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SUMMARY The spreading of advanced constituive models, needed to model complex phenomena,
makes necessary to solve difficult parameter identification problems. The need of multiple tests to
fully characterize the experimental behaviour makes the parameter identification problem a multi
objective one. Unlike conventional techniques, based on the formulation of an aggregate scalar ob-
jective function, in the present work the problem is addressed using a new multi objective algorithm
obtained extending the continuous Ant Colony Optimization algorithm. Mathematical tests and ap-
plication to a real world problem are performed and different performance measures are used to
asses the performance of the approach.

1 INTRODUCTION
In many fields of engineering the use of advanced materials and the necessity to better understand

and model complex phenomena makes necessary the adoption of advanced constitutive models.
These models are generally characterized by complex analytical formulations and many control
parameters that not always had a clear counterpart on the observed experimental behavior. For this
reason, control parameters could be directly evaluated from simple experimental results only for
few cases. To overcome this difficulties ad hoc procedures are required for the correct parameters
identification.

In general the parameter identification problem can be treated as an inverse problem [1] and
formulated as an optimization problem. For an assigned system the experimental response is given,
and making use of the assigned model, the control parameters are searched minimizing an assigned
measure of the distance between the numerical response and the experimental one.

For simple constituive models it is possible to set up experimental tests where some parameters
has null effect, considering a sequence of uncorrelated single-objective problems, minDi(k). When
this is not possible the identification problems is a true multi objective problem but usually is solved
by combining the multiple objectives into one scalar objective. A common approach is the con-
struction of an aggregate function that combines all of the objective functions, usually a weighted
linear sum of the objectives [2], min(F (D1(k), D2(k), ...Dnexp(k))), other approach consider the
minimization of only one objective while constraining the remaining objectives to be less than given
target values [3]. These simplified approaches have many drawbacks:

a) the choice of the weights or the choice of the principal objective strongly influences the solu-
tion found

b) only a solution is found and no information is provided on the multi-modality and epistasis
The parameter identification problem could be stated as a multi-objective problem where it is

unlikely that the different objectives, different experimental and numerical response, would be op-
timized by the same control parameter choices. For this reason some trade-off between different
objectives is needed.

In this work the identification problem is approached by a Pareto-compliant ranking method,
where no a priori information on the problem is needed and the concept of non-dominated solutions
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is used. Non dominated solutions are those for which improvement in one objective can only occur
with the worsening of at least one other objective when compared with other solutions. Thus, the
multi-objective problem has not a unique solution, but a set of solutions.

In the field of bio-inspired computational optimization, different classes of methods have been
used to deal with this kind of problems like MOEAs NSGA-II and SPEA2. Ant Colony Optimiza-
tion, ACO, was initially developed for combinatorial optimization [4], and has been recently adapted
to continuous optimization [5]. Ant Colony Optimization is inspired by the ants foraging behavior
and requires that the problem is partitioned into a finite set of components, these being intermediate
targets before reaching the ultimate goal. In Ant Colony Optimization for continuous optimization,
ACOR, the partition of the problem into finite set is given by the intrinsic search space decomposi-
tion into different dimensions.

In the present work an ACOR extension [6] proposed by the authors to treat multi-objective
problems is applied to a real parameter identification problem. The paper is organized as follows:
after presenting the basic of the ACOR, the proposed multi-objective extension to ACOR algorithm
is illustrated and the identification problem is stated. Then, the results for standard benchmark
problems and for real case of experimental data available in literature [7] are discussed.

2 PARAMETER IDENTIFICATION PROBLEM DEFINITION
Let us consider nexp experiments and let s̄i the experimental measurements obtained

s̄i ∈ Rndat; i = 1, 2, ..., nexp; (1)

Let x the npar-dimensional vector of the unknown control parameters and si(x) the numerical
results computed for the experiment i using the assigned model:

si(x) ∈ Rndat; i = 1, 2, ..., nexp; (2)

Let us define a measure of the distance between the experimental and numerical response for the
i-experiment:

Di(x) = Di(̄si, si(x)) (3)

The inverse problem can be assumed coincident with the following multi-objective optimization
problem:

min
k∈Rnpar

(D1(k), D2(x), ..., Dnexp(x)) (4)

As a matter of fact the parameter identification inverse problem, in terms of experimental mea-
surement, lacks, in general, of two of the three criteria for being well- posed: there is not a unique
solution, and furthermore the solution does not depend continuously on the data. Hence is usually an
ill-posed problems in Hadamard sense [8] and exhibits the usual difficulties like nonlinearity, multi-
modality, epistasis, high sensitivity of the solution to noise in the measured data and, moreover, the
modelization error has to be taken into account.

3 MULTI OBJECTIVE ANT COLONY OPTIMIZATION FOR CONTINOUS DOMAINS
The Ant Colony Optimization has been proposed by Dorigo M. and Di Caro G. [4]. It was first

proposed for combinatorial optimization problems. Since its emergence many attempts have been
made to use it for tackling continuous problems. More recently, Socha K. and Dorigo M. [5], have
proposed the natural extension of the ACO algorithm to continuous domains, ACOR. The idea that
is central to the way ACOR works is the incremental construction of solutions based on the biased
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(by pheromone) probabilistic choice of solution components. At each construction step, the ant
chooses a Probability Density Function. In what follows a brief description of the ACOR algorithm
is reported. Further details could be found in [5].

Let us defines a general optimization problem:

min
x∈Rnpar

(f(x)); f : Rnpar− > R (5)

where x is the vector of the assumed design variables. ACOR uses an archive T, of assigned size
k, in which the solutions, vectors x, are stored. These solutions are ordered according to the fitness
value, i.e. best solutions first. The search space is explored using a repeating cycle of actions that is
summarised in Box 1 below. For each cycle an ant is stocastically selected from the archive and a
new ant is constructed by performing npar construction steps. At construction step i, the ant chooses
a value for the variable xi using only the information related to the i-th dimension. The probability
pl of choosing the lth ant is given by:

pl =
ωl∑k

r=1 ωr

; ωl =
1

qk
√

2π
e

(l−1)2

2q2k2 (6)

where ωl represents the weight associated to the solution l.

Box 1 - ACOR pseudo-code

while termination not met
for i = 1 to m

choose lth ant
generate new ant through gi

insert ant in archive
end i
choose best k ants

end

After the choice of the lth solution a new ant xnew is generated, modifyng every parameter xi
new

by a gaussian function gi characterized by standard deviation σi and mean µi for i-parameter:

σi = ξ

k∑
e=1

|xe
i − xl

i|
k − 1

; µi = xl
i (7)

This process is repeated m-times and the new solutions are inserted into the archive, at the end
of the cycle only the better k solutions are kept and the worst m are discarded. The cycle is repeated
until the termination solution is met. ξ, q and k are parameters of the algorithm, further details on
the effect of this parameters are reported in [5].

To extend ACOR algorithm to multi-objective problems [6] the scalar concept of optimality is
replaced by the notion of Pareto optimality. A solution is said to be Pareto optimal for a multi
objective problem if all other solutions have a higher value for at least one of the objective functions,
or else have the same value for all objectives. If we consider two solutions x1 and x2 the solution
x1 is said to dominate the other solution x2, if both the following conditions are true:

a)the solution x1 is no worse than x2 in all objectives

fj(x1) ≤ fj(x2) for all j = 1,m (8)
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b)the solution x1 is strictly better than x2 in at least one objective

fj(x1) < fj(x2) for at least one j ∈ 1,m (9)

If any of the above conditions is violated, the solution x1 does not dominate solution x2. Typi-
cally, there is an entire curve or surface of Pareto points or non-dominated points and the shape of
this curve indicates the nature of the tradeoff between different objectives.

Hence for multiobjective problems the archive of solutions is ranked based on the non domination
level. In the same non domination level a further ranking is introduced usign the concept of crowding
of solutions, [9]. In order to preserve diversity of solutions, and differently from standard ACOR
where the ants (solutions) are created and are refused immediately or end up in the archive, the ants
have the chance, if certain conditions are met, to keep living for more than one iteration till when
they are added into the archive or definetely refused. The decision about saving a solution in the
archive (SAVE) or rejecting it (REPLACE) or even letting it run for other iterations (CONTINUE)
is given to a special acceptance function A. The archive has an adjustable size that varies between
k and k+nants, where nants is the number of ants constructed per iteration. In Box 2 the algorithm
pseudo-code is reported.

Box 2 - MultiObjective ACOR pseudo-code

Non dominance/crowding ordering (archive);
Calculation of weights
while termination not met

Set current archive size to k
Repeat

If not(continue) then
a) choose new solution from archive using (6)

Else
b) set current solution to new solution

Perturb the components of current solution
Evaluate new solution
Accept new solution with probability A(new solution)
for one of the following operations:

1)Save
2)Replace
3)Continue

Until archive size is ≥ k+nants
Non dominance/crowding ordering (archive of k+nants);
Take the first k solutions
Increase number of iterations

end

As pointed out after the generation of a new solution a function A is used to decide the operation
to be performed. The function A takes an exponential form similar to the one appearing in the
Simulated Annealing algorithm [10]. If the new solution dominates the current solution then A takes
the following form:

A = e−sign ∆dom
nA (10)
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Where sign is a variable that can take two values: -1 and 1. It takes value -1 if the objective
functions calculated in the new solution take the extreme values. In this way extremal values, that
gives more diversity to solutions set, are preserved. ∆dom is the average amount of domination
defined as:

∆dom =
nA∑
i=1

∏
j=1,nobj

|fj(newsolution)− fj(Ti)|
Rj

; fj(newsolution) 6= fj(Ti) (11)

where Rj is the maximum range of objective function j, nA is the number of archive solutions
that dominate newsolution.

When new solution is dominated by current solution or are non dominated the acceptance funtion
assumes the following form:

A = e∆dommin (12)

where ∆dommin is the minimum amount of domination between new solution and the archive
solutions dominating new solution.

4 NUMERICAL RESULTS
The first numerical results reported regards well known mathematical benchmark functions for

multi objective problems, both convex and non convex, in table 1 are reported the functions chosen
ant the limit imposed on the variables.

In order to assess the performance of the algorithm the tests were performed also using NSGAII
[11]. For the two algorithms the following paramters were adopted: NSGAII pmut = 0.11; pcross =
0.95; MO ACOR q = 0.2, ξ = 0.6;

The algorithms have been compared on the basis of four performance measures [12]:
algorithm effort (AE), can be defined as the ratio of the total number of function evaluations

Neval over a fixed period of simulation time Trun:

AE =
Neval

Trun
(13)

ratio of non-dominated individuals (RNI), the ratio of non-dominated individuals found in the
set of solutions:

RNI =
nondominated

k
(14)

size of Space Covered (SSC), a quantitative measure of the dominated volume in the objective
domain. It can be calculated first ordering the nc non dominated solutions solutions based on the
values of one of the two objectives (say f1) and then summing up the contributions:

SSC =
nc∑
i=1

fi(xi)− f1(xi−1) ∗ f2(xi) (15)

measure of uniform distribution (UD), measures the distribution of nc non-dominated solutions.
The index UD could be defined as:

UD =
1

1 + Snc
(16)
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Table 1: Mathematical test functions

function min max

SCH f1 = x2 −103 103

f2 = x− 22

FON fj = 1− exp
(
−
∑3

i=j

(
xj − 1√

3

)2
)

−4 4

j = 1, 3

KUR f1 =
∑n−1

i=1 −10exp
(
−0.2

√
x2

i + x2
i+1

)
−5 5

f2 =
∑n

i=1 |x0.8
i |+ 5sinx3

i

ZDT1 f1 = x1 0 1
f2 = g

[
1−

√
x1
g

]
g = 1 + 9

Pn
i=2 xi

n−1

n = 30, i = 1, n

ZDT6 f1 = 1− exp(−4x1)sin6(6πx1) 0 1

f2 = g

[
1−

(
f1
g

)2
]

g = 1 +
(

9
Pn

i=2 xi

n−1

)0

.25
n = 10, i = 1, n

where Snc is the standard deviation of crowding of the overall set of non-dominated individuals
measured by:

Snc =

√Pnc
i=1 crowd(i)

nc − crowd(i)
nc− 1

(17)

where crowd(i) is the crowding measure defined in (NSGAII).
In table 2 are reported the results obtained.
The performance in terms of RNI and SSC indicator are comparable, but for UD indicator

MO ACOR gives better performances assuring a more uniform cover of solutions space. The values
of AE gives contrastant values and more investigation is needed to correctly intepretate these results.

The same approach was used to solve the parameter identification problem of displacement-
controlled tests conducted on double cantilever beam (DCB) specimens, aiming to investigate the
time-dependent response of the adhesive joint [7]. Details about constituive model used and about
the numerical set-up could be found in [13]. To fully characterize the model behaviour 4 different
experimental tests were considered with different velocities of imposed displacement. In this way
the parameter identification coincides with the following multiobjective optimization problem:

min
x∈Rnpar

(fi(x)); f : Rnpar− > R i = 1, 4 (18)
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Table 2: Mathematical test functions: simulation results

SCH FON KUR
NSGAII MO ACOR NSGAII MO ACOR NSGAII MO ACOR

AE 3.9*10-4 5.7*10-5 3.5*10-4 1.14*10-4 2.8*10-4 1*10-4
RNI 1 1 1 1 1 1
UD 0.76 0.86 0.76 0.86 0.76 0.86
SSC 2.6 2.6 0.65 0.65 26.5 26.1

ZDT1 ZDT6
NSGAII MO ACOR NSGAII MO ACOR

AE 4.2*10-4 4.8*10-4 5.6*10-4 1*10-4
RNI 1 1 1 1
UD 0.73 0.90 0.67 0.84
SSC 0.32 0.33 0.91 0.90

the parameters adopted for multi objective algorithms are the same of precedent tests.
In table 3 are reported the results of the optimization runs.

Table 3: Interface Parameter Identification: simulation results

NSGAII MO ACOR
AE 2.4 3.7
RNI 1 1
UD 0.65 0.82
SSC 0.89 0.87

Also in this case MO ACOR shows a better performance on the UD indicator while mantaining
comparable results on the other indicators.

5 CONCLUSIONS
The present work addressed the parameter identification problem by a new multiobjective evo-

lutionary algorithm obtained extending the ACOR algorithm. The algorithm was compared with
the classical NSGAII over some well known mathematical test functions. The indicators used to
asses the performance of the algorithm shows an increase in distribution of solutions found and
comparable performance on other indicators. The same algorithm was successfully applied to a real
parameter identification problem showing the applicability of the proposed approach in real world
problems. Further studies are needed to investigate the effect of case-study properties on the overall
performances. Furthermore more experimentation is needed to explore the effect of multi-modality,
isolation, and deception on the algorithm results.
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