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SUMMARY. A numerical-perturbation method, based on eigenvalue sensitivity analysis, is devel-
oped, able to build-up linear stability diagrams of multiparameter dynamical systems. The algorithm
furnishes the critical combinations of parameters causingmultiple bifurcations, of static, dynamical
or mixed type. Moreover, it determines the manifolds in the parameter space on which simple
bifurcations take place. Although the method is general, itis illustrated here for codimension-2
bifurcations only, sufficient to highlight the underlying ideas.

1 INTRODUCTION
Dynamical systems usually depend on parameters. When some of them are varied in some

region of the parameter-space{µ} ⊆ RM, bifurcations from an equilibrium position are likely to
occur. The bifurcations can be both of static (divergence) or dynamic (Hopf) nature, according to
the values assumed by the critical eigenvalue(s) of the Jacobian matrix of system, namely zero or
purely imaginary, respectively. These basic bifurcationsoccur on smooth codimension-1 surfaces;
if the surfaces intersect each other along lines or points,multiple bifurcationsoccur at these higher-
codimension geometrical loci [1]. The critical surfaces divide the parameter-space in regions in
which the system has qualitatively similar behaviors, being different in each region. The plot of the
organized parameter-space is called thelinear stability diagram, and gives a comprehensive scenario
of the system behavior near the equilibrium. Aim of the linear stability analysis is to build-up such
a diagram.

When the system to be analyzed has few degrees-of-freedom, it is not difficult to find the bifur-
cation loci by manipulating the closed-form characteristic polynomial of the Jacobian matrix. The
task requires finding the combinations of parametersµc such that a number of critical eigenvalues
λk = λk(µc) are zero, or have zero real part. In contrast, when the dimension of the system in-
creases, pure numerically-based analyses would entail thequite expansive reiterate computation of
the eigenvalues of a large matrix, in order to evaluate theirparameter-derivatives∂nλk/∂µ

n (called
sensitivities). Moreover, when two or more critical eigenvalues coalesce, such methods fail, since
the eigenvalues arenot analyticalat the coalescence point, in the sense that their first derivatives
with respect to the parameters are infinite.

As opposed to pure numerical methods, evaluating eigenvalue sensitivities by perturbation meth-
ods is cheap and of easy implementation, since only solutionof a chain of linear algebraic equations
is required. Therefore, it seems important, to formulate analgorithm that, exploiting the strong
potentialities of perturbation methods, is able to find: (1)the multiple bifurcation loci and, (2) the
branches of critical surfaces originating from it. That constitutes the main goal of this paper.

Reference is made here to a general system, undergoing codimension-2 bifurcations. Two bifur-
cation parameters are therefore sufficient to exhaustively describe the scenario. In Sect 2 the simplest
case of non-coincident critical eigenvalues is studied. InSect 3 the more complex case of coincident
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critical eigenvalues is analyzed. In Sect 4 some numerical examples are illustrated. Finally, some
conclusions are drawn in Sect 5.

2 NON-COINCIDENT CRITICAL EIGENVALUES
2.1 Eigenvalue sensitivity
Let us assume, first, that the Jacobian matrixA = A(µ) of the system admits two distinct critical

eigenvalues at the (unknown) bifurcation pointC. In Ref. [2] it was shown that, given a matrix
A = A(µ), depending on two real parametersµ := {µ, ν}T, the following series expansion holds for
its eigenvaluesλk(µ):

(

λ1(µ + δµ)
λ2(µ + δµ)

)

=

(

λ1(µ)
λ2(µ)

)

+

(

S1µ(µ) S1ν(µ)
S2µ(µ) S2ν(µ)

) (

δµ

δν

)

+O(|δµ|2) (1)

in whichSkα(µ) (k = 1, 2;α = µ, ν) are theeigenvalue sensitivitiesatµ, given by:

[

Skα(µ)
]

:=















yH
1 (µ)Aµ(µ)x1(µ) yH

1 (µ)Aν(µ)x1(µ)

yH
2 (µ)Aµ(µ)x2(µ) yH

2 (µ)Aν(µ)x2(µ)















(2)

and whereAµ := ∂A/∂µ, Aν := ∂A/∂ν and, moreover,xk(µ) andyk(µ) are right and left eigenvectors
of A(µ), respectively, associated withλk(µ).

2.2 Searching for the critical point
The search for the (unknown) critical pointC, at which Re[λk(µc)] = 0 (k = 1, 2) (dynamic

bifurcation), is performed through an iterative scheme (Newton method), based on the linear ex-
trapolation of the eigenvalues. If an approximationµi = {µi , νi}

T of µc is known, we look for
parameter-incrementsδµ := µi+1−µi such that Re[λk(µ+ δµ)] = 0; from Eqs (1), by neglecting the
reminder, it follows:

















Re[S1µ(µi)] Re[S1ν(µi)]

Re[S2µ(µi)] Re[S2ν(µi)]































µi+1 − µi

νi+1 − νi















= −















Re[λ1(µi)]

Re[λ2(µi)]















(3)

If, in contrast, the bifurcation is of mixed static-dynamictype, the Re operator must be omitted in a
row (the double-zero case will be analyzed ahead). It shouldbe noted, that Eq (3) does not require
numerical evaluations of the sensitivities via incremental ratios, as usually done in purely numerical
methods, since these are furnished by the perturbation analysis (Eq (2)).

By resuming, the algorithm is the following:

1) evaluate, e.g. by the QR-method, the two eigenvalues of matrix A = A(µi) with smallest real
parts, candidate to become critical (e.g. one real and the other complex, or two complexnot
conjugate), with the associated right and left eigenvectorsxk(µi), yk(µi);

2) compute, via Eq (2), the four sensitivitiesSkα(µi);

3) solve the linear system (3) for thei+1 approximation of the parameter vectorµi+1 = {µi+1, νi+1}
T;

4) if
∣

∣

∣µi+1 − µi

∣

∣

∣ > toll1 and Re[λk(µi+1)] > toll2 (k = 1, 2), then execute a new iteration, with
i = i+1; if, instead,

∣

∣

∣µi+1 − µi

∣

∣

∣ ≤ toll1 or
∣

∣

∣Re[λk(µi+1)]
∣

∣

∣ ≤ toll2 (k = 1, 2), then assumeµc = µi+1.
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2.3 Building-up the bifurcation loci
Once the critical pointC has been determined in the parameter plane, the two curves originating

from it, which are loci of simple bifurcations, are sought for. On each of them,just oneeigenvalue
(λ1 or λ2, respectively) is critical, the other having non-zero realpart; consequently, the relevant
equation is Re[λk(µ, ν)] = 0 (or λk(µ, ν) = 0) for k = 1 or k = 2. This equation, implicitly defines
a curve in the (µ, ν)-plane, passing throughC. After linearization around a pointµi = {µi , νi}

T, and
according to Eqs (1), it reads:

Re[Skµ(µi)](µi+1 − µi) + Re[Skν(µi)](νi+1 − νi) = −Re[λk(µi)] k = 1 or 2 (4)

An iterative scheme could directly be applied to Eq (4), in order to obtain a Cartesian repre-
sentation for the curve of the formµ = µ(ν) or ν = ν(µ); however, as well known, such a rep-
resentation fails at turning points. Therefore, a parametric representation of the curve, namely
µ = µ(s), ν = ν(s), with s a parameter, is preferable. To obtain it, a (constraint) scalar equation
must be appended to Eq (4), in order to define the meaning ofs; the more common choices for the
constraint are referred in literature as thearclength method, or thepseudo-arclength method[3] (Fig.
1). When a pointµ0 is known on the curve, i.e. Re[λk(µ0)] = 0, a close point is sought iteratively
asµi , µi+1, · · · . According to the arclength method,

∣

∣

∣µi+1 − µ0

∣

∣

∣ = |∆s| is fixed for some small in-
crement|∆s| of the modulus of the parameter (with∆s > 0 or∆s < 0), and the following constraint
equation appended to Eq (4):

√

(µi+1 − µ0)2 + (νi+1 − ν0)2 = |∆s| (5)

According to the pseudo-arclength method, (µi+1 − µ0) · tk0 = ∆s, is instead prescribed, namely:

ak0 (µi+1 − µ0) + bk0 (νi+1 − ν0) = ∆s (6)

wheretk0 = {ak0, bk0}
T is the unit vector tangent to the curve (k=1 or 2) atµ0 and, moreover:

ak0 := +
Re

[

Skν(µ0)
]

√

{

Re
[

Skµ(µ0)
]}2
+

{

Re
[

Skν(µ0)
]}2
, k = 1 or 2

bk0 := −
Re

[

Skµ(µ0)
]

√

{

Re
[

Skµ(µ0)
]}2
+

{

Re
[

Skν(µ0)
]}2
, k = 1 or 2

(7)

are its components. Thus, in the two approaches,µi+1 respectively moves on a circle of radius|∆s|
centered atµ0, or along a line which is parallel to the normalnk0 to the curve atµ0, at a distance|∆s|
from it. In both cases, the ambiguity of the sign of∆s refers to the two opposite directions in which
the curve can be traveled.

The constraint equation (5) is nonlinear, whereas the constraint equation (6) is linear. In order to
keep the whole problem linear, the pseudo-arclength methodis adopted here. The relevant algorithm
is detailed below.

1) take the critical pointµc as initial pointµ0, and evaluate the sensitivitiesSkµ(µ0),Skν(µ0) via Eq
(2); then, compute the direction cosinesak0, bk0 (Eqs (7));

2) select a new pointµ1(predictor phase) on the tangenttk0 = {ak0, bk0}
T atµ0, at a sufficiently small

distance|∆s| from µ0, having coordinates:

µ1 = µ0 + ak∆s, ν1 = ν0 + bk∆s, k = 1 or 2 (8)
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3) solve iteratively (fori = 1, 2, · · · ) the following equations in the unknownµi+1, νi+1 (corrector
phase):















Re[Skµ(µi)] Re[Skν(µi)]

ak0 bk0





























µi+1 − µi

νi+1 − νi















=















−Re[λk(µi)]

∆s















(9)

4) if
∣

∣

∣µi+1 − µi

∣

∣

∣ > toll1 and Re[λk(µi+1)] > toll2 (k = 1 or 2), then execute a new iteration (9); if,
instead,

∣

∣

∣µi+1 − µi

∣

∣

∣ ≤ toll1 or
∣

∣

∣Re[λk(µi+1)]
∣

∣

∣ ≤ toll2 (k = 1 or 2), then assume as a new point
µ0 = µi+1, and restart from step 2).

µ

ν

µc

µ0

|∆s|

µ1

nk0
tk0

µi+1

Re[λ1(µ)] = 0

Figure 1: Arclength and pseudo-arclength iterative methods.

3 COINCIDENT CRITICAL EIGENVALUES
3.1 Eigenvalue sensitivity
The eigenvalue sensitivity analysis for a Jacobian matrixA(µ) is more difficult when several

eigenvalues coincide at the multiple bifurcation pointC, being all zero (multiple zero-bifurcation) or
equal to the same pair of complex conjugate purely imaginarynumbers (multiple Hopf bifurcation).
In these casesA(µc) is (generally)defectiveat the bifurcation, i.e. it does not posses a complete
set of eigenvalues; consequently, it isnearly-defectiveclose to the critical point, i.e. a complete set
of eigenvectors does exist, but some of them are nearly-coincident. It was shown in Ref. [4], that
sensitivities of nearly-defective eigenvalues cannot be evaluated independently, as in Eqs (1), but
they are, in contrast, coupled. Moreover, the non-analytical nature of the eigenvalues requires using
fractional power expansionsin the parameters.

Here we limit ourselves to the simplest case of tworeal critical eigenvalues (double-zero, or
Takens-Bogdanov, bifurcation), which is generic in two-parameter families of systems. As shown
in Ref. [4], the problem of two nearly-coincident eigenvaluesλ1(µ) ' λ2(µ) of a nearly-defective
matrixA(µ) is overcome by starting the expansionnot from the actual system, but rather by anideal
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systemA0(µ; ξ(µ)), belonging to an enlarged parameter space{µ, ξ}, in which the two eigenvalues
coalesce atλ0(µ) := (λ1(µ) + λ2(µ))/2. To achieve this goal, aninverse problemmust be solved, in
which thesmalladditional parameterξ ∈ Rmust determined in order to renderA0(µ; ξ(µ)) defective.
After that, the sensitivities ofλ0(µ) must be evaluated.

According to Ref. [4], the ideal defective matrix is:

A0(µ; ξ(µ)) = A (µ) − ξ (µ) x20 (µ) yH
10 (µ) (10)

where:

ξ (µ) = 1
4 [λ1 (µ) − λ2 (µ)]2 ,

x20 (µ)=1
2ξ
−1/2 (µ) [x1 (µ) − x2 (µ)] , y10 (µ)=y1 (µ) + y2 (µ) ,

x10(µ) = 1
2 [x1 (µ) + x2 (µ)] , y20(µ) = ξ1/2

[

y1 (µ) − y2 (µ)
]

(11)

are the additional perturbation parameterξ and the generalized right and left eigenvectors (x20, y10)
of A0(µ; ξ(µ)), respectively; the proper right and left eigenvectors (x10, y20) of the same matrix will
be used later. All these quantities are evaluated from the (nearly coincident) eigenvalues,λk, and
associated right and left eigenvectors,xk andyk, of the given matrixA(µ). It should be noticed
that, if the eigenvaluesλk are complex conjugate, thanx10, y10 are real, whilex20, y20 are purely
imaginary; based on this, it is easy to check that all the quantities involved in the following analysis
are real.

Second-order sensitivity analysis ofA0(µ; ξ(µ)), carried out along the lines of Ref. [4], leads,
after some manipulations, to the following second-degreesensitivity equation, in the increment
∆λ1,2 := λ1,2(µ + δµ) − λ0(µ):

∆λ2 − [S1µ(µ)δµ + S1ν(µ)δν]∆λ − [ξ(µ) + S2µ(µ)δµ + S2ν(µ)δν] +O(|δµ|3/2) = 0 (12)

where:
S1α(µ) := yH

20(µ)Aα(µ)x20(µ) − yH
20(µ)u∗α(µ),

S2α(µ) := yH
20(µ)Aα(µ)x10(µ), α = µ, ν

(13)

are calledsensitivities of order-1 and order-1/2, respectively, and moreoveru∗µ(µ), u∗ν(µ) are solutions
for the following linear problems:















[A0(µ) − λ0(µ)I] u∗α(µ) = S2αx20(µ) − Aα(µ)x10(µ)

eT
hu∗α(µ) = 0, α = µ, ν

(14)

made unique by a normalization condition (hereeh is thehth N-dimensional canonical vector). Note
that whenδµ = δν = 0, Eq (12) correctly leads toλ1, λ2. Therefore,ξ(µ) brings back from the ideal
A0(µ; ξ(µ)) to the actual systemA(µ), whileδµ, δν account for the true perturbation; the two effects,
however, cannot be separated.

Equation (12) shows that∆λ = O
(

(ξ + |∆µ|)1/2
)

. If ξ = 0 (i.e. µ = µc), then∆λ/∆µ → ∞
when∆µ → 0, this denoting thatλ(µc) is not analytical at the coalescence point. The increment
∆λ is therefore mainly governed by sensitivities of order-1/2, S2α; however, there always exist a
special combination of the increments of the parametersδµ (i.e. a singular direction in the parameter
space) for whichS2α = 0, this entailing that∆λ = O(|∆µ|) in a narrow angular sector containing this
direction.
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3.2 Searching for the critical point
Let us assume to know a trial set of parametersµi , close toµc, for which the two critical con-

ditionsλ1,2(µc) = 0 are approximately satisfied. In order to refine the approximation, we can use
the sensitivity equation (12) (with the remainder neglected), which furnishes, withµ = µi and
δµ = µi+1 − µi , the eigenvaluesλ1,2(µi+1) = λ0(µi) + ∆λ1,2(µi , δµ); this guides us in choosing the
incrementδµ makingλ1,2(µi+1) = 0. The operation is easily carried out if we rewrite the sensitivity
equation (12) in the form of areduced characteristic equation:

λ2 − I1(µ, δµ)λ − I2(µ, δµ) +O(|δµ|3/2) = 0 (15)

where:

I1(µ, δµ) := S1µ(µ)δµ + S1ν(µ)δν + 2λ0(µ)

I2(µ, δµ) := S2µ(µ)δµ + S2ν(µ)δν − λ0(µ)I1(µ, δµ) + ξ(µ) + λ2
0(µ)

(16)

and we require the invariants vanish simultaneously, namely I1(µi , δµ) = 0, I2(µi , δµ) = 0, i. e.:














S1µ(µi) S1ν(µi)

S2µ(µi) S2ν(µi)





























µi+1 − µi

νi+1 − νi















= −

















λ1(µ) + λ2(µ)
[

λ2
1(µ) + λ2

2(µ)
]

/2

















(17)

From these equations an enhanced approximation for the critical parameters,µi+1 = {µi+1, νi+1}
T,

is drawn, and the procedure can be reiterated up to the desired tolerance. It is worth stressing that,
while the invariants are nonlinear inµ, they are linear in the incrementsδµ, so that, in the iterative
approach, Eqs (17) still appear in the linear form, as in the non-defective case (Eqs (3)).

By summarising, thei-th iteration of the algorithm is the following:

1) evaluate, e.g. by the QR-method, the two eigenvalues of matrix A = A(µi) having the smallest
real part (both real or complex conjugate) and the associated right and left eigenvectors;

2) compute the quantities in Eqs (10) and (11);

3) calculateu∗µ(µ), u∗ν(µ) by using Eqs (14) and the sensitivity coefficients in Eqs (13);

4) solve Eqs (17) for the new parameter setµi+1 = {µi+1, νi+1}
T;

5) if
∣

∣

∣µi+1 − µi

∣

∣

∣ > toll1 and Re[λk(µi+1)] > toll2 (k = 1, 2), then execute a new iteration, with
i = i+1; if, instead,

∣

∣

∣µi+1 − µi

∣

∣

∣ ≤ toll1 or
∣

∣

∣Re[λk(µi+1)]
∣

∣

∣ ≤ toll2 (k = 1, 2), then assumeµc = µi+1.

3.3 Building-up the bifurcation loci
After having determined the critical pointC, the construction of the critical manifolds must be

tackled. The two invariants (16), evaluated atµ = µc, and equated to zero, provide the equations of
the tangents to the two loci at the critical point. Namely,I2(µc, δµ) = 0 is the (straight line) tangent
to the divergence locus, whileI1(µc, δµ) = 0, I2(µc, δµ) < 0 is the (straight semi-line) tangent to the
Hopf locus. An iterative predictor-corrector scheme, based on the pseudo-arclength method, is used
again. A pointµ1 close toµc is taken on one of these two lines (predictor phase); then (corrector
phase) the associated invariant is zeroed (i.e.Ik(µ1, δµ) = 0, k = 1 or 2) together with a linear
constraint equation; a new approximationµ2 = µ1 + δµ is obtained, and the procedure reiterated.
When convergence has been reached, a new point is predicted on the tangent, to follow the curve in
the whole region of interest.

By summarizing, the algorithm is the following:
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1) take the critical pointµc as initial pointµ0, and evaluate the sensitivitiesSkµ(µ0), Skν(µ0) (k =
1 or 2) and the vectorsu∗µ(µ), u∗ν(µ) via Eqs (13), (14);

2) select a new pointµ1 (predictor phase) on the tangenttk0 = {ak0, bk0}
T at µ0, at a sufficiently

small distance|∆s| from µ0, having coordinates:

µ1 = µ0 + ak0∆s, ν1 = ν0 + bk0∆s, k = 1 or 2 (18)

where:

ak0 := +
S1ν(µ0)

√

S2
1µ(µ0) + S2

1ν(µ0)
, bk0 := −

S1µ(µ0)
√

S2
1µ(µ0) + S2

1ν(µ0)
, if k = 1 (19)

or:

ak0 := +
S2ν(µ0) − λ0(µ0)S1ν(µ0)

√

[

S2µ(µ0) − λ0(µ0)S1µ(µ0)
]2
+

[

S2ν(µ0) − λ0(µ0)S1ν(µ0)
]2
,

bk0 := −
S2µ(µ0) − λ0(µ0)S1µ(µ0)

√

[

S2µ(µ0) − λ0(µ0)S1µ(µ0)
]2
+

[

S2ν(µ0) − λ0(µ0)S1ν(µ0)
]2
, if k = 2

(20)

3) Solve iteratively (fori = 1, 2, · · · ) the following equations in the unknownsµi+1, νi+1 (corrector
phase):















S1µ(µi) S1ν(µi)

ak0 bk0





























µi+1 − µi

νi+1 − νi















=















−2λ0(µi)

∆s















, if k = 1 (21)

or:














S2µ(µi) − λ0(µi)S1µ(µi) S2ν(µi) − λ0(µi)S1ν(µi)

ak0 bk0





























µi+1 − µi

νi+1 − νi















=















λ2
0(µ) − ξ(µ)

∆s















, if k = 1

(22)

4) if
∣

∣

∣µi+1 − µi

∣

∣

∣ > toll1 andRe[λk(µi+1)] > toll2 (k = 1 or 2), then execute a new iteration (21) or
(22); if, instead,

∣

∣

∣µi+1 − µi

∣

∣

∣ ≤ toll1 or
∣

∣

∣Re[λk(µi+1)]
∣

∣

∣ ≤ toll2 (k = 1 or 2), then assume as a new
pointµ0 = µi+1, and restart from step 2).

4 NUMERICAL EXAMPLES
The classical mechanical systems illustrated in Fig. 2 are analyzed. They are double-pendula

with lumped inertia (m), elastic (ki) and damping (ci) properties, under forces applied at the free end.
The structure of Fig. 2 (a) is loaded by a dead weightP and a follower forceF; the stucture of Fig.
2 (b) is loaded by a follower forceF, only. The rods are rigid and massless; the elastic springs and
the viscous devices are linear. The follower forceF is taken asµ-parameter in both systems, while
the dead loadP, or thek2 stiffness, are taken asν-parameter in the two systems, respectively.
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Figure 2: Double pendulum: (a) loaded by a follower force anda dead load; (b) loaded by a follower
force and visco-elastically braced.

By assuming the rotationsqi (i = 1, 2) as Lagrangian parameter, andx = (q1, q̇1, q2, q̇2)T as
state-vector, the following Jacobian matrices are obtained for systems of Fig. 2, respectively:

A =





























0 1 0 0
−3κ + µ + ν −3η 2κ − µ − ν 2η

0 0 0 1
4κ − µ − ν 4η −3κ + µ + 2ν −3η





























,

A =































0 1 0 0
−3κ+µ

2
η(−3−ζ)

2
2κ−µ

2 η

0 0 0 1
5κ−2ν−µ1

2
η(5−ζ)

2
µ−4κ−2ν

2 η (−2− ζ)































(23)

where the following nondimensional parameters appear:κ := k1/(mω2`2), η := c1/(mω`2), µ :=
F/(mω2`), for both systems;ν := P/(mω2`) for system 1 andζ = c2`

2/c1, ν := k2/(mω2) for system
2.

System 1 undergoes a divergence – Hopf bifurcation atµc = (5.77,−2.35). Starting from the
guess pointµ0 = (5.2,−1.6), and applying the procedure of Sect 2.2, the iterations displayed in Fig.
3 (a) are performed, and convergence reached in few steps. Then, starting fromµc, and applying the
procedure of Sect 2.3, the bifurcation loci depicted in Fig.3 (b) are obtained.

System 2 experiences a double-zero bifurcation atµc = (5.83, 0.15). A tentative pointµ0 =

(8, 0.08) was chosen, and both the iterative procedure for non-defective and defective systems were
applied. As it appears in Fig. 4 (a), the algorithm based on sensitivity of distinct eigenvalues di-
verges, while the method grounded on nearly coincident eigenvalues (Sect 3.2) converges fast. The
bifurcation loci originating fromµc are shown in Fig. 4 (b).
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Figure 3: System 1: (a) iterations to the divergence-Hopf bifurcation point; (b) bifurcation loci;D
Divergence locus,H Hopf locus,S Stable region;κ = 1, η = 1.

νν

µ µ

µ0

µ1

µ2

µ3 µc
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µ2

D

H

(a) (b)

S

Figure 4: System 2: (a) iterations to the double-zero bifurcation point: � sensitivity for nearly
coincident eigenvalues,� sensitivity for distinct eigenvalues; (b) bifurcation loci; D Divergence
locus,H Hopf locus,S Stable region;κ = 1, η = 1.5, ζ = 0.5.

5 CONCLUSIONS
By exploiting the potentiality of eigenvalue sensitivity analysis, an iterative numerical- perturba-

tion method was implemented, to build-up linear stability diagrams of two-parameter dynamical sys-
tems, undergoing codimension-2 bifurcations. Both non-defective and defective bifurcations were
studied, and specific algorithms illustrated.

In particular, it was stressed, that sensitivity analisys avoids numerical evaluation of the deriva-
tives of the eigenvalues with respect the parameters, whichare necessary both in approaching the
critical point and in building-up the bifurcation loci crossing there. Such a computational advantage
is even more evident when defective bifurcations must be analyzed, for which the eigenvalue deriva-
tives tend to infinity at the coalescence point. In these cases, sensitivity analysis furnishes uniformly
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valid reduced characteristic equations, of degree equal to the number of interacting eigenvalues,
which govern the eigenvalue behavior around the critical point, capturing their unavoidable singu-
larities. The analysis of the invariants of such reduced equations guides the search for the multiple
bifurcation point and bifurcation loci.

Few numerical examples were presented, relevant to mechanical systems exhibiting Hopf- diver-
gence or double-zero bifurcations.
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