been analyzed and validity limits of the 
homogenization procedure have been discussed.   

Second order homogenization of periodic masonry seems to be an appealing alternative to the 
Cosserat homogenization. In fact, second order models do not involve independent rotational 
degrees of freedom, so reducing the complexity of the computational homogenization, and  
provide extensional characteristic lengths of the equivalent continuum.  In the present paper, a 
second-order homogenization of periodic masonry is considered, in order to couple a classical 
continuum at the scale of the RVE with a second order continuum at the macroscale.  According to 
[14] and [15] the macroscopic displacement gradient tensor and its gradient are used to prescribe 
the essential boundary conditions on the micro-displacement field in the RVE, here extended as 
generalized periodic boundary conditions. By the solution of the equilibrium problem of the RVE, 
the micro-displacement and micro-strain fields are evaluated and the orthotropic elastic moduli of 
the second order continuum are obtained on the basis of an enhanced Hill–Mandel condition.  

An evaluation of the micro-polar and second-order homogenization techniques is carried out 
by a sensitivity analysis of the characteristic lengths of the non-local continua to the elastic 
compliances of the components.  Moreover, a shear layer problem concerning a masonry wall is 
analysed and the numerical results from the heterogeneous models are compared with those ones 
obtained by homogenization procedures.  

2 NON-LOCAL HOMOGENIZATION OF PERIODIC MASONRY 
A brief outline of the homogenization procedures developed for periodic masonry is here 

presented with reference to the representative volume element shown in Fig. 1 extracted by a 
masonry wall.  The bond pattern is characterized by vectors of periodicity v1, v2 and the brick units 
and the mortar joints are assumed linear elastic, so implying orthotropic constitutive equations for 
the homogenized continua.  Let be the position of the center of RVE identified by vector y and the 
relative position with respect to this point of a point in RVE identified by vector x. The 
displacement field ( )u x  in the heterogeneous RVE located at the reference origin (y=0) is 

assumed as the sum of two contributions ( ) ( ) ( )*= +u x u x u x , being ( )*u x  the truncated 
Taylor’s series expansion  

 

                                          ( ) 1 1

2 6i j ij j ijh j h ijhk j h k

*u x x x x x x x= α + β + γ                                          (1) 

 
and ( )u x  the microstructural displacement fluctuation field. Moreover, the displacement field 

( )u x  is assumed periodic on the boundary C of the RVE, i.e. ( ) ( )b i b+ =u x v u x  (i=1,2) at 

points b C∈x . As a consequence, the periodic boundary constraints on C to be applied on the 



displacement field ( )u x  take the form ( ) ( ) ( ) ( )* *

b i b b i b+ − = + −u x v u x u x v u x , being the 

r.h.s. terms depending on the parameters ijα , ijhβ , ijhkγ . 
The macro strain and the macro rotation in the RVE are, respectively, 
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The first order homogenization procedure is obtained by assuming 0ijh ijhkβ = γ =  and based on the 
Hill-Mandel macro-homogeneity condition. The standard constitutive equations of elastic plane 
orthotropy involve four independent elastic moduli of orthotropy ( ijσ  components of the mean 
stress tensor) 
 
                                        ( ) 12 1212 121 2          2    .ii iihh hh i ,h ,C , C=σ = ε σ = ε  (3) 
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Fig. 1. RVE, vectors of periodicity, displacement at the boundary. 

 
In case of Cosserat homogenization, according to the approach proposed in [7] and extended in 

[8] to periodic masonry, the macro-rotation and the relative macro-rotation in the RVE are, 
respectively,  
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u x u x daφ = δ − θ = φ − ω∫                              (4) 

 
and depend on the displacement field in the RVE.  The components of the curvature tensor are 
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Both the macro-rotation φ  and the curvatures 1k  and 2k  are depending on some non-vanishing 

terms ijhβ , ijhkγ . By an extension of the Hill-Mandel condition the elastic orthotropic constitutive 
equations involving eight independent elastic moduli for the centro-symmetric material are 
obtained 
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being 12 12η = ε − θ , 21 21η = ε + θ , ijτ  the stress tensor component, with symmetric part ( )ij ijτ = σ , 

and im  component of the couple-stress tensor, respectively. 
In second order homogenization the in-plane component of the macro-strain tensor and the 

macro-rotation tensor are defined in equation (2) and a higher order strain tensor ijhχ  is considered, 

with symmetric ( )ij hχ  and antisymmetric [ ]21 iχ parts, depending on the displacement field on the 
boundary of the RVE in the form 
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In this case the homogenization is obtained by imposing displacement  conditions on the 

boundary C of the RVE according  to the Taylor’s expansion in (1) truncated to the second order 
( )0ijhkγ = ; the periodic boundary condition on the displacement field in the RVE have to be 
generalized according to [9] by imposing the mean of the microstructural displacement fluctuation 
field on each side of the RVE to be vanishing 

 
                              ( )  0   ,    1 2   ,i i ij j ijh j h

r rC C
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being C1 and C2 the vertical and horizontal part of the RVE boundary, respectively, as shown in 
Fig. 1.  By imposing the Hill-Mandel condition the orthotropic constitutive equations are obtained, 
combining the first order equations (3) and two uncoupled groups of equations, each having the 
form 
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components of the second order strain tensor, respectively, and ( ) [ ]{ }222 12 1 1 21 1

T
m= µ µ = µ

1
µ  

and ( ) [ ]{ }111 12 2 2 21 2

T
m= µ µ = µ

2
µ  collect the corresponding components of the second order 

stress tensor. Moreover, the stress tensor  
 



                                                         ( ) [ ], ,τ σ µ µij ij ij h h ij h h= − −                                                          (10) 

 
depends on the symmetric stress tensor and on the second order stress tensor. As a consequence 
sixteen independent elastic moduli are defined: the four moduli of first order (Cauchy) model and 
the moduli i

hkS  in (9). 
For the special case of couple-stresses continuum model or Koiter model, a reduced number of 

elastic moduli is involved collecting the first order Cauchy moduli (3) and the constitutive 
equations 33  i

i i i im Y k S k= =  (i=1,2) related to the components of the curvature tensor and of the 
couple-stress tensor; here, six independent moduli have to be identified for the RVE. 

3 NUMERICAL APPLICATION AND COMPARISONS 
In order to evaluate the homogenization procedures summarized in the previous section, a periodic 
masonry made of plain bricks arranged in a running bond pattern has been analysed with reference 
to the RVE shown in Fig. 1. The brick dimensions are 25cm x 14cm with a thickness of 1cm; the 
mortar thickness is 1cm (d=26cm, 14 26δ = ). Bricks and mortar are assumed to be isotropic; 
for the mortar the Young Modulus Em = 500MPa is assumed and the Poisson ratio is assumed 

0.1m b= =ν ν  for both the constituents. The elastic moduli of the homogeneous equivalent 
continuum have been evaluated for increasing values of the Young modulus of the bricks (Eb=10-
103Em) in order to appreciate the effect of mismatch in the elastic moduli of the constituents. The 
elastic moduli obtained by the standard first-order (Cauchy) homogenization are given in Table 1, 
while the moduli of the equivalent Cosserat continuum in (6) are given in Table 2. Finally, the 
elastic moduli 1

hkS  and 2
hkS  introduced in (9) for the second order continuum are given in Table 

3. 
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Fig. 2. BSL model (a); vertical brick layers VBL (b); horizontal brick layers HBL (c). 

 
To evaluate the capability of the different homogenization procedure, the macroscopic 

boundary shear layer problem (BSL) is analysed numerically with reference to the vertical column 
shown in Fig. 2.a. Two cases are considered corresponding to different orientations of the RVE: in 



the former case the brick layers are vertical (Fig. 2.b), while the latter case refers to horizontal 
brick layers (Fig.2.c). In both cases the height L of the column is n=10 times the corresponding 
size of the RVE (Lb=260cm, Lc=140cm). The bottom edge is fixed, while a horizontal 
displacement 100L∆ =  is prescribed on the top edge; the rotations at the bottom and the top 

edges are restrained (homogeneous Cosserat model 0φ = ; second order models 0
12

ω = ). 
In Fig. 3 the diagrams of the macro-rotation and the horizontal displacement along the BSL 

model evaluated by assuming a homogeneous Cosserat continuum are compared with the 
corresponding generalized displacements of portions of the heterogeneous model located at each 
RVE (the macro-rotation is evaluated by equation (4.1)). In the case of VBL model a good 
agreement is obtained in the results, while in case of horizontal brick layers (HBL) the Cosserat 
model does not appear to provide acceptable results. In fact, the results by the FEM analysis of the 
heterogeneous model show that in case of HBL the width of the boundary layer is negligible in 
comparison to the case VBL. Better results are obtained if the second order homogenization is 
applied, as shown by the diagrams in Fig. 4. 

 
Eb 1111C (Mpa) 2222C (Mpa) 1122C (Mpa) 1212C (Mpa) 

10Em 3.466E+03 2.154E+03 1.990E+02 9.080E+02 

102 Em 1.213E+04 3.271E+03 1.907E+02 1.369E+03 

103 Em 1.645E+04 3.453E+03 1.369E+02 1.467E+03 

Table 1. Elastic moduli: first order (Cauchy) homogenization. 
 

Eb 1212C (Mpa) 2121C (Mpa) 1221C (Mpa) 1Y (N) 2Y (N) 

10Em 7.143E+03 4.461E+03 -3.876E+03 5.816E+06 1.180E+07 

102 Em 2.674E+04 1.385E+04 -1.662E+04 2.429E+07 2.813E+07 

103 Em 1.941E+05 9.719E+04 -1.346E+05 1.002E+08 1.491E+08 

Table 2. Elastic moduli: Cosserat homogenization. (Equation (6)). 

Eb 
1

11S (N) 1

22S (N) 1

33 1S Y= (N) 1

12S (N) 1

13S (N) 1

23S (N) 

10Em 4.120E+05 2.670E+07 6.360E+06 -2.895E+06 5.313E+04 -6.727E+06

102 Em 8.803E+05 1.127E+08 4.714E+07 -7.789E+06 1.717E+06 -5.898E+07

103 Em 1.325E+06 4.252E+08 2.914E+08 -1.427E+07 5.129E+06 -3.268E+08

 
2

11S (N) 2

22S (N) 2

33 2S Y= (N) 2

12S (N) 2

13S (N) 2

23S (N) 

10Em 9.082E+06 1.505E+07 1.271E+07 -4.650E+06 6.164E+05 1.236E+07 

102 Em 1.810E+07 3.886E+07 3.310E+07 -1.021E+07 2.821E+05 3.294E+07 

103 Em 2.025E+07 1.855E+08 1.787E+08 -1.167E+07 7.399E+04 1.787E+08 

Table 3. Elastic moduli: second order homogenization (Equation (9)). 
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Fig. 3. BSL model: macro rotation and horizontal displacement at the RVEs from the 

heterogeneous model (diamonds) compared with the macro-rotation field in the homogeneous 
Cosserat model (continuous line).  

This circumstance can be synthetically explained if the characteristic lengths of the 
homogeneous models are considered. Here, the shearing characteristic lengths of the Cosserat 
continuum ( C C

1 2λ , λ ), Couple-stresses continuum ( CS CS

1 2λ , λ ) and second-order continuum 

( 2 2

1 2λ ,  λnd nd

Sh Sh− −
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while the extensional characteristic lengths of the second-order continuum are 
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1111 2222
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According to equations (11-12) the characteristic lengths for the considered RVE are given in 
Table 4. 
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    Fig. 4. BSL model: macro-rotation and horizontal displacement at the RVEs from 

heterogeneous model (diamonds) compared with the macro-rotation field in the homogeneous 
second order models. 

 

 Shear Extension 

Eb 1λ
C  2λ

C

1λ
CS

2λ
CS 2

1λ
nd 2

2λ
nd 2

1λ
nd  2

2λ
nd  

10Em 40 68 41 63 104 41 51 14 

102 Em 63 84 71 93 124 47 39 16 

103 Em 120 182 128 216 147 48 35 20 

Table 4. Characteristic lengths (mm)  (C=Cosserat, CS=Couple-stresses). 



The values of the mean tangential traction t1 acting on horizontal planes of the BSL-VBL 
model (independent on 2x̂ ) evaluated from the different models considered in the present analysis 

are given in Table 5. Finally, the diagrams in Figure 5 show the ratio of the symmetric part ( )12τ  

and the antisymmetric part [ ]12τ  of the shear stress and the corresponding value 1

12

stτ  from the first-
order (Cauchy) model. 

 
 

1

FEMt 1

1

stt  1

Ct  1

CSt  2

1

ndt  
n 

(Mpa) (Mpa) (Mpa) (Mpa) (Mpa) 

6 17.0 14.7 17.3 17.6 18.1 

10 16.3 14.7 16.1 16.3 16.5 

Table 5. Tangential traction at the top edge  (1st=Cauchy , C=Cosserat, CS=Couple-stresses). 
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Fig. 5. BSL model: symmetric part (a) and antisymmetric part (b) of the shear stress 12τ . 

4 CONCLUSIONS 
The in-plane response of elastic periodic masonry has been analyzed with reference to both 

micro-polar and second-order homogenization techniques. A standard running bond masonry has 
been considered and the elastic orthotropic moduli have been evaluated according to Cosserat, 
Couple-stresses and second-order homogenization.  A boundary shear layer problem 
representative of a masonry wall has been analysed to compare the results from the heterogeneous 
finite element model with the corresponding ones provided by the homogenized continua.  The 
results of the finite element analysis of the heterogeneous model show boundary layer effects 
when assuming the vertical orientation of the brick layers in the wall. These effects appear to be 
markedly reduced when the horizontal orientation of the brick layers is considered. The 
comparison of the results by the homogenised models here considered shows the second-order 
homogenization technique to be more suitable to describe the sensitivity of the boundary layer 
effects on the brick layers orientation. 
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