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This paper deals with a new family of displacement basedfelements with nodal integration for
Reissner-Mindlin plates. The Reissner-Mindlin model diéss the deformation field of a plate in
response to transverse loading in terms of the displaceofiéé¢ midplane and the rotations of the
fibers normal to the midplane. Finite elements are often asetilscretizations, but although they are
seemingly very reasonable choices, they can result in peleankior for thin plates, which is termed
shear locking. Many remedies have been proposed over this; tba literature is too extensive to
be reviewed here.

We present here an extension of the assumed-strain finiteealgechnique presented in [2] where
a successful approach to cure this trouble is proposed. fEneng point of the technique is the
method of weighted residuals where the weakly enforcedteansaroughly correspond to a strain-
displacement variational approach [4].

The weak kinematic equation (the strain-displacementioglship) is considered separately from
the weak balance equation, it is satisfied a priori and yitHdsassumed-strain operators via nodal
integration. The derived strain-displacement operatad to just the right number of constraints to
avoid shear locking as the thickness of the plate decreBsés the actual (generalized) strains and
the test strains are derived using special operators. $hisipoint where the nodal quadrature is
enabled by allowing for uniquely defined (assumed) straitiseanodes.

The nodal-integration rules are available for both tridagand quadrilateral elements, and yield
approximations for meshes consisting of an arbitrary mittiahgles and quadrilaterals.
Importantly, the degrees of freedom are only the primitiispthcement variables: transverse dis-
placements and rotations at the nodes.

1 SUMMARY OF THE GOVERNING EQUATIONS
Consider a plate referred to the following Cartesian cowatd frame:

V ={(z,y,2) € R®|z € [-t/2;t/2], (x,y) € A € R?}, Q)

where A is the area of the plate, antds the thickness of the plate. The boundary of the plate is
C = 0A. The 3-D displacement is denotadand its Cartesian components are

Up = 20y, Uy = —2@z, U,=W, (2)

whereyp, = ,(z,y) andp, = ¢,(x,y) are the rotations of the transverse normal about the
Cartesian axes andy, andw = w(z,y) is the deflection. The functions,, ¢,, andw are the
unknown fields in the plate bending problem, and we can caemlg express the three-dimensional
displacement vector in terms of the mixed-component vesfttre generalized displacemenis

[ﬁ] = [w,(pm,(py]T ) u=>Su, )



Table 1: Summary of the equations for the Reissner-Mindhteptheory. BC= boundary condition.
With some abuse of notation we write the boundary condites@pplying for each component
(normal, tangential, vertical) for either the essentiabhar natural kind at each point of the curve

Type Holds where Equation
Kinematics inA k=B%u, ~=Bu
Constitutive inA m = ﬁDbn . s=1tkG~y
Balance inA B 'm + B*Ts +tb = olu
Essential BC o On =0, 0Mp, =0, 0w =1
Natural BC onC' Mupp = Mipp OF Mys = Mps OF Sy = Spz

where we introduced the shifté& as defined next.
The bending symmetric gradient operator is defined%s= 23°, and the shear symmetric
gradient operator is defined &S, where

B = 8 —(9(}8y a/(;ax . B= { g?gw _01 (1)] S=|0 - 0| @®
0 —9/0x /oy Y
and is used to produce bending and shear strains
€ =28 =2k, € =~=DBu, (5)
The bending and the shear stresses are generated by thitutimestquation of plane stress
o = D%’ = 2D, o°= D% =kGe® =kGr. (6)

where in generaD’ andD? describes an anisotropic material. The balance equatigrbmeritten
using the above operators as

B ¢" + B a® + b= 08T = 0T S . 7)

We assuméb| = (0,0, b.(x, y)]” for simplicity. Integrating the balance equation throuigé thick-
ness of the plate obtains

B 'm+ B s+ b= ol 8)
where we define as usual
t 0 0
I=|0 t/12 0 , (9)

0 0 /12
and the resultants
t/2 3 t/2
m = / zobdz = —D K, S= / o’dz = tkG~ . (20)
t/2 —t/2

The equations for the Reissner-Mindlin theory are sumnadria Table 1.



2 WEIGHTED RESIDUAL FORMULATION

The weighted residuals, where the weakly enforced equationghly correspond to a strain-
displacement variational approach [4], is the startingipof the method. Thus, the various equa-
tions in Table 1 will be enforced either strongly (constiteatequation, essential boundary condition),
or weakly (kinematic equation, balance equation, and adhoundary condition). We recall now
briefly the construction of the weak form of the Reissner-difiimgoverning equations used in [2].

We shall assume, as is usual, that the finite element nodes tbar degrees of freedony;,
i, Pyi associated with node This is equivalent t@V, algebraic constraints between tha,
parametersy;, vz, ¢y, Where N, is the number of quadrature points ang is the number of
nodes.

Quadrature at integration points which correspond oner®1{o the nodes (that &, = N,,)
may yield exactly the right number of constraints, provitieese are linearly independent.

However, nodal quadrature cannot process the integramaistfre individual elements connected
at the node directly, since each contributing basis funarivative will be multi-valued at the node
(discontinuous across the element edges).

For the purpose of nodal quadrature, the basis functiongadi®es (or, equivalently, the strains)
should be therefore computed using a special strain-adispiant operator, and so we are led to
consider an assumed-strain method.

The residual equations are

rec = / [— B%7)" m — (B7) s +17 5 - gﬁTrﬁ} dA+7c=0. (11)
A
for the balance equation residual, whegear the natural boundary condition residual, and
rib = / NTDY (k- B'a) dA=0, rg,= / XNTD* (v - B*u) dA=0, (12)
A A

for the kinematic equation residual. Hemeis the test function (generalized displacement, as in-
dicated by the tilda), which is assumed to vanish along th&igw of boundary where essen-
tial boundary conditions are prescribed, as customarilyedo eliminate the unknown reactions:
[7]; = 0 wherei** component of the generalized displacement is prescribed 6Fhe test func-
tionsA” andA® have the meaning of generalized strains (curvatures arzd deéormations).

The balance residual is manipulated in a standard way to aiéf spatial derivative from the
stress resultants to the test function. The two residuadtiaps, (11) and (12), are equivalent to a
certain extent to a strain-displacement variational state [4] where they are merged into a single
residual equation. In the present context we keep the twdskaf residual separate. We will use
the weak kinematic equation to derive the assumed-strairatqr, thereby satisfying this equation a
priori: both the actual (generalized) straisy and the test strains®, A*, are derived using special
operators

AN =B%, k=Ba, \N=B%, v=Bua (13)
and we may note the resemblance to the original B-bar teabr{is], and the kinematic residuals
resulting in

TKy — / (Bb?’)TDb (Eb'ﬁ - Bbﬂ) dA = 0 5
s s (14)
rxs = | (B'R)TD* (B i — Bsa) dA=0.
A



(b) J,

Figure 1: Nodal patch illustrated on: a three-node triaaguiesh (a); a four-node quadrilateral
mesh (b); and a three-node triangular mesh with boundangitons (c).

3 ASSUMED-STRAIN OPERATORS
In this section nodal quadrature is enabled by allowing faguely defined (assumed) strains

at the nodes. At this point, the assumed-strain operﬁlérgS are not known, but can haerived
from the condition that they will make the kinematic resitdu@d 4) identically zero. The process

will be the same for botB’ andB’. Consequently we will describe the constructiorBof with the
adjustments necessary to constrﬁlétimplied.

We introduce the finite element approximation: = >, N;u;, andn = >, Nin;. The
discrete kinematic weighted residual equation becomes

~ —=sT s =S s ~
F}F(/ABID(BJ_BJ)dA)UJ = 0, (15)
I,J

where we have introduced matricBS, = B%(IV;), and the nodal strain-displacement matri&s
as not yet unspecified, that are used to produce the assurag sis

v = Zﬁial (16)

Evidently, then; are entirely arbitrary, and furthermore we would not wisk rhatrices§§ to
depend on the solutiom ;. Consequently, the vanishing of the integrals

/BI D*(B;-B5)dA=0, VJ, (17)

is implied for fixed!I. Refer to Figure 1 for an illustration that provide a betteerpretation of the
indices. For the indexX fixed, we note that in order to formulate strictly local ogamas, we should
only consider the strain-displacement matri&% defined within the elements.,r =1, ..., 6 con-
nected to nodé. The index.J then ranges ovel/ = J,,q = 1,...,6 andJ = I. Therefore, we
replacev.J in (17) with the limited range/ € nodes(elems(I)); the termnodes(e) refers to the
nodes of the elememt the termelems(I) refers to the elements connected to the nbdend the
termnodes(elems(7)) refers to the union of the nodes of the elements connecteuetmade!.
Thus, we will work with the integrals

/ B; DS (B, —B%)dA =0, J e nodes(elems(I)), (18)



for any fixed nodd .
Next, numerical quadrature at the nodes is introduced imtba integrals. For the two element
types that we consider in this section, the nodal quadratles are easily specified as

/A @@ da~Y S (o) ()T (@) Wi (19)

e Kenodes(e)

wheree ranges over all the elements in the me&hranges over all the quadrature points in the
element (in this case, the quadrature points coincide Wwémbdes: three or four for the two simplest
element shapesy); i is the location of the quadrature point (nodé€)x x ) is the Jacobian of the
isoparametric mapping, aidfx is the weight of the quadrature point.

Table 2 defines the quadrature rules for the element forinnktiscussed in this paper. The
seven-node triangle, it can be described as the basic sig-tnangle with one “node” associated
with a relative displacement degree of freedom, bubbletfan¢3]. As suggested in [2] an attractive
possibility is to eliminate the seventh node entirely byisgtthe bubble basis function to be iden-
tically zero (and suppressing all degrees of freedom aatamtivith the seventh node). The result
is asix-node element used with aeven-point integration rule (of Table 2). Note that the centroid
integration point is never associated with an active nodé keelongs to one and only one element,
and consequently it is just a regular integration point withaveraging operations involved. The
resulting scheme is referred to as NIP-T7. Here the samearseieused for the nine-node quadri-
lateral element. In the following developments, we assuragltis one particular fixed node. Using
numerical quadrature, the integral (18) is replaced withdiouble sum

Z Z J(:BK)WKEjTDS(wK) [E; — B%(xk)| =0, J €nodes(elems(])), (20)
e Kenodes(e)

wheree ranges over all the elements in the mesh. The sum over alleheats implies a mesh-wide
operation. Quite reasonably, we will try to avoid this. Reieg the order in which we apply the
double summation, witli ranging over all the nodes in the mesh, we obtain

Z Z J(:BK)WKEjTDS(:BK) {ESJ - BSJ(:BK)] =0, J € nodes(elems(l)). (21)
K ecelems(K)

Finally, for efficiency reasons the integration points dtldoe independent. Therefore, we will
require the vanishing of each of the terms in the above sum@ratgy

Z J(wK)WKﬁjTDS(wK) [ESJ - Bf,(mK)} =0, J€nodes(elems(I)). (22)
ecelems(K)

for all integration pointsk’. The matricesB% (xx) and the Jacobiafy (xx) are multi-valued at
nodek, depending on which element these quantities are evalahted nodds. The constitutive
matrix D*(xz k) is assumed to be single-valuedagt. This would not be the case for pointsc
located at a multi-material interface, and such posgjititdiscussed in the remarks below. Note



Table 2: Nodal quadrature rule for the three-node triangtkthe four-node quadrilateral and the
seven-node triangle [3] and the nine-node quadrilateral .

Type Parametric coordinates Weights:
_ +1N
Three-node triangle 1,42

£

+1
+1,n
Four-node quadrilateral £ 1,1,1,1
-1 +1

Seven-node triangle

+1 "
i i 9 1 4 16
Nine-node quadrilateral L o O:3,0:4,10: X
£ =
——o

thatﬁj andFSJ are element-independent. Therefore, by rewriting (22) as

> J@x)WkB) D (xx) {Ej - B;(wK)} =

ecelems(K)

=B D'@x) Y. J@x)Wx |B)-Bjax)| =
e€elems(K) (23)

—sT —s s
=B; D*(xx) |B; Y K J@x)Wk— Y  J@x)WkBjzx)| =0,
ecelems(K) e€elems(K)
we can conclude that the expression in the brackets musthyarielding

B, Y J@x)Wk- Y. J@x)WkBj@k)=0.

(24)
ecelems(K) e€elems(K)

This finally leads to the definition of the assumed-strainatodatrix as a weighted average of the
elemental strain-displacement matrices

ZeEelems(K) j(mK)WKBSJ (mK)
ZeEclcms(K) j(mK)WK

B = (25)



Thus, constructing the nodal strain-displacement matrase averages of the strain-displacement
matrices from the connected elements will satisfy the kiarresidual statement, enabling nodal
guadrature in the process.

4 NUMERICAL EXAMPLES

In this section, the performance of the described elementsimerically verified on some stan-
dard test problems. The solutions obtained are comparddtigse from other quadrilateral and
triangular elements available in literature.

4.1 Square plate with uniform load: moments

A square plate of side length, under uniformly distributed transverse load= 1, is herein
considered. Clamped condition is considered, imposing: ¢, = ¢, = 0. The analysis is carried
out for three different aspect ratid:/t = 10, L/t = 100 and L/t = 1000 using various regular
mesh. The following properties are assumét= 3 x 10%, v = 0.3 andk = % For symmetry,
only one quarter of the plate is modeled. Tables 3 and Figpre&ents the displacement results at
the centre of the clamped plate, together with the Energyegl6]-[7] and the bending moments
visualized as raised surfaces.

Table 3: Computed displacement and energy fer1/10,¢ = 1/100 andt = 1/1000 for a16 x 16
discretization. The displacement values are scaled bytarfa€10°, 10~2, 10~! respectively and
the energy values are scaled by a factor@¥, 102 and10° respectively.

NIP-T3 NIP-Q4 NIP-T7 NIP-Q9
N. elements w FE w E w E w E
1/10 0.54914 0.45939 0.54670 0.45687 0.54770 0.45539 0.54767 0.45539
Ref. Sol.  we, = 0.5477 x 10-5 E.. = 0.4554 x 1073
1/100 0.46267 0.35837 0.46063 0.35647 0.46124 0.35489 0.46147 0.35514
Ref. Sol.  we, = 0.4614 x 1072 E., = 0.35516 x 103
1/1000 0.46174 0.35729 0.45973 0.35542 0.45849 0.35191 0.46056 0.35409
Ref. Sol.  we, = 0.4605 x 10 E,, = 0.3541 x 10°

(a) (b)

Figure 2: Clamped square plate under uniform load with1/1000. Bending moments visualized
as raised surfaces: (a) triangular T7 element; (b) quadrdbQ9 element. Results for model for 16
element edges per side.
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Figure 3: Rhombic platé. /¢t = 100 with 8 = 30°. Moments along the short diagonal. Results for
model NIP-aT3, for 16, 32, and 64 element edges per side.
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Figure 4: Rhombic platé /¢t = 100 with 8 = 30°. Bending moments visualized as raised surfaces.
Results for model NIP-aT7, for 32 element edges per side.

4.2  Simply-supported rhombig(= 30°) plate with uniform load: moments

The challenging problem of the highly skewed rhombic platee(v angle5 = 30°) is explored
using the results of the convergence study [1]. The propedie: Young's modulu8 = 30 x 102,
Poisson ratior = 0.3, side lengthl, = 1, thicknesg = L /100, transverse uniform load of 1.0 units
— all data in consistent units. The boundary condition is:S8% 0. The definitive 3-D elasticity
study of this plate [1] provides the asymptotic solutionn@ergence in the energy of deformation is
assessed relative to several reference solutions. Tlosvialy meshes are used in combination with
the present formulations: NIP-Q4 and NIP-Q9(structurealdyilateral mesh), NIP-T3 and NIP-T7
(structured triangular mesh produced from the quadrédddry bisection along the long diagonal).

In Figure 3 are reported the representation of the prindigalding moments along the short
diagonal for the triangular model NIP-T3. Figure 4 visuaizanalogous results for the model NIP-
T7 as surfaces raised into the third dimension above the.plEte approximations of the infinite
moments at the obtuse corner shown as spikes. Note thatbagdés are not postprocessed-the
nodal moments are computed directly using the curvatuoas Equation (13). Figure 5 reports the
convergence in energy fdr/t = 100 (normalized by).2655085 x 10~ from Reference [1])

4.3 Clamped circular plate loaded with a central verticetéo

The response of the present models is studied for the coafigarof a clamped circular plate
of radiusR, with a central concentrated load, and for thickness to sam of 1/1000. Only one
guadrantis modeled with appropriate symmetry boundarglitions. The present quadrilateral NIP-
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Figure 5: (a) Rhombic plate with = 30°. Convergence in energy fdr/t = 100 (normalized by
0.2655085 x 10~* from Reference [1]); (b) Clamped circular plate loaded véithentral vertical
force: convergence in the normalized central point defyecti

Q4 and NIP-Q9 and triangle NIP-T3 and NIP-T7 are comparet thié Q4-SRI. The parameters
are: Young’'s modulug = 2.1 x 10°, Poisson ratio = 0.3, radiusR = 20.

Convergence in the normalized central point deflection ¢l this case is equivalent to con-
vergence in the energy) is reported in Figure 5(b). On therdtland, all the present models show
robust convergence rates, approximately 2.5 for the NIPafn8 the NIP-Q4 and NIP-Q9, and ap-
proximately 3.5 for the NIP-T7. This may be compared with¢bavergence rate of approximately
1 for the SRI.

CONCLUSIONS

An extension to high order elements of our technique, réggmbposed, has been presented,
completing a new family of assumed-strain finite elemensfarar-deformable (Reissner-Mindlin)
plates.

Weighted residual method (reminiscent of the strain-dispinent functional) was used to enforce
weakly the balance equation with the natural boundary ¢mmdind, separately, the kinematic equa-
tion (the strain-displacement relationship). The kinemakighted residual serves as a condition
from which strain-displacement operators were derivedhoidal integration, for linear triangles, for
quadrilaterals, and also for quadratic triangles and dlaeral. The degrees of freedom employed
were only the primitive variables: transverse displaceimand rotations at the nodes. A straight-
forward constraint count can partially explain the insevity of the resulting finite element models
to locking in the thin-plate limit. Numerical examples werged to illustrate the performance with
particular attention to resultants representation.
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