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This paper deals with a new family of displacement based finite elements with nodal integration for
Reissner-Mindlin plates. The Reissner-Mindlin model describes the deformation field of a plate in
response to transverse loading in terms of the displacementof the midplane and the rotations of the
fibers normal to the midplane. Finite elements are often usedas discretizations, but although they are
seemingly very reasonable choices, they can result in poor behavior for thin plates, which is termed
shear locking. Many remedies have been proposed over the years: the literature is too extensive to
be reviewed here.
We present here an extension of the assumed-strain finite element technique presented in [2] where
a successful approach to cure this trouble is proposed. The starting point of the technique is the
method of weighted residuals where the weakly enforced equations roughly correspond to a strain-
displacement variational approach [4].
The weak kinematic equation (the strain-displacement relationship) is considered separately from
the weak balance equation, it is satisfied a priori and yieldsthe assumed-strain operators via nodal
integration. The derived strain-displacement operators lead to just the right number of constraints to
avoid shear locking as the thickness of the plate decreases.Both the actual (generalized) strains and
the test strains are derived using special operators. This is the point where the nodal quadrature is
enabled by allowing for uniquely defined (assumed) strains at the nodes.
The nodal-integration rules are available for both triangular and quadrilateral elements, and yield
approximations for meshes consisting of an arbitrary mix oftriangles and quadrilaterals.
Importantly, the degrees of freedom are only the primitive displacement variables: transverse dis-
placements and rotations at the nodes.

1 SUMMARY OF THE GOVERNING EQUATIONS
Consider a plate referred to the following Cartesian coordinate frame:

V = {(x, y, z) ∈ R
3|z ∈ [−t/2; t/2], (x, y) ∈ A ∈ R

2} , (1)

whereA is the area of the plate, andt is the thickness of the plate. The boundary of the plate is
C = ∂A. The 3-D displacement is denotedu and its Cartesian components are

ux = zϕy , uy = −zϕx , uz = w , (2)

whereϕx = ϕx(x, y) and ϕy = ϕy(x, y) are the rotations of the transverse normal about the
Cartesian axesx andy, andw = w(x, y) is the deflection. The functionsϕx, ϕy, andw are the
unknown fields in the plate bending problem, and we can conveniently express the three-dimensional
displacement vector in terms of the mixed-component vectorof the generalized displacementsũ

[ũ] = [w, ϕx, ϕy]T , u = Sũ , (3)
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Table 1: Summary of the equations for the Reissner-Mindlin plate theory. BC= boundary condition.
With some abuse of notation we write the boundary conditionsas applying for each component
(normal, tangential, vertical) for either the essential orthe natural kind at each point of the curveC.

Type Holds where Equation

Kinematics inA κ = Bbũ , γ = Bsũ

Constitutive inA m =
t3

12
Dbκ , s = tkGγ

Balance inA BbT
m + BsT

s + tb = ̺I ¨̃u

Essential BC onC ϕn = ϕn or ϕs = ϕs or w = w

Natural BC onC mnn = mnn or mns = mns or snz = snz

where we introduced the shifterS as defined next.
The bending symmetric gradient operator is defined asBbz = zBb, and the shear symmetric

gradient operator is defined asBs, where

Bb =




0 0 ∂/∂x
0 −∂/∂y 0
0 −∂/∂x ∂/∂y


 , Bs =

[
∂/∂x 0 1
∂/∂y −1 0

]
, S =




0 0 z
0 −z 0
1 0 0


 (4)

and is used to produce bending and shear strains

ǫb = zBbũ = zκ, ǫs = γ = Bsũ , (5)

The bending and the shear stresses are generated by the constitutive equation of plane stress

σb = Dbǫb = zDbκ , σs = Dsǫs = kGǫs = kGγ . (6)

where in generalDb andDs describes an anisotropic material. The balance equation may be written
using the above operators as

BbzT
σb + BsT

σs + b = ̺ST ü = ̺ST S ¨̃u . (7)

We assume[b] = [0, 0, bz(x, y)]T for simplicity. Integrating the balance equation through the thick-
ness of the plate obtains

BbT
m + BsT

s + tb = ̺I ¨̃u , (8)

where we define as usual

I =




t 0 0
0 t3/12 0
0 0 t3/12


 , (9)

and the resultants

m =

∫ t/2

−t/2

zσbdz =
t3

12
Dbκ , s =

∫ t/2

−t/2

σsdz = tkGγ . (10)

The equations for the Reissner-Mindlin theory are summarized in Table 1.
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2 WEIGHTED RESIDUAL FORMULATION
The weighted residuals, where the weakly enforced equations roughly correspond to a strain-

displacement variational approach [4], is the starting point of the method. Thus, the various equa-
tions in Table 1 will be enforced either strongly (constitutive equation, essential boundary condition),
or weakly (kinematic equation, balance equation, and natural boundary condition). We recall now
briefly the construction of the weak form of the Reissner-Mindlin governing equations used in [2].

We shall assume, as is usual, that the finite element nodes carry the degrees of freedom,wi,
ϕxi, ϕyi associated with nodei. This is equivalent to2Nq algebraic constraints between the3Nn

parameterswi, ϕxi, ϕyi, whereNq is the number of quadrature points andNn is the number of
nodes.

Quadrature at integration points which correspond one-to-one to the nodes (that isNq = Nn)
may yield exactly the right number of constraints, providedthese are linearly independent.

However, nodal quadrature cannot process the integrands from the individual elements connected
at the node directly, since each contributing basis function derivative will be multi-valued at the node
(discontinuous across the element edges).

For the purpose of nodal quadrature, the basis functions derivatives (or, equivalently, the strains)
should be therefore computed using a special strain-displacement operator, and so we are led to
consider an assumed-strain method.

The residual equations are

rBC =

∫

A

[
−

(
Bbη̃

)T
m − (Bsη̃)

T
s + tη̃T

b − ̺η̃
T
I ¨̃u

]
dA + rC = 0 . (11)

for the balance equation residual, whererC ar the natural boundary condition residual, and

rKb =

∫

A

λbT Db
(
κ − Bbũ

)
dA = 0 , rKs =

∫

A

λsT Ds (γ − Bsũ) dA = 0 , (12)

for the kinematic equation residual. Hereη̃ is the test function (generalized displacement, as in-
dicated by the tilda), which is assumed to vanish along the portions of boundary where essen-
tial boundary conditions are prescribed, as customarily done to eliminate the unknown reactions:
[η̃]i = 0 whereith component of the generalized displacement is prescribed onC. The test func-
tionsλb andλs have the meaning of generalized strains (curvatures and shear deformations).

The balance residual is manipulated in a standard way to shift one spatial derivative from the
stress resultants to the test function. The two residual equations, (11) and (12), are equivalent to a
certain extent to a strain-displacement variational statement [4] where they are merged into a single
residual equation. In the present context we keep the two kinds of residual separate. We will use
the weak kinematic equation to derive the assumed-strain operator, thereby satisfying this equation a
priori: both the actual (generalized) strainsκ, γ and the test strainsλb, λs, are derived using special
operators

λb = B
b
η̃ , κ = B

b
ũ , λs = B

s
η̃ , γ = B

s
ũ (13)

and we may note the resemblance to the original B-bar technique [5], and the kinematic residuals
resulting in

rKb =

∫

A

(B
b
η̃)T Db

(
B

b
ũ − Bbũ

)
dA = 0 ,

rKs =

∫

A

(B
s
η̃)T Ds

(
B

s
ũ − Bsũ

)
dA = 0 .

(14)
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Figure 1: Nodal patch illustrated on: a three-node triangular mesh (a); a four-node quadrilateral
mesh (b); and a three-node triangular mesh with boundary conditions (c).

3 ASSUMED-STRAIN OPERATORS
In this section nodal quadrature is enabled by allowing for uniquely defined (assumed) strains

at the nodes. At this point, the assumed-strain operatorsB
b
,B

s
are not known, but can bederived

from the condition that they will make the kinematic residuals (14) identically zero. The process

will be the same for bothB
b

andB
s
. Consequently we will describe the construction ofB

s
, with the

adjustments necessary to constructB
b

implied.
We introduce the finite element approximation:ũ =

∑
I NI ũI , and η̃ =

∑
I NI η̃I . The

discrete kinematic weighted residual equation becomes

∑

I,J

η̃
T
I

(∫

A

B
s

I

T
Ds(B

s

J − Bs
J) dA

)
ũJ = 0 , (15)

where we have introduced matricesBs
J = Bs(NJ ), and the nodal strain-displacement matricesB

s

I ,
as not yet unspecified, that are used to produce the assumed strains as

γ =
∑

I

B
s

I ũI . (16)

Evidently, theη̃I are entirely arbitrary, and furthermore we would not wish the matricesB
s

I to
depend on the solutioñuJ . Consequently, the vanishing of the integrals

∫

A

B
s

I

T
Ds(B

s

J − Bs
J) dA = 0 , ∀J , (17)

is implied for fixedI. Refer to Figure 1 for an illustration that provide a better interpretation of the
indices. For the indexI fixed, we note that in order to formulate strictly local operations, we should
only consider the strain-displacement matricesBs

J defined within the elementser, r = 1, ..., 6 con-
nected to nodeI. The indexJ then ranges overJ = Jq, q = 1, ..., 6 andJ = I. Therefore, we
replace∀J in (17) with the limited rangeJ ∈ nodes(elems(I)); the termnodes(e) refers to the
nodes of the elemente, the termelems(I) refers to the elements connected to the nodeI, and the
term nodes(elems(I)) refers to the union of the nodes of the elements connected to the nodeI.
Thus, we will work with the integrals

∫

A

B
s

I

T
Ds(B

s

J − Bs
J) dA = 0 , J ∈ nodes(elems(I)) , (18)
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for any fixed nodeI.
Next, numerical quadrature at the nodes is introduced in thearea integrals. For the two element

types that we consider in this section, the nodal quadraturerules are easily specified as
∫

A

(•)(x) dA ≈
∑

e

∑

K∈nodes(e)

(•)(xK)J (xK)WK , (19)

wheree ranges over all the elements in the mesh,K ranges over all the quadrature points in the
element (in this case, the quadrature points coincide with the nodes: three or four for the two simplest
element shapes),xK is the location of the quadrature point (node),J (xK) is the Jacobian of the
isoparametric mapping, andWK is the weight of the quadrature point.

Table 2 defines the quadrature rules for the element formulations discussed in this paper. The
seven-node triangle, it can be described as the basic six-node triangle with one “node” associated
with a relative displacement degree of freedom, bubble function [3]. As suggested in [2] an attractive
possibility is to eliminate the seventh node entirely by setting the bubble basis function to be iden-
tically zero (and suppressing all degrees of freedom associated with the seventh node). The result
is a six-node element used with aseven-point integration rule (of Table 2). Note that the centroid
integration point is never associated with an active node, and belongs to one and only one element,
and consequently it is just a regular integration point withno averaging operations involved. The
resulting scheme is referred to as NIP-T7. Here the same scheme is used for the nine-node quadri-
lateral element. In the following developments, we assume thatI is one particular fixed node. Using
numerical quadrature, the integral (18) is replaced with this double sum

∑

e

∑

K∈nodes(e)

J (xK)WKB
s

I

T
Ds(xK)

[
B

s

J − Bs
J(xK)

]
= 0 , J ∈ nodes(elems(I)) , (20)

wheree ranges over all the elements in the mesh. The sum over all the elements implies a mesh-wide
operation. Quite reasonably, we will try to avoid this. Reversing the order in which we apply the
double summation, withK ranging over all the nodes in the mesh, we obtain

∑

K

∑

e∈elems(K)

J (xK)WKB
s

I

T
Ds(xK)

[
B

s

J − Bs
J (xK)

]
= 0 , J ∈ nodes(elems(I)) . (21)

Finally, for efficiency reasons the integration points should be independent. Therefore, we will
require the vanishing of each of the terms in the above sum separately

∑

e∈elems(K)

J (xK)WKB
s

I

T
Ds(xK)

[
B

s

J − Bs
J (xK)

]
= 0 , J ∈ nodes(elems(I)) . (22)

for all integration pointsK. The matricesBs
J(xK) and the JacobianJ (xK) are multi-valued at

nodeK, depending on which element these quantities are evaluatedat the nodeK. The constitutive
matrix Ds(xK) is assumed to be single-valued atxK . This would not be the case for pointsxK

located at a multi-material interface, and such possibility is discussed in the remarks below. Note
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Table 2: Nodal quadrature rule for the three-node triangle and the four-node quadrilateral and the
seven-node triangle [3] and the nine-node quadrilateral .

Type Parametric coordinates WeightsWK

Three-node triangle
�

�

��

��

1
3 , 1

3 , 1
3

Four-node quadrilateral
�

�

��

��

��

��

1, 1, 1, 1

Seven-node triangle © : 1
40 , � : 1

15 ,△ : 9
40

Nine-node quadrilateral

!!

"
+1!

+1!

-1!

-1!
© : 1

9 , � : 4
9 ,△ : 16

9

thatB
s

I andB
s

J are element-independent. Therefore, by rewriting (22) as

∑

e∈elems(K)

J (xK)WKB
s

I

T
Ds(xK)

[
B

s

J − Bs
J(xK)

]
=

= B
s

I

T
Ds(xK)

∑

e∈elems(K)

J (xK)WK

[
B

s

J − Bs
J(xK)

]
=

= B
s

I

T
Ds(xK)



B
s

J

∑

e∈elems(K)

J (xK)WK −
∑

e∈elems(K)

J (xK)WKBs
J(xK)



 = 0 ,

(23)

we can conclude that the expression in the brackets must vanish, yielding

B
s

J

∑

e∈elems(K)

J (xK)WK −
∑

e∈elems(K)

J (xK)WKBs
J(xK) = 0 . (24)

This finally leads to the definition of the assumed-strain nodal matrix as a weighted average of the
elemental strain-displacement matrices

B
s

J =

∑
e∈elems(K) J (xK)WKBs

J (xK)
∑

e∈elems(K) J (xK)WK
. (25)

6



Thus, constructing the nodal strain-displacement matrices as averages of the strain-displacement
matrices from the connected elements will satisfy the kinematic residual statement, enabling nodal
quadrature in the process.

4 NUMERICAL EXAMPLES
In this section, the performance of the described elements,is numerically verified on some stan-

dard test problems. The solutions obtained are compared with those from other quadrilateral and
triangular elements available in literature.

4.1 Square plate with uniform load: moments
A square plate of side lengthL, under uniformly distributed transverse loadbz = 1, is herein

considered. Clamped condition is considered, imposing:w = ϕx = ϕy = 0. The analysis is carried
out for three different aspect ratio:L/t = 10, L/t = 100 andL/t = 1000 using various regular
mesh. The following properties are assumed:E = 3 × 106, ν = 0.3 andk = 5

6 . For symmetry,
only one quarter of the plate is modeled. Tables 3 and Figure 2presents the displacement results at
the centre of the clamped plate, together with the Energy values [6]–[7] and the bending moments
visualized as raised surfaces.

Table 3: Computed displacement and energy fort = 1/10, t = 1/100 andt = 1/1000 for a16× 16
discretization. The displacement values are scaled by a factor of 105, 10−2, 10−1 respectively and
the energy values are scaled by a factor of103, 103 and109 respectively.

NIP-T3 NIP-Q4 NIP-T7 NIP-Q9
N. elements w E w E w E w E

1/10 0.54914 0.45939 0.54670 0.45687 0.54770 0.45539 0.54767 0.45539
Ref. Sol. wex = 0.5477× 10−5 Eex = 0.4554× 10−3

1/100 0.46267 0.35837 0.46063 0.35647 0.46124 0.35489 0.46147 0.35514
Ref. Sol. wex = 0.4614× 10−2 Eex = 0.35516× 103

1/1000 0.46174 0.35729 0.45973 0.35542 0.45849 0.35191 0.46056 0.35409
Ref. Sol. wex = 0.4605× 10 Eex = 0.3541× 109

(a) (b)

Figure 2: Clamped square plate under uniform load witht = 1/1000. Bending moments visualized
as raised surfaces: (a) triangular T7 element; (b) quadrilateral Q9 element. Results for model for 16
element edges per side.

7



−0.2 −0.1 0 0.1 0.2
−0.02

−0.01

0

0.01

0.02

0.03

Location along the Short Diagonal [Length]

M
om

en
t [

F
or

ce
*L

en
gt

h/
Le

ng
th

]

−0.2 −0.1 0 0.1 0.2
−0.02

−0.01

0

0.01

0.02

0.03

Location along the Short Diagonal [Length]
M

om
en

t [
F

or
ce

*L
en

gt
h/

Le
ng

th
]

−0.2 −0.1 0 0.1 0.2
−0.02

−0.01

0

0.01

0.02

0.03

Location along the Short Diagonal [Length]

M
om

en
t [

F
or

ce
*L

en
gt

h/
Le

ng
th

]

Figure 3: Rhombic plateL/t = 100 with β = 30◦. Moments along the short diagonal. Results for
model NIP-aT3, for 16, 32, and 64 element edges per side.

Figure 4: Rhombic plateL/t = 100 with β = 30◦. Bending moments visualized as raised surfaces.
Results for model NIP-aT7, for 32 element edges per side.

4.2 Simply-supported rhombic (β = 30◦) plate with uniform load: moments
The challenging problem of the highly skewed rhombic plate (skew angleβ = 30◦) is explored

using the results of the convergence study [1]. The properties are: Young’s modulusE = 30 × 103,
Poisson ratioν = 0.3, side lengthL = 1, thicknesst = L/100, transverse uniform load of 1.0 units
– all data in consistent units. The boundary condition is SS1: w = 0. The definitive 3-D elasticity
study of this plate [1] provides the asymptotic solution. Convergence in the energy of deformation is
assessed relative to several reference solutions. The following meshes are used in combination with
the present formulations: NIP-Q4 and NIP-Q9(structured quadrilateral mesh), NIP-T3 and NIP-T7
(structured triangular mesh produced from the quadrilaterals by bisection along the long diagonal).

In Figure 3 are reported the representation of the principalbending moments along the short
diagonal for the triangular model NIP-T3. Figure 4 visualizes analogous results for the model NIP-
T7 as surfaces raised into the third dimension above the plate. The approximations of the infinite
moments at the obtuse corner shown as spikes. Note that theseresults are not postprocessed–the
nodal moments are computed directly using the curvatures from Equation (13). Figure 5 reports the
convergence in energy forL/t = 100 (normalized by0.2655085× 10−4 from Reference [1])

4.3 Clamped circular plate loaded with a central vertical force
The response of the present models is studied for the configuration of a clamped circular plate

of radiusR, with a central concentrated load, and for thickness to spanratio of 1/1000. Only one
quadrant is modeled with appropriate symmetry boundary conditions. The present quadrilateral NIP-
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Figure 5: (a) Rhombic plate withβ = 30◦. Convergence in energy forL/t = 100 (normalized by
0.2655085 × 10−4 from Reference [1]); (b) Clamped circular plate loaded witha central vertical
force: convergence in the normalized central point deflection

Q4 and NIP-Q9 and triangle NIP-T3 and NIP-T7 are compared with the Q4-SRI. The parameters
are: Young’s modulusE = 2.1 × 106, Poisson ratioν = 0.3, radiusR = 20.

Convergence in the normalized central point deflection (which in this case is equivalent to con-
vergence in the energy) is reported in Figure 5(b). On the other hand, all the present models show
robust convergence rates, approximately 2.5 for the NIP-T3, and the NIP-Q4 and NIP-Q9, and ap-
proximately 3.5 for the NIP-T7. This may be compared with theconvergence rate of approximately
1 for the SRI.

CONCLUSIONS
An extension to high order elements of our technique, recently proposed, has been presented,

completing a new family of assumed-strain finite element forshear-deformable (Reissner-Mindlin)
plates.
Weighted residual method (reminiscent of the strain-displacement functional) was used to enforce
weakly the balance equation with the natural boundary condition and, separately, the kinematic equa-
tion (the strain-displacement relationship). The kinematic weighted residual serves as a condition
from which strain-displacement operators were derived vianodal integration, for linear triangles, for
quadrilaterals, and also for quadratic triangles and quadrilateral. The degrees of freedom employed
were only the primitive variables: transverse displacements and rotations at the nodes. A straight-
forward constraint count can partially explain the insensitivity of the resulting finite element models
to locking in the thin-plate limit. Numerical examples wereused to illustrate the performance with
particular attention to resultants representation.
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