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Fluid viscoelastic dampers are of great interest in difiefeelds of engineering. Examples of their
applications can be found in seismic mitigation design aicttires or in vibration absorption in
airplane suspension. Such devices introduce a non-linssipdtive term in the equation of motion
and therefore, the solution of even a single degree of fmeesligstem excited by a white noise
process, becomes prohibitive. The solution is usuallyinbthby approximated methods, like the
stochastic linearization technique.

In this paper it is shown that, by means of fractional opegstiv is possible to find the solution
of oscillators provided with fluid viscoelastic devicespamaching the problem in its originally non-
linear form. Comparison with solutions obtained by Montel@aimulation are finally discussed.

1 Introduction

Viscous fluid dampers have found applications in passivérabaof civil structures for their ability
in energy absorbing. Some examples are the damper devibagdings for the mitigation of earth-
quake ground motion and airplane shock absorber. Apphicatio highway overcrossing equipped
with such devices are given in [1], while their constitutiegations and dynamical properties are
presented in [2], [3] and [4].

In the fluid viscous-elastic element, the damping force isegated by a moving piston into a
chamber filled with a viscous fluid. Its constitutive equatie characterized by the shape of the
orifices where the fluid itself flows. As shown in [4], the cangive equation for such devices can
be written as

Fy = cq|2|" sign() 1)

where F; is the piston forcey its relative displacementy is a real exponentg, is a damping
parameter (inVs”) andsign(-) is the signum function defined as follow

1 >0
sign (z) = 0 z=0 2)
-1 <0

The motion equation of an oscillator equipped with a fluidtwiss-elastic damper excited by a white
noise procesy (t) is consequently written as

X ‘7 sign (X (t)) + w2 X (t)= WT(t) 3)

X () + 2Cwo X () + Ca ]X (t)
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having indicated withX (¢) the resulting displacement proceéshe damping ratioyy = \/% the
natural radial frequency (being the mass and the stiffness respectivelyyy = c;/m andW (t)

a white noise process. Due to the presence of the fluid viasteldevice, eq.(3) is a non-linear
stochastic differential equation.

Probabilistic characterization of the solution of eq.&hécessary both for design and reliability
purposes, but it is very hard to be found because of the stmonginearity, varying with the pa-
rametery. Monte Carlo simulation is very useful to provide approxiethsolutions but is highly
time consuming. Recent analysis of multi-degree of freedgaiems in the context of stochastic
linearization is given in [5], where very good solutions previded up to second order approxima-
tion.

In this paper we provide a solution of the non-linear ostligrovided with a viscoelastic fluid
device by using stochastic calculus and fractional opesatxhieving very good accuracy of the
solution in probability. In order to give great generalibydur results, we will consider the oscillator
excited by a [evy a-stable white noise indicated B¥,,(¢). The parametet of the noise might
assume values in the range< « < 2, giving the classical Gaussian noise for= 2. In this way,
the Gaussian case will be just a particular case derived frengeneral one. In the following we
give a brief summary on the principal featurecaftable variables and noise processes, but readers
are referred to the book [6] for a deep treatment on both thawd application.

The marginal distribution of a évy a-stable white noise is the so-calledstable distribution
which has attracted physicians since the thirties, bechuskes on a generalized central limit the-
orem. Indeed, as well as the sum of independent random iesiabhth finite variance tends to a
normal distribution, dropping off the hypothesis of finitariance, the sum converges to a stable
distribution. The main peculiarity of such distributiolsgieir typical inverse power law asymptotic
behavior, i.e. the tails of the density function goes to zexdast agz| " for 2 — oc. From this
trend, it can be noted that a stable varialflehas only moments of ordersuch thatd < ¢ < «
and consequently, if < o < 2, the mean and the variance does not exist andfer,a < 1, even
the mean diverges. Then, well-known relations of probghitieory based on moments are useless
for stable random variables. A new attempt for handling witlch variables has been given in [7],
leading more amenable their mathematical treatment.

The Lévy a-stable motion has become only more recently in the enginesckground mainly be-
cause of its connection to fractal geometry and for thisorasll be considered in this paper.

In this paper, firstly, by means of stochastic calculus, theaéon ruling the characteristic func-
tion is found and then, a proper use of fractional operataligpnovide a solution scheme for the
problem in hand. In the numerical section a comparison ketwiee stable and the Gaussian white
noise excitation will be provided, and Monte Carlo simuatiwill assess that the numerical solu-
tion proposed gives very good results. Moreover, the coatjmrtal speed of the proposed method
suggests that it might be a valid alternative for design amigdeacontrol purposes.

2 Derivation of the spectral Fokker-Planck equation

Stochastic differential equations excited by white noisEpsses have been widely studied in liter-
ature by means ofdtcalculus. In the framework of the generalized theory ofican processes, the
stationary white noise proce$g, (¢) is indeed defined as the formal derivative of a process with
stationary orthogonal and independent increndeqit), that is

def dLO, (t)
dt

Wa (1) (4)



with 0 < a < 2. In the case ofv = 2, the procesd.,,(¢) coincides with the Brownian motioB(t),
whose incrementdB(t) are zero mean standard distributed, with even moments dbthe

E[dB(t)**] = (2k — D! q(t)*dt*, k=1,2,... (5)

wheregq(t) is the noise strength. In this paper, we assuift¢ = ¢ and consequently a constant
noise power spectral densiijy (w) = q/2.

If « is strictly different from 2, the only property that can beiohed for the increments of the
a-stable lévy motion processL,, (t) is related to the characteristic functigfdL,, )

6(dLa) = Blexp(i0dL,)| = exp(—|0]*d?) ®)

beingdL,(t) distributed as a standardstable distribution, that is with zero location and unjtar
scale parameters. It has been shown in [8] and [9] that thended 1&’s rule, proposed originally
in [10] for Poisson excitation, can be applied téy excitation in order to find the statistics of
the response. Remanding to the references [8] and [9], vedl\breport the results for a general
non-linear oscillator. Given the equation of motion in tbenf

X+ (X, X, t) = Wa(t) )
expressed in the state variable space as

Z :g(zvt) +£Wa(t) (8)

with Z = [X, X|T; g(Z,t) = [X, —f(X, X,t)]T and¢ = [0, 1], bearing in mind eq.(4), it can be
rewritten in the 16 form )
dZ = g(Z,t)dt + £dLo(t) ©)

Applying the extended @ts rule for a Levy white noise process, it has been shown in [8] and [9] that
the evolution of the characteristic function of the resgorealledoz (V1,72) = Elexp(i 61 X +
i02X)], is ruled by the deterministic partial differential eqoati

0z (0,1)
ot

whered = [1,6,]7. The latter rules the evolution in time of the characterigiinction of the so-
lution and is thespectralcounterpart of the Fokker-Planck equation that, as it id-kebwn rules
the evolution of the density. Eq.(10) is not a solvable padifferential equation of the character-
istic function, unless the functiog (Z, t) representing the drift term of the equation of motion is
specified. If the non-linearity is expressed in power sefioes, the solution has been presented
in literature by wavelet in [9] or by modified orthogonal ppbmial in [11]. When the non-linear
drift is not expressible in power series form, as like as end¢hse under exam, the main difficulty is
represented by finding the structure of the equation inaghéxplicitly the characteristic function.
Indeed, introducing in eq.(10) the non-linear term of theilzgor under study given in (3), that is
F(X, X, 1) = 2CwoX + (4| X|7sign(X) + w2 X and making some algebra, eq.(10) is rewritten as

—i0"E [g(z,t) exp (z 0Tz)] —16o]* &7 (0, 1) (10)

%ZT(I?J) = (61 —(Ch)E {iXexp (z 0TZ)} — W20 F [iXeXp (z GTZ)} +

—@gbz (0,) — C4bsE {z X
m

sign(X) exp (z oTz)} (11)
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It is easy to prove from the definition of the characterigtiedtion that the relations

E [iXeXp (z eTz)} - %giéf’t) (12)
E [iXeXp (z GTZ)} = a(bzaiéf,t) (13)

hold true.

Yet, the presence of the last term in eq.(11) with the avefﬁ@e‘X’ sign(X) exp (2 BTZ)} is not
expressed in terms of the characteristic function and midessolution of eq.(11) impossible to be
found.

In the following it will be shown that, by using fractionallcalus, eq.(11) will be transformed in a
fractional differential equation amenable to be numelycabived.

3 Fractional operators for the solution of the non lineailtagor

Fractional calculus deals with derivatives or integraleeal or even complex order. Many books and
papers are available in literature, showing an always asing interest on this advanced mathemat-
ical tool. In this section we provide few definitions and pedpes necessary to solve the equation
(12), referring the readers to the exceptional books [18][48] for deeper insight and applications.
The Riesz fractional integral of orderis defined as

def
(nf)(:v)—ﬂ( )COS a72) /5 = ~d¢  Rey>0 y#1,3,5.. (14

jointly to the Riesz fractional derivative

(D7 f) ()" — S @) e (15)

/f
2T (v )cos (ym/2) \§|1+7

The complementary Riesz fractional integral is insteacheelfas

f(E)dE  Rey>0 7 #2,4.6,... (16)

2F('y) sin(fy7r/2)7OO _5‘1“*

jointly to the complementary Riesz fractional derivative

def f(I)

(Hf) () = sign (€) d¢ (17)

f(z
2T (— )s1n ’y7r/2/ ‘€|1+7

The operators in (14)-(17) are very useful once their Fotrasform is given. Indeed, it has been
proved that the following Fourier relations

(FI7f () (6) =161 (F f (x)) (6) (18)



(FHYf(x)) (0) =isign (0) 0] (F f (x)) (0) (19)

hold true for the fractional integrals, having indicated’®yhe Fourier transform defined as

“+oo
(FH@) O = [ f@exp(iz0) do (20)
Similarly, for the fractional derivatives, the properties
(FDVf () (0) = 10]" (F f (x)) () (21)
(FH™f(2)) (0) = isign (0) 10]" (F f (x)) (9) (22)

hold true.

By means of relation (22) we will show that the term in eq.(1d9counting the non-linear vis-
coelastic damping, can be expressed in terms of the comptamyeRiesz fractional derivative of
the characteristic function.

Indeed eq.(22) can be extendeditp (6., 0>) as follow

(F (0, H " ¢2) (0)) (Xx) —isign (X) ‘X’” (F~1 62 (0)) (z,2)

—isign (X) ‘X’ﬂ{pz (z, ) (23)

where(p, H 7 ¢z) (0) is the partial fractional complementary Riesz derivatthat reads

+oo
1 ¢ (01,02 —u) — ¢ (01,02) .
2T (—v) sin (y7/2) / |u|1+7 sign (u) du (24)

(92H_’Y¢Z) (9) =

Fourier transform of both sides of eq.(23) latter produeerésult searched

+00 +o0
(QZH*W(bZ) (01,02) = / / —isign (X) ‘X’V Pz (X, X) exp (2 6T z) dx di (25)

Introducing eq.(24) in eq.(11), the characteristic fumts equation of the non-linear oscillator is
achieved, and reads

202
ot

0pz 5, 0¢z _ 105"
= (01 — (02)=—= — wibs—— 02(p, H - 26
(01 — CO2) 6, ~ %%, + Cab2 (o, bz) - bz (26)
with arguments omitted. It is worth to stress that the flugteielastic damping is represented in this
equation by the contribute of the fractional derivative.

4 Stationary solution
Aim of this section is to provide a method of solution of e§)2 The hypothesis of stationarity

is taken for simplicity’s sake, because we want to stress tootackle the fractional and integral
order derivatives in the space of variaBleandf,. Extensions to tackle also transitory states would



involve a step-by-step procedure and follows plainly.

To this aim, let us consider a bounded domaify, < 6; < 0;, —05 < s < 5, Where each axes
is portioned inm even intervals of sizé\d; and Af,, respectively. This imply that the domain o
be discretized by a grid dfin + 1)? nodes. We will indicate the unknown values of the function
#(01,62) inthe grid asp; j = ¢(—01 + (j — 1)AO1, —02 + (i — 1)Ab,) fori, j = 1,2,...,m + 1.

In this way, the unknown variables are represented by thewec

T
P = [4,01,1, sy PLmA415P2,15 - P2,mA415 o0 Pm41,15 Pm41,25 -0 %n+1,m+1]

The fractional operatofy, H " ¢z) (61, 02) can be rewritten in terms of a kind of finite difference
expression, calle@riinwald-Letnikov fractional operatpthat reads

- . N RS
(0,H 7 ¢z) (01,02) = A}’gﬂlofm (go(l)’“ < Z > ¢z (01,02 — kAO2) +

- e ( i >¢z (61,02 +m92)) (27)

in the exact form for unbounded domain, while as

05— 05
(0, H ¢z) (01,02) = —% ( Py (-1)* ( Z ) ¢z (01,02 — kAO2) +

- (28)
Ko,

S (_1)k< ) )¢Z (61, 62 +kA02))

k=0

in the approximated form for bounded domain. The structfiezid26) reveals that the evolution of
the fractional derivativé,, H 7 ¢z) in a pointf, is performed summing all the weighted values of
the function preceding; (first sum in (28)) and all the weighted values of the funcfiiowing 6-.
Moreover, the partial derivative in eq.(26) are expressdihite difference form by the Fornberg’s
algorithm modified. Here we point out that, by means of thenberg’s algorithm one can approx-
imate a derivative by a finite difference calculated on arnti@ty chosen number of grid points.
The numerical solution of the partial integro-differehgguation can therefore be performed on the
bounded domain, just enforcing the condition théd, 0) = 1. Finally, the eq.(26) is rewritten in
the form

Ap=Db (29)

whereA is the coefficient matrixp is the unknown vector and is a vector composed blyin the
((m+1)?/2) term and zero elsewhere resulting from the position of thiguenboundary condition
¢(0,0) = 1.

Summing up, by proper application of fractional calculussweceeded firstly to write an integro-
differential equation ruling the evolution of the charaigtic function of the response. Then by
using the approximation scheme for fractional operatorpmeide a numerical scheme that leads
to a linear algebraic system of equation. Solution of suchesy gives the characteristic function
sampled in a set of points. In the following, some numerigaheples are reported to highlight the
effectiveness of the method



5 Numerical Application

In this section, the efficacy of the method proposed is higitid comparing the solution obtained
for a particular oscillator, with one coming from a Monte Basimulation. To this aim we consider
an oscillator having unitary mass and characterized by dagmatios¢ = 0.008 and(; = 0.35,
natural radial frequenay = 10rad/sec, andy = 0.5.

This problem has been solved considering both a Gaussiaamandtable white noise excitation.
In both cases, the solution is reported in terms of charatitefunction, probability density function
and, together with the ones obtained by Monte Carlo simardain term of its probability marginal
distributions.

In particular, Fig.(1) reports the Gaussian case, wherelda) shows the stationary character-
istic function that has been interpolated on the sampledegafjathered in the vecter of eq.(29).
Panel (b) on the same figure shows the stationary densitinelthy FFT and in panel (c) and (d) the
comparison between the marginal densities of the displaneii and the velocityX obtained and
the Monte Carlo results are plotted. The agreement of thétsesnd the efficiency of the method
are very satisfactory.
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Figure 1: Oscillator excited by Gaussian white noise: ayattaristic function; b) density; c)
marginal distribution of the displacement; d) marginatriisition of the veloocity

The case of stable diffusion is reported in Fig.(2) that repthe same scheme of results previ-



ously outlined. For this example we have chosen a value-6fl1.5. Apart the very good agreement

of the results also in this case, it is interesting to notéttheeffect of the decreasing of the stability
index froma = 2 (previous Gaussian) ta = 1.5 is evident from the marginal densities. Indeed
comparing Fig.(1c) with Fig.(2c) and Fig.(1d) with Fig.j2tle slowest vanishing to zero behavior
of the tails in the stable case is evident.
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Figure 2: Oscillator excited by.5-stable white noise: a) characteristic function; b) densi
marginal distribution of the displacement; d) marginatrilsition of the velocity

6 Conclusions

In this paper, the stationary solution of a non-linear ¢l with non-linear viscoelastic damper
excited by the generaldvy white noise process has been studied. By proper apphiaaitstochastic
calculus the equation ruling the time evolution of the chtewstic function has been derived.

It has been shown that such equation can be manipulateden wwréhvolve Riesz fractional op-
erators. In such a way the structure of the equation assuraderm of a partial integro-differential
equation. The stationary solution has been found in ternm@hafacteristic function solving such
governing equation by a proper numerical scheme relyindheriinwald-Letnikov numerical ap-
proximation of the fractional operators. The method can laily extended to the treatment of



transitory states, by time step integration, and this is Bdasible because of the computational ef-
ficiency. Comparisons with Monte Carlo simulation have besgrorted, showing that very accurate
solution can be achieved by the proposed approach.
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