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SUMMARY. A numerical-perturbation method, based on eigdne sensitivity analysis, is devel-
oped, able to build-up linear stability diagrams of multgraeter dynamical systems. The algorithm
furnishes the critical combinations of parameters causinfjiple bifurcations, of static, dynamical
or mixed type. Moreover, it determines the manifolds in tlaeameter space on which simple
bifurcations take place. Although the method is generak itlustrated here for codimension-2
bifurcations only, sfficient to highlight the underlying ideas.

1 INTRODUCTION

Dynamical systems usually depend on parameters. When séthern are varied in some
region of the parameter-spage} ¢ RM, bifurcations from an equilibrium position are likely to
occur. The bifurcations can be both of static (divergencaymamic (Hopf) nature, according to
the values assumed by the critical eigenvalue(s) of thebjasanatrix of system, namely zero or
purely imaginary, respectively. These basic bifurcatioosur on smooth codimension-1 surfaces;
if the surfaces intersect each other along lines or pomtatiple bifurcationsoccur at these higher-
codimension geometrical loci [1]. The critical surfacesidiée the parameter-space in regions in
which the system has qualitatively similar behaviors, falifferent in each region. The plot of the
organized parameter-space is calledlithear stability diagramand gives a comprehensive scenario
of the system behavior near the equilibrium. Aim of the lingtability analysis is to build-up such
a diagram.

When the system to be analyzed has few degrees-of-freetd@mgt dificult to find the bifur-
cation loci by manipulating the closed-form characteripblynomial of the Jacobian matrix. The
task requires finding the combinations of parametgrsuch that a number of critical eigenvalues
Ak = A(u) are zero, or have zero real part. In contrast, when the difnerof the system in-
creases, pure numerically-based analyses would entajjuite expansive reiterate computation of
the eigenvalues of a large matrix, in order to evaluate th@iameter-derivative®'1/ou" (called
sensitivitiey. Moreover, when two or more critical eigenvalues coalgesoeh methods fail, since
the eigenvalues aneot analyticalat the coalescence point, in the sense that their first déga
with respect to the parameters are infinite.

As opposed to pure numerical methods, evaluating eigeaggnsitivities by perturbation meth-
ods is cheap and of easy implementation, since only solofiarchain of linear algebraic equations
is required. Therefore, it seems important, to formulateagorithm that, exploiting the strong
potentialities of perturbation methods, is able to find: ttl® multiple bifurcation loci and, (2) the
branches of critical surfaces originating from it. That stitutes the main goal of this paper.

Reference is made here to a general system, undergoingeosiionm-2 bifurcations. Two bifur-
cation parameters are thereforé®lent to exhaustively describe the scenario. In Sect 2 thplsist
case of non-coincident critical eigenvalues is studiecdnt 3 the more complex case of coincident



critical eigenvalues is analyzed. In Sect 4 some numericahgles are illustrated. Finally, some
conclusions are drawn in Sect 5.

2 NON-COINCIDENT CRITICAL EIGENVALUES

2.1 Eigenvalue sensitivity

Let us assume, first, that the Jacobian mairix A(w) of the system admits two distinct critical
eigenvalues at the (unknown) bifurcation po@it In Ref. [2] it was shown that, given a matrix
A = A(n), depending on two real parameters= {u, v}', the following series expansion holds for
its eigenvaluegd(w):

Aa(p+ o)\ _ (Aa(w)) | (Sw(w) Su(w))(du
(Al(u + 5u)) - (Ai(u)) ’ (Sle(u) s;(p)) ((51/) +0(our) (1)

inwhichS,  (u) (k=1,2;a = u,v) are theeigenvalue sensitivitiest u, given by:

[Ska(m)] := (2)

Y WAL (W)xa(w) yT(u)Ay(u)xl(u)}
Yo (WAL ()X2(k) Y5 (WA, (1)X2(1)

and wherd,, := dA/du, A, := 0A/dv and, moreover(u) andyi(u) are right and left eigenvectors
of A(u), respectively, associated witl(pt).

2.2 Searching for the critical point

The search for the (unknown) critical poi@t at which Refx(u.)] = 0 (k = 1,2) (dynamic
bifurcation), is performed through an iterative schemewid@ method), based on the linear ex-
trapolation of the eigenvalues. If an approximatien= {u;, v}’ of u. is known, we look for
parameter-incremend$t := p;,, — u; such that Refx(u + 6p)] = O; from Egs (1), by neglecting the
reminder, it follows:
Re[Sy. ()] Re[Su ()] (i — i Re[11(w)] )
Re[So.(m)] RelSa ()l via—vi)  (Refia(u)]
If, in contrast, the bifurcation is of mixed static-dynantype, the Re operator must be omitted in a
row (the double-zero case will be analyzed ahead). It shibeldoted, that Eq (3) does not require
numerical evaluations of the sensitivities via incrembraos, as usually done in purely numerical
methods, since these are furnished by the perturbatiogsiadEq (2)).

By resuming, the algorithm is the following:

1) evaluate, e.g. by the QR-method, the two eigenvalues ¢fxma = A(w;) with smallest real
parts, candidate to become critical (e.g. one real and ther @omplex, or two complerot
conjugate), with the associated right and left eigenvectidi;), yk(w;);

2) compute, via Eq (2), the four sensitiviti8g, (;);
3) solve the linear system (3) for the 1 approximation of the parameter vector; = {ui 1, vis1)';

4) if |ui,g — | > tolly and Re[i(ui,1)] > tollz (k = 1,2), then execute a new iteration, with
i =i+1;if, instead|u;,; — p| < tolly or |Refl(p;,4)]| < tollz (k = 1, 2), then assumg, = p;, 4.



2.3 Building-up the bifurcation loci

Once the critical poin€ has been determined in the parameter plane, the two cung@saiing
from it, which are loci of simple bifurcations, are sought. f&n each of themjust oneeigenvalue
(11 or Ay, respectively) is critical, the other having non-zero neaitt; consequently, the relevant
equation is Refk(u, v)] = 0 (or Ak(u,v) = 0) fork = 1 or k = 2. This equation, implicitly defines
a curve in the, v)-plane, passing througb. After linearization around a point; = {u;, »}", and
according to Egs (1), it reads:

RefSi (u)](kis1 — pi) + Re[S (u)](vier — i) = — Re[l(w)] k=1or2 (4)

An iterative scheme could directly be applied to Eq (4), idesrto obtain a Cartesian repre-
sentation for the curve of the form = u(v) or v = v(u); however, as well known, such a rep-
resentation fails at turning points. Therefore, a paraimegpresentation of the curve, namely
u = u(s), v = v(s), with s a parameter, is preferable. To obtain it, a (constraintlasegjuation
must be appended to Eq (4), in order to define the meanisgtbé more common choices for the
constraint are referred in literature as #relength methogdor thepseudo-arclength methdd] (Fig.

1). When a poini, is known on the curve, i.e. R&[(1y)] = 0, a close point is sought iteratively
asy; , U1, - - - - According to the arclength metho|qlu,i+1 - Ho| = |Ag is fixed for some small in-
crementAg of the modulus of the parameter (witts > 0 or As < 0), and the following constraint
equation appended to Eq (4):

Vi1 = 0)? + (121 = v0)? = |AS (5)
According to the pseudo-arclength methag, { — uo) - tko = AS, is instead prescribed, namely:
ako (Hi+1 — po) + bwo (Vie1 — vo) = As (6)
wheretyo = {ayo, bko}" is the unit vector tangent to the cunde=(L or 2) atu, and, moreover:
akO =4 Re[szkv(uO)] , k — 1 or 2
VIRe[Su k)] + (Re[Su (ko]
(7
Re|Sk.(1o)
by == — [kﬂ O] ,k=1or2

VIRe[S ()]} + [RelSw(uo)}?

are its components. Thus, in the two approachgs, respectively moves on a circle of radidss
centered afi,, or along a line which is parallel to the nornma to the curve afi,, at a distancgAg
from it. In both cases, the ambiguity of the signAdrefers to the two opposite directions in which
the curve can be traveled.

The constraint equation (5) is nonlinear, whereas the cansequation (6) is linear. In order to
keep the whole problem linear, the pseudo-arclength meghadopted here. The relevant algorithm
is detailed below.

1) take the critical poinfi. as initial pointu,, and evaluate the sensitiviti€g, (1), Sk (1) Via Eq
(2); then, compute the direction cosiregs, bk (Eqs (7));

2) select a new point, (predictor phasgon the tangertig = {axo, bk} " at 1y, at a sificiently small
distancgAg from p,, having coordinates:

M1 =po+aAs, vi=vo+bgAs k=1lor2 (8)



3) solve iteratively (fori = 1,2,---) the following equations in the unknown, 1, vi.1 (corrector
phase):

(9)

Ao bro Viel — Vi As

Re[Sk. ()] Re[Skv(ui)]J [,Ui+1 - lliJ _ [—Re[/lk(ui)]J

4) if |1 — wi| > tolly and Re[dy(;,1)] > toll, (k = 1 or 2), then execute a new iteration (9); if,

instead,|u;,; — wi| < tolly or [Refl(ui,)]| < tollz (k = 1 or 2), then assume as a new point
Ko = W1, and restart from step 2).

=

[ Re[t1(w)] = 0

Figure 1: Arclength and pseudo-arclength iterative meshod

3 COINCIDENT CRITICAL EIGENVALUES

3.1 Eigenvalue sensitivity

The eigenvalue sensitivity analysis for a Jacobian mahi(ec) is more dificult when several
eigenvalues coincide at the multiple bifurcation p@nbeing all zero (multiple zero-bifurcation) or
equal to the same pair of complex conjugate purely imaginambers (multiple Hopf bifurcation).
In these casef(u.) is (generally)defectiveat the bifurcation, i.e. it does not posses a complete
set of eigenvalues; consequently, inisarly-defectivelose to the critical point, i.e. a complete set
of eigenvectors does exist, but some of them are nearlyeitEnt. It was shown in Ref. [4], that
sensitivities of nearly-defective eigenvalues cannot\@uated independently, as in Egs (1), but
they are, in contrast, coupled. Moreover, the non-analtiature of the eigenvalues requires using
fractional power expansioria the parameters.

Here we limit ourselves to the simplest case of teal critical eigenvalues (double-zero, or
Takens-Bogdanov, bifurcation), which is generic in twaogmaeter families of systems. As shown
in Ref. [4], the problem of two nearly-coincident eigenvedu;(u) ~ A>(u) of a nearly-defective
matrix A(w) is overcome by starting the expansiuwi from the actual system, but rather byideal



systemAo(u; £(u)), belonging to an enlarged parameter space}, in which the two eigenvalues
coalesce alp(u) := (11(w) + A2(1))/2. To achieve this goal, anverse problenmust be solved, in
which thesmalladditional parameteére R must determined in order to rend®g(u; £(1)) defective.
After that, the sensitivities ofy(i) must be evaluated.

According to Ref. [4], the ideal defective matrix is:

Ao £() = A (1) — & (1) Xa0 (1) Vi (1) (10)

where:

E(M) = 1A (n) - 22 (W)]?,
Xo0 (1) =3&7Y2 (1) [x1 (1) — X2 ()] 5 Va0 (W) =y1 (1) + Y2 (b)), (11)
X1o(k) = 3 [X () + X2 (W], Yao(w) = Y2 [y1 (1) — Y2 (W)]

are the additional perturbation parametend the generalized right and left eigenvectags,/10)
of Ao(u; £(w)), respectively; the proper right and left eigenvectats, f/20) of the same matrix will
be used later. All these quantities are evaluated from thar{y coincident) eigenvaluesy, and
associated right and left eigenvectoxg,andyy, of the given matrixA(u). It should be noticed
that, if the eigenvaluegy are complex conjugate, thang, yio are real, whilexxg, Y20 are purely
imaginary; based on this, it is easy to check that all the tjiesinvolved in the following analysis
are real.

Second-order sensitivity analysis Af(u; £(u)), carried out along the lines of Ref. [4], leads,
after some manipulations, to the following second-deg®mesitivity equationin the increment
Ad12 = A12(n + 0p) — Ao(w):

AR =[Sy, (1)0u + S1(1)0VIAL - [€() + Sg. ()0 + Sa(w)ov] + O(o*?) =0 (12)

where:

S1a(1) = Vo)A (1)X20(1) — Yor()UZ (1),
(13)

SZ(I/(H) = Ygo(H)Aa(H)Xlo(H), a =My
are calledsensitivities of order-1 and ordey?, respectively, and moreovef (), u;(p) are solutions
for the following linear problems:

{ [Ao(k) — do(u)1] Uy (1) = SzaX20(1) — Ag()X10(1)

JU (W) =0, a=pv -

made unigue by a normalization condition (hexés thehth N-dimensional canonical vector). Note
that whersu = v = 0, Eq (12) correctly leads tdy, 1. Thereforeg(u) brings back from the ideal
Ao(u; £(u)) to the actual systera(u), while 6y, 6v account for the true perturbation; the twidests,
however, cannot be separated.

Equation (12) shows thatd = O((¢ + |Au)Y2). If € = 0 (i.e.p = p), thenAl/Au — oo
whenAp — 0, this denoting that(u;) is not analytical at the coalescence point. The increment
A is therefore mainly governed by sensitivities of ordg2;55,,; however, there always exist a
special combination of the increments of the paraméje(se. a singular direction in the parameter
space) for whicts,, = 0, this entailing thata = O(|An|) in a narrow angular sector containing this
direction.



3.2 Searching for the critical point

Let us assume to know a trial set of parametersclose tou,, for which the two critical con-
ditions 21 2(u.) = O are approximately satisfied. In order to refine the apprakion, we can use
the sensitivity equation (12) (with the remainder negldktevhich furnishes, withun = p; and
o1 = Mg — W, the eigenvalues; »(ui. 1) = do(wy) + Ad12(;, ow); this guides us in choosing the
incrementu makingA12(ui,1) = 0. The operation is easily carried out if we rewrite the striti
equation (12) in the form of eeduced characteristic equation

22 = 11(n, 62 — 1o(p, 6p) + O(l6pl*?) = 0 (15)

where:

l1(p, o) = Sau(p)op + S1,(1)ov + 210(1)

la(t, 1) = Sau()Ju + Sa,()6v — Ao(k)la(, Sp) + £(1) + A5()
and we require the invariants vanish simultaneously, namél;, 5u) = 0, I2(w;, 6w) = 0, i. e.:

[Slﬂ(ui) Slv(Hi)J [lli+1 - ,Ui] ~ _[ A1(p) + A2(w) J
Sau(m)  Sau(w) - [Bw + B 2

From these equations an enhanced approximation for theatnitarametersy,; = {1, vic1)',
is drawn, and the procedure can be reiterated up to the ddsierance. It is worth stressing that,
while the invariants are nonlinear [n they are linear in the incrementg, so that, in the iterative
approach, Egs (17) still appear in the linear form, as in the-defective case (Eqgs (3)).

By summarising, théth iteration of the algorithm is the following:

(16)

(17)

Viel — Vi

1) evaluate, e.g. by the QR-method, the two eigenvalues tfxma = A(y;) having the smallest
real part (both real or complex conjugate) and the assaktiaiht and left eigenvectors;

2) compute the quantities in Egs (10) and (11);
3) calculateu;,(p), uy(p) by using Egs (14) and the sensitivity ¢belents in Egs (13);
4) solve Egs (17) for the new parameter 8gt = {11, vis1)';

5) if |,y — | > tolly and Re[l(pi,1)] > toll, (k = 1,2), then execute a new iteration, with
i =i+1;if, instead |, 1 — | < toll or |Re[l(p,1)]| < tollz (k = 1, 2), then assume,, = p;, ;.

3.3 Building-up the bifurcation loci

After having determined the critical poiftt, the construction of the critical manifolds must be
tackled. The two invariants (16), evaluateduat u., and equated to zero, provide the equations of
the tangents to the two loci at the critical point. Naméjyu., su) = 0 is the (straight line) tangent
to the divergence locus, whilg(u., 5u) = 0, 12(ue, 6p) < 0 is the (straight semi-line) tangent to the
Hopf locus. An iterative predictor-corrector scheme, lbase the pseudo-arclength method, is used
again. A pointu, close top, is taken on one of these two lines (predictor phase); themector
phase) the associated invariant is zeroed (if;,6un) = 0, k = 1 or 2) together with a linear
constraint equation; a new approximation = p, + du is obtained, and the procedure reiterated.
When convergence has been reached, a new point is predictbd tangent, to follow the curve in
the whole region of interest.

By summarizing, the algorithm is the following:



1) take the critical poinf, as initial pointu,, and evaluate the sensitiviti&g, (1p), Sk(Ho) (K =
1 or 2) and the vectors;,(u), u;(p) via Egs (13), (14);

2) select a new pointi, (predictor phasgon the tangentyy = {ao. bko}" at g, at a stficiently
small distancéAs from pg, having coordinates:

M1 =po+anAs  vi=w+boAs k=1or2 (18)
where:
S
o = + S1 (ko) . boi=- 1u(Ho) , ifk=1 (19)
SE.(ko) + S, (o) SEko) + S, (o)
or:
Sy, - A S,
Ao = + 2v(Ho) 20(”0) (o) ’
VS210) = 20(k0)Suulh10)|” + [Sa(10) = Ao(b10) S, (o)
Sa.(10) = Aoftto) (o) (20)
ka = - s ifk=2

V[S2:(10) ~ Ao10)S1.(10)[ + [S2(10) ~ A1) (o)

3) Solve iteratively (foii = 1,2, ---) the following equations in the unknowps 1, viy1 (corrector

phase):
(Slﬂ(ui) Slv(ui)] (#Hl ‘“i) - "210(*”)), if k=1 (21)
Ao bko Vivl — Vi As
or:
[Szﬂ(ui) ~ Ao()S5 () (i) — o) S, (1) [um —ﬂiJ _ [ﬂé(u) “E) g
ao byo Vier—vi) As ’ )
(22)

4) if |uisg — | > tolly and Re[A(pi41)] > tollz (k = 1 or 2), then execute a new iteration (21) or

(22); if, instead |p;,; — 1| < tolly or |Re[A(w;,1)]| < tollz (k = L or 2), then assume as a new
pointuy = ui,q, and restart from step 2).

4 NUMERICAL EXAMPLES
The classical mechanical systems illustrated in Fig. 2 asdyaed. They are double-pendula

with lumped inertiaifn), elastic k) and dampingd) properties, under forces applied at the free end.

The structure of Fig. 2 (a) is loaded by a dead welglaind a follower forcd=; the stucture of Fig.
2 (b) is loaded by a follower forcE, only. The rods are rigid and massless; the elastic sprinds a
the viscous devices are linear. The follower foFces taken agi-parameter in both systems, while
the dead loadP, or thek; stiffness, are taken asparameter in the two systems, respectively.
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Figure 2: Double pendulum: (a) loaded by a follower force anigad load; (b) loaded by a follower
force and visco-elastically braced.

By assuming the rotationg (i = 1,2) as Lagrangian parameter, ard= (qu, 61, 0o, 42)" as
state-vector, the following Jacobian matrices are obthfaesystems of Fig. 2, respectively:

0 1 0 0
A -3k+u+v -3n 2k-u-v 2n
- 0 0 0 10
| dk—u-v 4y -3k+u+2v -3n
0 1 0 0 (23)
3K+ n(=3-9) 2—p
A= 2 2 c g
0 0 0 1
i 5K—22V—/Jl 7](52—{) ﬂ_4§_2" n (_2 — é’)

where the following nondimensional parameters appeae: ki/(mw??), n = ¢1/(Mwl?), u =
F/(mw?¢), for both systemsy; := P/(mw?¢) for system 1 and = cy?/cy, v = ko/(mw?) for system
2.

System 1 undergoes a divergence — Hopf bifurcatiop.at (5.77,-2.35). Starting from the
guess pointyy = (5.2, —1.6), and applying the procedure of Sect 2.2, the iterationdaljspl in Fig.

3 (a) are performed, and convergence reached in few steps, $tarting fromu., and applying the
procedure of Sect 2.3, the bifurcation loci depicted in Bi¢b) are obtained.

System 2 experiences a double-zero bifurcatiopat (5.83,0.15). A tentative pointu, =
(8,0.08) was chosen, and both the iterative procedure for non-deéeshd defective systems were
applied. As it appears in Fig. 4 (a), the algorithm based msitieity of distinct eigenvalues di-
verges, while the method grounded on nearly coincidentwmaes (Sect 3.2) converges fast. The
bifurcation loci originating fromu, are shown in Fig. 4 (b).
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Figure 3: System 1: (a) iterations to the divergence-Hofuafrbation point; (b) bifurcation lociD
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Figure 4: System 2: (a) iterations to the double-zero bidtion point: @ sensitivity for nearly
coincident eigenvaluem sensitivity for distinct eigenvalues; (b) bifurcation ip@ Divergence
locus,H Hopf locus,S Stable regiony = 1,7 = 1.5,¢ = 0.5.

5 CONCLUSIONS

By exploiting the potentiality of eigenvalue sensitivityadysis, an iterative numerical- perturba-
tion method was implemented, to build-up linear stabiliggilams of two-parameter dynamical sys-
tems, undergoing codimension-2 bifurcations. Both nofectee and defective bifurcations were
studied, and specific algorithms illustrated.

In particular, it was stressed, that sensitivity analisy@ds numerical evaluation of the deriva-
tives of the eigenvalues with respect the parameters, wdriemecessary both in approaching the
critical point and in building-up the bifurcation loci csiag there. Such a computational advantage
is even more evident when defective bifurcations must bé/aed, for which the eigenvalue deriva-
tives tend to infinity at the coalescence point. In theseg;asmsitivity analysis furnishes uniformly



valid reduced characteristic equationsf degree equal to the number of interacting eigenvalues,
which govern the eigenvalue behavior around the criticahtpaapturing their unavoidable singu-
larities. The analysis of the invariants of such reducedhqns guides the search for the multiple
bifurcation point and bifurcation loci.

Few numerical examples were presented, relevant to mesdiaystems exhibiting Hopf- diver-
gence or double-zero bifurcations.
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