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SUMMARY. The paper focuses on an alternative formulation tfte topology optimization of
structures acted upon by pressure loads according to theagpintroduced in [1] and [2]. The
method resorts to the modeling of an additional fluid phagkiwthe topology optimization frame-
work. The implementation of the incompressible phase esatd transfer pressure loads from
the domain boundaries to the evolving edges of optimal desithe core of the approach herein
presented consists in the adoption of a “truly—mixed” u#oizal formulation [3] coupled to the
enforcement of a global stress constraint that governs tesspre of the fluid phase. The pro-
posed method is shown to achieve robust optimal designstriectares acted upon by pressure
loads at a small computational effort. The adopted framkwas peculiar advantages with respect
to standard methods against the appearance of undesirgigéséiled with fluid in final layouts.

1 INTRODUCTION

The paper proposes a formulation for the topology optinoradf structures under pressure
loads that is alternative to the classical frameworks preeskin [4, 5].
Dealing with design—dependent loads, a crucial issue githesdure consists in the achievement of
an efficient procedure that transfers the loads originaigned on the boundary of the domain to
the edges of the evolving optimal design. Standard waysodtlii$ trouble resort to the adoption of
ad hoc algorithms that recover the load application susfateach step of the minimization process.
To avoid the implementation of such kind of complex procedijt ] firstly proposed to introduce an
additional fluid phase that enables the expected enforceofi¢ime pressure loads on the evolving
boundaries of the optimal design. The procedure mainlyistsis the formulation of a multi-phase
topology optimization setting for the achievement of thera minimum compliance, thus taking
into account a solid, a void and a liquid phase. The incongilsésphase is assumed to have a bulk
modulusK = oo, with the aim of introducing a negligible bias in the evalaatof the overall com-
plianceC. According to the scheme above introduced the fluid phasavalfor a straightforward
implementation of standard topology optimization teclueis|that only require the adoption of ro-
bust finite element discretizations to cope with the incaspible phase. [1] overcame the problem
adopting low ordet:-p formulations that were shown to achieve feasible solutigitisout the ap-
pearance of undesired oscillations at least in the exarplesidered in the work. A more affordable
choice consists in the adoption of finite element discrétina that are fully stable with respect to
the inf-sup condition of [3]. To this purpose one may resofigher ordern—p formulations [6]
or move to the adoption of “truly—mixed” schemes. Accordind?] the variational principle of
Hellinger—Reissner [3] is herein considered and coupledddscretization based on the composite
element of Johnson and Mercier [7].
The above numerical framework allows to solve several moislof topology optimization for pres-
sure loads but is not able to avoid the appearance of cafitie with fluid. A classical way to



solve this trouble consists in the introduction of an addiéil volume constraint that controls the
fluid volume fraction. An iterative procedure may be therefset up to completely remove the
filled cavities by progressively reducing the allowed flurdaunt. This procedure considerably in-
creases the computational burden since the optimizatgorithm must be called several times and
the optimal volume fraction that completely removes thedilcavities can not be achieved in a
straightforward way.

Alternatively, the original formulation may be updatedrottucing suitable pressure enforcements,
that allow to solve the problem in a single iteration, see [Phis set of constraints introduces an
upper bound to the pressys®f the fluid region, i.e. it enforcgs < p, wherep is the external load.
Focusing on the optimal designs that present holes filled fhiids it may be observed that these
non—empty cavities experience higher pressures with ceéspéehe fluid zones directly connected
to the boundaries and therefore acted upon by the pregsimeescribing an upper limit equal

in every zone made of liquid phase, one may therefore expaeinhove these undesired cavities.
This approach may reduce the computing time with respedtadtérative procedure based on the
evolving volume constraints. However, the adoption of miaegl enforcements increases the time
needed by the optimization algorithm when minimizing thdtraonstrained objective function. It
is well-known in fact that many gradient—based algorithesghe herein adopted Method of Moving
Asymptotes (MMA)[8], decrease their performances withraaréased number of local constraints.
Within the above framework the main aim of the present cbatidn is the improvement of the
numerical efficiency of the topology optimization settingtlmed above, i.e. the multi—-phase for-
mulation based on the control of the fluid pressure, as ailyirpresented in [2]. The proposed
approach takes full advantage of the features of the JM elemet only for its inherent stability
in handling the incompressible phase but also for the acglnestress constraints imposition. The
investigations presented in [9] suggest that the adopfi@giobal stress constraint may be a feasi-
ble choice if a nearly homogeneous stress state is expetfethl designs. This is the case of the
pressure field to be controlled.

A global stress constraint based on thenean of the fluid pressure is therefore herein implemented
on the average degrees of freedom of the considered eleftéats shown to produce the expected
designs that are free from cavities filled by fluid, while auetibn of computational times may be
also achieved.

The sequel of the paper introduces fundamentals of the adadptly—mixed scheme along with the
implemented multi-phase formulation for the minimum coiapte design. Peculiar attention is
paid to the global constraint on the fluid pressure along thiéhderivation of its sensitivities. Nu-
merical simulations are shown to assess the capabilititseomethod and to discuss its peculiar
features on a benchmark example.

2 THE TRULY-MIXED APPROACH
A few theoretical remarks on the truly—mixed approach areihegecalled, pointing out peculiar
issues on both the continuous and the discrete form as tHepevéxploited in the sequel. More
details on the subject may be found in [3] and [7].

2.1 The continuous formulation
LetQ € R? be a regular domain bounded B2 andC the elasticity tensor of the linear elastic
isotropic mediumg andu are the unknown stress and displacement fields, respgctivieile gis

the vector body loadu,; denotes the prescribed displacementgnwhile f, the prescribed traction
onI';, being,I' = I';UT";. The truly—mixed variational principle consists of two gps of equations.



The first one couples constitutive law and compatibilitgttare both tested by a virtual stress field
7. The second one is the equilibrium, that is tested by meatteafirtual displacement field The
“truly—mixed” weak formulation reads: fin, u) € H x W such thag - n [r,= f, and
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wheren denotes the normal vector to the boundary. It must be rerddhed stresses are main vari-
able of the problem and belong to a functional space thatthasgsregularity requirements, while
displacements play the role of Lagrangian multipliers.slissue remarkably affects the discretiza-
tion of the statement in Eqn. (1), that will be addressed értbxt paragraphs.

2.2 Finite element discretization

The above variational principle is discretized within ailvidnsional context resorting to the
composite element of Johnson and Mercier [7], that passenthsup requirement [3] for any
compressibility condition of the involved material. Thigans that the finite element choice is fully
stable even in the presence of the incompressible phaseodhdttuation or numerical instability is
expected in the achieved numerical results. Each JM eleiddatmade of three sub-triangl€3.
The displacement field is discretized via linear functiongtee whole element, as done in classical
displacement—based interpolation. The stress field iatipénterpolated within each sub—triangle
and the continuity of the traction between each sub-edg@i®& imposed. Denoting wittP; (T7;)
the space of the polynomials of degreel on T}, the space of approximation of stresses therefore
reads:

Hy={g, € H(div;Q), g, € HdiV; K), g, |z, € [P(T))]2?, j=1,2,3}, (2
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wheregh may be derived according to the following 15 degrees of foeest
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wheree; is thei—th edge of the triangular elemeft. Among the above degrees of freedom, the
three unknowns introduced in Egn. (4) are defined as the geeyhithe components of the stress
tensor on the whole triangle. This provides an accurate uneas the element—wise pressuyrg
that may be directly recovered performing the following gutation on each triangle:

_ Ozz + oyy

pi = 5 (5)

The element-wise average presspirés in fact derived taking into account ondy,, ando,,,, that
are two of the three dofs defined in Eqn. (4). It must be renthtkat the adoption of a JIM—
based discretization allows for a robust evaluation of bleghdisplacement field and the stress one.
Similar features may be achieved vigy formulations only adopting higher order approximations
with respect to those already considered in [1].



3 THE MULTI-PHASE TOPOLOGY OPTIMIZATION SETTING

As outlined in Section 1, the proposed approach is basedeoadtbption of a multi-phase topol-
ogy optimization that minimizes the compliance of the ollestaucture with a volume constraint on
the amount of material for the optimal design. To controldhising of cavities filled with fluid, the
adoption of a global stress constraint on the fluid pressuaésp included in the formulation.

3.1 The “bi—-material with void” interpolation

The stiffness penalization resorts to the adoption of twaiglevariables, i.epy andp. The first
interpolates between the cases where there is materialtpaowording to a classic SIMP (Solid
Isotropic Material with Penalization). The second one aslegRAMP (Rational Approximation of
Material Properties) to model the variation between thelfand the solid phase. Reference is made
to [10] for a detailed review on the above material modelse @bopted “bi—material with void”
scheme reads as follows:

s 1- P
K(pa pO) = Po (Km + ) (Kf - Km))7

1+q(p
(6)

Glp,p0) = 0l (G + Ty 7= (G = G,
whereK,,, andG,, are respectively the bulk and shear modulus of the elastipeessible material,
while Ky and Gy refer to the fluid phase. Peculiar attention must be paid deioto avoid the
arising of undesired numerical instabilities related ®phesence of an incompressible phase [1, 11].
To this purpose the simulations presented in the sequewadthe assumptiong = » = 3 and
s =6 >t = 3, as discussed in [2]. Referring to the fluid component, thevemt values of the
material properties adopted in the simulations&re= 200K, andG ¢ = 1075.

3.2 The pressure—constrained optimal problem
The following discrete scheme for the topology optimizatid structures that are acted upon by
pressure loads is implemented:

min C = PU
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In the above equatio® is the external load vector that enforces the presgufé C u the dual
displacements, whilg andp, are two vectors of unknowns for the design interpolatiorodticed



in Section 3.1. According to an element-wise discretizatibthe density variables, two unknowns
p; andpy; are assigned to each one of tNetriangles in the mesh.

The constraintin Eqn. (7)enforces the discrete truly—mixed form of the elasticitytgem descend-
ing from the continuous statement of Eqn. (1). It also poinisthe the overall compliance matrix
only depends on the density unknowns through the bilinaan té,, .

Eqgn. (7} simply represents the volume constraint, enfordihgs the maximum admissible volume
of solid material, i.e. an assigned fraction of the totaligieslomain volumé/;,;. A; is in fact the
bidimensional dimension of thieth element.

Eqgn. (7} is the global pressure constraint that is formulated thincary;—mean measure on thé
element—wise pressugg, see [12]. The dependence pnis introduced with the aim of reducing
the constraintimposition to the fluid region. The solid pha%.p = 1, does not provide in fact any
contribution to the sum in Eqn. (7))whatever the amount of materja). In order to avoid the pres-
ence of negative terms, the adopted valuesg wifust be chosen within the even numbers. Focusing
on the asymptotic behavior of the-mean global measure, it must be remarked that the maximum
pressuré is always bounded from below by the herein considered cainsirThe values of; that

are generally adopted in the simulations 4 in the investigations further presented) are especially
conceived to improve the numerical tractability of the pgeob within the optimization algorithm,
but may weaken the effectiveness of the enforcement. Aldeidecrease gf with respect to the
value of the external pressure may be therefore considaredier to lessen the above bias in the
numerical implementation of Eqn. (1)

3.3 Computational details

The problem in Egn. (7) is solved through the adoption of trethdd of Moving Asymptotes
(MMA) [8] in conjunction with the analytical computation$ the gradients. A crucial issue of the
proposed procedure hence resides in the handling of théigities of the global stress constraint.
The derivative of Eqn. (§) calledc, with respect to a generic density unknown, calledof the
typep; or py;), may be straightforwardly written as:

e 11 & pi\" 1 pi)" pi\""" 1 p;
Do n[N;(l m<ﬁ” N;[ 5““(1‘3) +(1 ’”)<z‘o) popr |’

(8)
whered;; is the Kronecher delta, i.ed;z; = 1 for p; = pi, otherwised;, = 0. One has to take
into account that the derivatives of the element-wise @yepaiessurg; with respect to the density
unknowns may be directly solved via a simple analytical cotapon. This descends from the
adoption of the criterion in Eqn. (5) and the independemssstinterpolation within the truly—mixed
variational principle. One may derive the sensitivitiesref relevant average degrees of freedom, of
the type in Eqn. (4), from a set of auxiliary mixed problems:
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Referring to the finite element interpolation, it must be fyneemarked that the saddle—point nature
of the mixed problem leads to a solving matrix in Eqn. ;(#)at is not positive defined. To this
purpose peculiar solvers must be adopted as reported in [13]



4 NUMERICAL RESULTS
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Figure 1: The piston problem.

To assess the capabilities of the proposed algorithm, thielgan depicted in Figure 1 is consid-
ered. The benchmark consists in finding the optimal desigmmiston whose upper edge is acted
upon by a pressure logd= 1, allowing forV = 0.3V;,;.

The original domain is firstly optimized under fixed loads, iadopting a standard formulation for
volume—constrained minimum compliance that resorts tcaasgtal mono—material interpolation.
The result is shown in Figure 2, achieving a final compliafice 8.061. Black regions mean solid
material, while white domains define the void zones.

The numerical scheme presented in Section 3.2 is subséygjiraptemented without taking into
account the global pressure constraint of Eqn.s.(7Jhe achieved result is shown in Figure 3
(C = 6.742), where grey regions define the additional fluid phase. Thadiglso presents the
relevant pressure map of the optimal layout.

As outlined in Section 1, the fluid in the filled cavity is moteessed with respect to the external
pressuré. This suggests the idea that suitable pressure constraayse able of controlling the
arising of filled cavities. The achievement of different lased zones with equal pressure has no
peculiar advantage on the optimal designs. The same reaylbmachieved via a direct connection
of the filled zones, thus reducing the amount of solid matérat separates the cavities.

According to the above discussion the whole Eqn. (7) is foeeeimplemented, taking into ac-
count then—mean constraint on the fluid pressure. Figure 4 shows thiewechoptimal design

Figure 2: Optimal design for fixed load.



(C = 7.501), that is in full agreement with the layout obtained via tli®ption of local pressure
constraints in [2] and is also very similar to the result lobse iterative volume enforcements on the
fluid fraction in [1].

It must be remarked that the proposed approach allows taecithe computational time needed to
solve the problem with respect to the alternative methodse@lmentioned. A single optimization
based on two constraints may be much more efficient with mgpenulti—constrained formulations
or iterative approaches. However one has to take into a¢¢banthe asymptotic nature of the-
mean and the values gfthat are usually assumed in the simulations may requiretaldeisetting
of the valuep to be implemented in Eqn. (7.)

ZE

Figure 3: Optimal design for pressure load (without the glalmnstraint in Egn. (%) and relevant
pressure map.

Figure 4: Optimal design for pressure load with the globalst@int in Egn. (73.

5 CONCLUSIONS

The paper has dealt with an alternative formulation to cojik the topology optimization of
structures that are acted upon by pressure loads. The mistiaded on the modeling of an ad-
ditional fluid phase that allows to transfer the pressuredsifrom the boundaries of the original



domain to the evolving edges of the optimal design. A minimaompliance volume—constrained
formulation has been therefore implemented resortinga@ttoption of a “truly—mixed” variational
formulation coupled to the enforcement of a global stresstraint that governs the pressure of the
fluid phase. The truly—mixed scheme provides the requirbdsimess in the evaluation of both the
displacement and the stress field, while the global comsteaéhibits peculiar advantages against
the achievement of undesired cavities filled with fluid in filzgouts. Due to the homogeneity of
the pressure field to be controlled, the adoption of a sinflbaj enforcement may be considered
a feasible alternative to more demanding multi-constrhfioemulations. Further investigations
are needed to investigate the sensitivity of the proposgarigthm with respect to the parameters
involved in the imposition of the global pressure constrain
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