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SUMMARY. The problem of the stochastic stability of elastic and viscoelastic columns com-
pressed by a Gaussian white noise axial force is addressed in the context of the dynamic stability.
The former column has proportional damping, the other has both proportional damping and visco-
elastic damping with memory expressed by the superposition integral. The stability is checked in
statistical moments by examining the eigenvalues of the matrix of the coefficients of the ODE
ruling the time evolution of them, which are obtained by means of Itô’s differential rule.

1 INTRODUCTION
In classic Mechanics distinction is made between static and dynamic stability. However, for

practical conservative engineering systems the static buckling load coincides with the dynamic
buckling load (e.g. see Corradi dell'Acqua, Vol. 3, [14]). Static and dynamic  buckling loads are
equal even for an Euler's column compressed by an axial load.

This paper is concerned with the study of the dynamic stability of an Euler's column. In a
stochastic setting the matter is different from a deterministic one even if the trivial solution is still

0== XX & , being X the vector of system states, and the aim of a stability analysis is to discover
whether beside the trivial solution there are non trivial solutions 00 ¹¹ X,X & , and whether they
are bounded or not. Differently from a deterministic analysis there are various definitions of sto-
chastic stability that lead to different buckling loads.

There most common definitions of stochastic stability are (e.g. see Lin and Cai [26], Chap. 6):
(1) almost sure stability also named Lyapunov stability with probability 1 (WP1); (2) stability in
probability; (3) stability in the r-th moment. For linear systems the stability in the second moments
is more stringent than the criterion (1). Different definitions of stochastic stability lead to different
buckling loads. Moreover, for a given definition of stochastic stability there are more methods for
finding the buckling load.

From now on attention will be restricted to the problem of the stochastic stability of an Euler's
column compressed by a stochastic axial load )()( tWwtN PP p+m= , where mP is a constant, and
W(t) is a Gaussian white noise (the reason of this choice will be given later). This and similar
problems have deserved attention since the sixties. Some authors studied the stability of a
stochastic ODE, which is similar to the modal equations of the column: Caughey and Gray [10],
Infante [21], Kozin and Prodromou [24], Kozin and Wu [25], Arnold [7], Ariaratnam and Xie [6],
Cottone and Di Paola [15]. Arnold, Cottone and Di Paola excepted, previous studies look for
analytic conditions of almost sure stability. Notwithstanding the mathematic refinement and
complication, the results do not agree among them very well. Arnold [7] establishes a relationship
between almost sure stability and moment stability, but the mathematics are cumbersome.  Cottone



and Di Paola propose a numerical method, the path integral solution, to study the moment stability.
Other authors make explicit reference to an elastic Euler-Bernoulli's bar starting the study from

the stochastic PDE that governs the motion of the bar: Plaut and Infante [29], Ahmadi and
Mostaghel [4], Ahmadi e Glockner [3], Pavlovic et al. [28]. Modal analysis is used in all the
studies with the exception of that by Plaut and Infante, who consider a non separable system.
Almost sure stability is considered.

Other authors overcome the Euler's model by including viscous effects in the analysis: here the
term viscous means delayed effects with memory, that is depending on the past. Only two papers
have been found that consider a damping with memory: Ariaratnam [5], Cai and Lin [9]. In both
papers an ordinary integro-differential equation is analyzed: the partial integro-differential
equation  of  motion  can  be  reduced to  this  form by modal  analysis.  In  the  other  papers  found in
literature viscous deformations affect the flexural curvature, but do not influence the damping.
Since this case is not treated here, we recall Potapov [30, 31], Drozdov [17, 18], Huang and Xie
[20], Xie and Huang [33].

As regards the methods of analysis, the literature examination reveals a strong preference for
the Lyapunov exponent either considering the almost sure stability or the moment stability.
Clearly, the tools that are used for computing it are very different. A different approach is outlined
by Drozdov and Kolmanovskij [19], and by Potapov [30]. However, these authors do not pursue
the approach further, and in more recent works return back to the Lyapunov exponent methods.

Herein, the stochastic stability is checked in moments by developing the approach envisaged
by the above cited authors. The method operates according the following steps: (1) basing on the
assumption that the dynamic system is separable, the modal analysis is applied; (2) as in general
only  the  first  mode is  relevant  to  stability,  the  second order  ODE for  the  first  mode is  converted
into two first order Itô's differential equations; (3) by applying Itô's differential rule, the
differential equations ruling the response moment evolution are written; (4) the stability of these
equations is studied through an eigenvalue analysis.

Steps (2) and (3) can be runned along only if the excitation is a Gaussian white noise (for the
stochastic differential calculus [16, 26, 22, 23]). This is the reason why the random part of the
axial load has been chosen to be such a stochastic process. This choice is a limitation only partially
as a colored process can be approximated by the output of linear filters having a Gaussian white
noise as a primary excitation. For clarity's sake, the case of a merely elastic column and that of a
viscoelastic column will be analyzed separately.

2 FORMULATION OF THE GOVERNING EQUATIONS
Consider an Euler's column subjected to the axial load )()( tWwtN PP p+m= applied in the

centroid of an end cross section, being W(t) a unit strength Gaussian white noise stochastic process.
The column has the banal rectilinear shape. We make the assumption that mP is smaller than the
Euler's buckling load. However, this is not sufficient in order that the column is stable in stochastic
sense as the stochastic perturbation caused by )(tWwPp  may cause the loss of stability. In other
words, there exist values of the intensity wP which cause the loss of stability in a stochastic sense.
With reference to the dynamic criterion of stability, the column is stochastically stable when it
returns to the banal straight undeformed shape after an external agency perturbates this
equilibrium configuration. The column is unstable when the external agency  causes the
divergence of the column's deformed configuration.



As advanced in the Introduction, the stochastic stability analysis is performed by studying the
equations that govern the evolution of the response moments. Two cases are considered: (1) elastic
column with viscous damping without memory; (2) viscoelastic column with both damping
without memory and damping with memory, that is described by the classic hereditary model of
viscosity (the linear theory of the viscosity is exposed in [8, 12]).

2.1 Elastic column
The motion of an elastic Bernoulli-Navier column is governed by the equation
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with initial and boundary conditions to be specified, where E is the Young's modulus, I the second
moment of the cross section area, c the viscous damping coefficient, and r the column's density
for unit length. It can be demonstrated that the system (1) is separable. Thus, a solution is sought
in the form [13]

å
¥

f=
1

)()(),( tVxtxw jjj (2).

The eigenfunctions fj(x)  are a complete set in L2, and enjoy the following properties:
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they satisfy the boundary conditions. In previous relationships the eigenvalues lk and the
pulsations wk are related by ( ) ( ),242 rl=w LEIkk  being L the column length.

By inserting Eq. (2) into (1), multiplying this by fk(x), integrating from zero to L, and profiting
from the above mentioned properties, the modal equations are obtained as
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where the ratio of critical damping is given by ,2 kk c rw=z Ik = ( )ò å f¢¢f
L
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d , and PEk is the

k-th Euler’s buckling load. Without loss of generality from now on reference is made to a hinged-
hinged column, for which the boundary conditions, the eigenvalues and the eigenfunctions are,
respectively: 0),(),0(),(),0( =¢¢=¢¢== tLwtwtLwtw , lk = kp (k = 1,2, ¼), ( );sin)( Lxkxk p=f

moreover, .2222
Ekkkk PLkMI w-=rp-=

As advanced, in general the study can be limited to the first mode as it gives raise to the lowest
limit of instability. Hence, for k = 1, which is omitted for simplicity’s sake, Eq. (3) is converted
into two first order Itô’s differential equations by putting Vz =1 , :dd2 tVz =
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where ( ) ,,1,2 22 MIcPEP =m-w=Wzw=b  and dB is the increment of a standard Brownian
motion B(t), for which the formal relationship )(dd tWtB =  holds. Eq. (3) is a parametric one, but
the Wong-Zakai-Stratonovich corrective term in Eq. (4 b) results to be zero [32, 34].

By applying Itô’s differential rule to the non anticipating function 21
2121 ),( pp zzzz =y  [16, 22,

23], one writes the differential equations ruling the evolution of response moments of order p1 + p2
= r.  In symbolic notation, they are expressed as

)()( trtr mAm =& (5),

where mr(t) is the vector with all the moments of order r of system states. Eq. (5) has the solution

)exp(0)( ttr Amm = (6),

where m0 is the vector with the initial conditions for the moments, which constitute the
perturbation to the column banal equilibrium configuration.

Whenever the matrix A has negative real eigenvalues and complex eigenvalues with negative
real part, the system is stable, and the moments tend to zero as t grows. Since the matrix A
depends on the stochastic axial load intensity wP, there exists a critical value of this for which the
condition above is no longer satisfied, and the moments grow without limits. Thus, the problem of
the stochastic stability of the column is solved by studying the eigenvalues of the matrix of the
coefficients of the moment equations.

Stability of the statistical averages requires z >  0  and  that mP is smaller than the Euler's
buckling load. The three second order moments are governed by the equations:
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where [ ] )20(21 £+£=m qpzzE qp
pq  and the dot means derivative with respect to the time t. The

characteristic equation for finding the eigenvalues of A is:

[ ] ( ) 024423det 222223 =p-bW+lW+b+bl+l=-l PwcAI (8).

Eq. (8) is an algebraic third degree equation: thus, its roots have analytical expressions (it is
recalled that one root is real and the other two are complex conjugate). From a theoretical point of
view, the critical value of wP could be obtained by studying these roots: for wP < wPcr the roots
have negative real parts, while for wP > wPcr a  real  part  at  least  becomes  positive.  On  the  other
hand, there are several parameters that influence the results, and not only the ratio of critical
damping z as claimed by some authors, so that the study has notable complexity even because of



the cumbersome expressions of the roots. It seems to be preferable to use a mathematical software,
to write a specific program, by which the critical value wPcr is  found  by  increasing wP till a
positive real part is encountered.

2.2 Viscoelastic column
The motion equation of a viscoelastic Bernoulli-Navier column is
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where the fifth term accounts for the damping with memory, being )'( tt -G some relaxation kernel
of hereditary type (among others, the dynamic of the oscillator with hereditary damping is studied
in [1, 2, 27]). Even if the motion equation is a partial integro-differential one, modal analysis is
still applicable [2], and the solution is still expressed by Eq. (2). For a hinged-hinged column, the
modal equations are
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In order to transform Eq. (10) into a set of first order Itô's differential equations, the method of
the additional state variables is used [27]. The most general hereditary kernel is expressed by a
Dirichlet-Prony series [8]:

å a-aj=G
m

iiii tt
1

)exp()( (11).

The number of additional variables equates the number m of exponential functions retained in the
series. Herein, for simplicity's the classic Kelvin-Voigt model is adopted:

[ ]tGt )1(exp)( ¥¥ j+a-aj=G (12).

In this way, the system has three states, the third of which is given by

[ ]ò ¢¢¢-a-j= ¥
t
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where ).1(, ¥¥¥ j+a=araj=j G  With reference to the first mode (k =  1  is  omitted),  by
putting YztVzVz === 321 ,dd, ,  and taking the derivative of Eq. (13) we have:
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Applying Itô's differential rule, three equations for the statistical averages and six for the
second order moments are obtained. Again, mP = PEk causes the system to be unstable, while not
necessarily z must  be  larger  than  zero,  which  agrees  with  the  finding  of  Drozdov  and
Kolmanovskij [19]. The second moment equations are:
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where [ ] )20(321 £++£=m rqpzzzE rqp
pqr  The characteristic equation for the matrix A in  Eq.

(15)  is  of  sixth  degree  so  that  an  analytical  expression  for  the  critical  intensity  cannot  be  found.
Thus, it is compulsory to use the numerical procedure outlined in 2.1 .

3 APPLICATIONS
The stochastic stability limit in mean square is looked for by considering a hinged-hinged

column having the following values of the parameters: cross section area A = 0.0216 m2, second
moment of the area I = 4.32×10-4 m4, length L = 15 m, mass density for unit length r = 169.56 kg/m,
c = 215.53 N×s/m.  From these values we obtain: w1 = 71.50 rad/s, first Euler's buckling load P1E =
3.90363×106 newton, z =  0.002  in  the  first  mode.  It  is  chosen mP =  0.4P1E.  The parameter wP
governs the strength of the white noise axial force, and it is varied to find its critical value wPcr.
The autocorrelation function  and the one-sided power spectral density of W(t) are,   respectively:

).0(1)(),()( >wp=wt-d=t WWWW StR  Thus, if the term Pwp  is kept into account, the
strength of the white noise is just wP.

The column with the memory damping has the same parameters. With reference to Eq. (12),
this is characterized by G = 1000 N×s/m, j¥ =  3, a =  1 s-1. With this value of the relaxation
modulus G, roughly the memory damping is five times stronger than the classical damping: the
elastoviscous devices can be even 10 times stronger.

With reference to the column with classical damping only, the characteristic equation of the
second moment equations [Eqs. (8) and (7), respectively] has one real root and two complex con-
jugate roots: by increasing wP the real part of the latter becomes positive when wP > (85594.85)2

newton2; a plot of Re(l) against ÖwP is in Fig. 1. Thus wPcr = (85594.85)2. It is noted that in the
book by Lin and Cai, [26], in the Chap. 6 a stability limit is derived by Routh-Hurwitz criteria [11].
If this limit is adapted to the present case, it reads as
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Figure 1: elastic column, real part of the eigenvalue l against Pw .

Figure 2: elastic column, time evolution of [ ] [ ]22
1 VEzE =  for wP = 0.95wPcr.

Figure 3: elastic column, time evolution of [ ] [ ]22
1 VEzE =  for wP = 1.05wPcr.

In the present case Eq. (16) yields wPcr = 0.924704×1010 newton2, which is larger than the
finding of this paper by a 26.2 %. The exactness of the value determined by studying the eigenval-
ues of Eq. (8) has been controlled by solving the second moment equations [Eq. (8)] for wP =
0.95wPcr, and wP = 1.05wPcr, taking wPcr the value determined here.   The plots are in Figs. 2,3, re-



Figure 4: viscoelastic column, real eigenvalue l against Pw .

Figure 5: viscoelastic column, time evolution of [ ]2VE : wP = 0.95wPcr (left), wP = 1.05wPcr (right).

spectively. It is clear that the value of wPcr obtained in this paper is the true critical value: in fact,
when wP is 0.95wPcr, if an initial perturbation E[ )0(2

1z ] = 0.1 is applied,  after some cycles of os-
cillations the second moments decay to zero as does E[ 2

1z ] shown in Fig. 2. When wP is 1.05wPcr,
the second moments grow without limits if they are subjected to an initial perturbation (Fig. 3).

The characteristic equation of the second system that is examined, the viscoelastic column, is
obtained  from  det  [lI - A] = 0, being the matrix A in Eq. (15). It has two real roots and two
couples of complex conjugate roots. In this case, it is one of the real roots that becomes positive as
wP increases. The critical value is found to be wPcr = 90464.52 newton; a plot of l against Ö wPcr is
in Fig. 4. The behavior of the second moments for wP = 0.95wPcr and wP = 1.05wPcr is analogous
to that of the previous case: the plots of [ ] [ ]22

1 VEzE =  are shown in Fig. 5 for the two cases. It is
worth noting that the supplemental damping of the viscoelastic system has little effect on the
critical value,   which is increased by a 5.69 % only with respect to the first case   having classical
damping only.   The stochastic perturbation that causes instability is small  if compared to the  first
Euler’s buckling load: the ratio EPcr Pw  is only 0.022 and 0.023 in the two cases respectively.



4 CONCLUSIONS
This paper examines the stochastic stability of Euler’s columns compressed by a stochastic

axial force. This has a non zero mean, and the variable part is a Gaussian white noise. As is fre-
quently done in stochastic mechanics, the dynamic stability is considered. Thus, the damping
mechanism must be exactly defined. Herein, two damping types are assumed: (1) classic damping,
that is the dissipative force is linearly related to the velocity; (2) classic damping and damping
with memory, being the latter expressed by the convolution integral of the linear viscosity, in
which the relaxation kernel is the Kelvin-Voigt’s hereditary one.

If the banal rectilinear shape of the column is perturbed, after some cycles of motion a stable
column tends to it; viceversa, from a stochastic point of view instability means divergent sample
paths or divergent response statistical moments. The second aspect is studied here. In particular,
the equations that govern the time evolution of the second moments are written by means of Itô’s
differential rule. Differently from other authors that look for the Lyapunov exponents of the mo-
ments or construct a Lyapunov functional, herein the eigenvalues of the coefficient matrix of the
moment equations are analyzed: the stability limit is reached when the real part of an eigenvalue
becomes positive or a real eigenvalue is positive. The availabilty of computer algebra programs
makes it easier to perform the computations.

In the applications, it is found that the damping with memory has little effect on the stability
limit  even  if  it  is  generally  believed  to  be  very  efficacious  in  suppressing  the  vibrations.  In  any
case, the strength of the white noise that causes the loss of stability is small, which must be taken
into account in engineering design.
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