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SUMMARY. In this paper an exhaustive free vibration analysis of multilayered plates and shells
embedding functionally graded layers, is considered. Both refined models, based on the principle of
virtual displacements, and advanced mixed models, based on Reissner’s mixed variational theorem,
are employed to investigate the vibration problem of functionally graded structures. In order to ob-
tain accurate values of frequency, the use of refined models is mandatory. Mixed models, which a
priori model both displacement and transverse shear/normal stresses, permit also to correctly obtain
the relative vibration modes in terms of displacements and stresses.

1 INTRODUCTION
The volume fraction of the constituents of a functionally graded material (FGM) changes gradu-

ally in a preferred direction (usually the thickness directionz) and consequently the elastic proper-
ties depend on the considered coordinate. FGMs have been presented as an alternative to laminated
composite materials that show a mismatch in properties at the material interfaces. This material dis-
continuity in laminated composite materials leads to large interlaminar stresses and the possibility
of the initiation and propagation of cracks.

FGMs were first proposed in Japan, by materials scientists in the Sendai area, in 1984 [1], as
thermal barrier materials. Since then, high-performance heat resistant barriers in FGMs have been
developed. The FGM concept has also been considered to improve energy conversion efficiency. For
other application fields, readers can refer to the excellent review by Koizumi [2]. An other interesting
review paper has been provided by Birman and Byrd [3].

The special feature of graded spatial compositions associated to FGMs provides freedom in the
design and manufacturing of novel structures; on the other hand, it also poses great challenges in
numerical modeling and simulation of the FGM structures. In this paper free vibration analysis
of multilayered plates and shells, embedding FGM layers, is considered. Some interesting natural
frequencies and free vibration analysis of FGM plates can be found in [4] and [5], where higher-
order two dimensional models are proposed. The extension to shell geometry is made in [6] and
[7], in this last paper a buckling analysis of cylindrical shells subjected to a temperature-specified
boundary condition is also made.

The above quoted papers demonstrate the importance of higher-order models to investigate func-
tionally graded structures. The models proposed in this work are refined and advanced/mixed two-
dimensional (2D) models obtained in the framework of Carrera’s Unified Formulation (CUF) [8],
this permits to obtain in a unified manner several two-dimensional models. They can differ for the
order of expansion in the thickness direction for primary variables (N = 1, ..., 4) and for the mul-
tilayer approach: Equivalent Single Layer (ESL) or Layer Wise (LW). CUF has been extended to
FGM structures in [9], where refined displacements models have been considered. Mixed models,
with ”a priori” displacement and transverse/shear stresses, have been extended to FGMs in [10] and
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[11]. In case of vibration analysis, in order to obtain the correct frequencies, the use of refined mod-
els is enough (if higher orders of expansion are employed). The use of mixed models is mandatory
for a correct evaluation of vibration modes in terms of displacements and stresses.

The paper has been organized as follows: Carrera’s Unified Formulation is described and ex-
tended to FGMs in Section 2; Section 3 gives the employed variational statements and the relative
consistent constitutive and geometrical equations; governing equations for the vibration problem are
described in Section 4; Section 5 discusses the main results for plate and shell geometries; conclu-
sions are given in Section 6.

2 CARRERA’S UNIFIED FORMULATION
In case of bi-dimensional multi-layered structures (plates and shells), Carrera’s Unified Formu-

lation (CUF) [8] permits to obtain a large variety of 2D models that differ in the order of used
expansion in thickness direction and in the manner the variables are modelled (Equivalent Single
Layer (ESL) or Layer Wise (LW) approach). The salient feature of CUF is the unified manner in
which all considered variables and fields (displacement, transverse shear/normal stresses, material)
can be treated. As usual in plate/shell theories, the considered variables and their variation are split
in a set of thickness functions depending on transverse coordinatez, and the relative terms depend-
ing on in-plane coordinates (α,β) only. According to this separation, a general variablea and its
respective variationδa can be written as:

a(α, β, z) = Fτ (z) aτ (α, β) , δa(α, β, z) = Fs(z) δas(α, β) , with τ, s = 1, . . . , N , (1)

whereN is the order of expansion in the thickness direction.
In a multi-layered plate/shell the thickness functions of the considered variables can be assumed

for the whole structure (ESL approach) or for each single layer (LW approach). In the former
case Taylor polynomials are employed as thickness functions while in the latter, combinations of
Legendre polynomials are used. For further details about CUF for multi-layered structures and the
relative assembling procedure we refer the reader to [8]. Shells have a curvilinear reference system
(α, β, z), when the radii of curvature are infinite these coordinates degenerate in the rectilinear ones
for plates(x, y, z).

2.1 CUF for displacement components
Due to the unified treatment of all variables, the three displacement componentsuα, uβ and

uz and their relative variations can be modelled via CUF, irrespective of whether FGM layers or
constant property layers are considered. In case of the ESL model, the expansion of the displacement
components is assumed for the whole multi-layer:

(uα, uβ , uz) = Fτ (uατ , uβτ , uzτ ) , (δuα, δuβ , δuz) = Fs (δuαs, δuβs, δuzs) , (2)

with Taylor expansions from first up to4th order:F0 = z0 = 1, F1 = z1 = z, F2 = z2, F3 = z3,
F4 = z4.

The LW model is obtained if we consider separately each layerk of the given multi-layered
structure:

(uk
α, uk

β , uk
z) = F k

τ (uk
ατ , uk

βτ , uk
zτ ) , (δuk

α, δuk
β , δuk

z) = F k
s (δuk

αs, δu
k
βs, δu

k
zs) . (3)

In this case, a combination of Legendre polynomials is employed as thickness functions:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fl = Pl − Pl−2 , with τ, s = t, b, l and l = 2, . . . , 4 . (4)
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Here, t and b indicate the top and bottom values for each layer. The Legendre polynomials are

P0 = 1, P1 = ζk, P2 = (3ζ2
k−1)
2 and so on, withζk = 2zk

hk as the non-dimensionalized thickness
coordinate ranging from−1 to +1 in each layerk. zk is the local coordinate andhk the thickness
of thekth layer. Displacement componentsuα, uβ anduz for shells degenerate inux, uy anduz for
plates, respectively.

2.2 CUF for transverse shear/normal stresses
Transverse shear/normal stressesσn in case of mixed models, are always modelled a priori in

LW form. For a generic layerk:

(σk
αz, σ

k
βz, σ

k
zz) = F k

τ (σk
αzτ , σk

βzτ , σk
zzτ ), (δσk

αz, δσ
k
βz, δσ

k
zz) = F k

s (δσk
αzs, δσ

k
βzs, δσ

k
zzs). (5)

The chosen thickness functions are the combinations of Legendre polynomials as seen for the dis-
placement approximation. In case of plates, the transverse shear/normal stress vector isσk

n =
(σk

xz, σ
k
yz, σ

k
zz).

2.3 CUF for elastic properties of FGMs
In FGM layers the elastic properties change continuously in the thickness direction. The varia-

tion of the elastic characteristics is usually given in terms of exponential and/or polynomial functions
applied directly to the engineering constants such as Young’s ModuliEi, Shear ModuliGij , Bulk
Moduli Bi and/or Poisson ratioνij or directly to the material elastic coefficientsCij . Actually, since
in each point of the plate a relation between the engineering constants and the material elastic coef-
ficients holds, only the second case can be treated. Generally, the variation of the elastic coefficients
matrix in the thickness direction can be described by multiplying a material constant by a function
of z, i.e.:

C(z) = C0·f(z) , (6)

whereC can be the matrix of elastic coefficientsQ in case of refined models, or the matrix of
modified coefficientŝQ in case of mixed models.

The procedure does not depend on the thickness lawsf(z). Thus, any possible material gradient
can be accounted for. Now, applying the ideas behind CUF, the following expansion is made [9]:

C(z) = Fb(z)Cb + Fγ(z)Cγ + Ft(z)Ct = Fr Cr , (7)

where the thickness functionsFr are taken in the same manner as in the LW expansion for displace-
ments and transverse shear/normal stresses:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fγ = Pγ − Pγ−2 , with γ = 2, . . . , Nr . (8)

The actual values ofC are then recovered as a weighted summation on the termsCr. The weights
are given by the thickness functionsFr. The order of the expansion can be freely chosen as for the
displacements. In this paper the maximum value ofNr is 10. It is mandatory to choose such a high
order of expansion to ensure the necessary accuracies [9], [10].

The procedure to include the varying elastic coefficients in the model requires the computation of
theCr arrays. This task can be accomplished by solving for each componentCijr a simple algebraic
system of orderNr. The actual values are calculated atNr different locations along the thickness
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(z1, . . . , zNr ):
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. (9)

3 VARIATIONAL STATEMENTS
Two different variational statements can be applied. In case of refined models, only displace-

ments are considered as variables of the problem, and the Principle of Virtual Displacements (PVD)
is employed. For mixed models, Reissner’s Mixed Variational Theorem (RMVT) is applied in order
to a priori modelling both displacementsu and transverse shear/normal stressesσn.

The geometrical relations for shells link the strains with the displacement components. For a
generic layerk:

εk
pG = (εk

αα, εk
ββ , γk

αβ) = (Dk
p + Ak

p)uk ,
εk
nG = (γk

αz, γ
k
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k
zz) = (Dk

np + Dk
nz −Ak

n) uk .
(10)

Strainsε are split in in-plane (p) and out-plane (n) components. The matricesD contain the differ-
ential operators. The matricesA include algebraic terms for the geometrical information of shells:
they disappear in case of plates. The displacement vectoru has componentsuα, uβ anduz in the
three curvilinear directionsα, β andz. In the case of plates, the curvilinear coordinates degenerate
in the rectilinear onesx, y andz, and the displacement components areux, uy anduz. In-plane
and out-plane strain components for plates areεk

pG = (εk
xx, εk

yy, γk
xy) andεk

nG = (γk
xz, γ

k
yz, ε

k
zz),

respectively.

3.1 Principle of Virtual Displacements
For a vibration problem and for multilayered plates and shells embedding FGM layers, PVD is

written as [9]: ∫

V

(
δεT

pGσpC + δεT
nGσnC

)
dV = δLe − δLin , (11)

whereV stands for the volume of the considered multilayered structure andδLin =
∫

V
ρδuT ü dV

is the external virtual work made by the inertial forces.u is the displacement vector,̈u is the
second temporal derivative, andρ is the mass density.δLe is the virtual work made by the external
forces. The in-plane stresses areσk

pC = (σk
αα, σk

ββ , σk
αβ) for shells andσk

pC = (σk
xx, σk

yy, σk
xy) for

plates. The subscriptG means geometrical relations, the subscriptC indicates the substitution of
constitutive equations.

The relative constitutive equations are the well-known Hooke’s law, which for an FGM structure,
use the approximation of elastic coefficients as indicated in Section 2.3:

σk
pC = FrQk

pprε
k
pG + FrQk

pnrε
k
nG ,

σk
nC = FrQk

nprε
k
pG + FrQk

nnrε
k
nG .

(12)

MatricesQk
ppr, Qk

pnr, Qk
npr andQk

nnr contain the elastic coefficients for each layerk, and they have
dimension [3× 3].
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3.2 Reissner’s Mixed Variational Theorem
In case of mixed models the RMVT is employed, which for a multilayered FGM structure is

written as [10]:
∫

V

(
δεT

pGσpC + δεT
nGσnM + δσT

nM (εnG − εnC)
)
dV = δLe − δLin . (13)

In this case, the subscriptM indicates ”a priori” modelled variables. The consistent constitutive
equations are obtained from the Hooke’s law in Equation (12):

σk
pC = FrQ̂k

pprε
k
pG + FrQ̂k

pnrσ
k
nM ,

εk
nC = FrQ̂k

nprε
k
pG + FrĈk

nnrσ
k
nM .

(14)

Q̂k
ppr, Q̂k

pnr, Q̂k
npr andQ̂k

nnr are the modified matrices of dimension [3× 3]. The approximation of
Section 2.3 is applied in case of FGM layers.

4 GOVERNING EQUATIONS
For both models, the governing equations are obtained by substituting the geometrical relations

(G) and the constitutive equations (C) in the variational statements. Then, Carrera’s Unified For-
mulation is employed for the two-dimensional approximation. Algebraic closed form solutions are
obtained after integration by parts and supposing simply supported boundary conditions and har-
monic forms for both displacements and stresses. Governing equations are written in terms of few
fundamental nuclei which do not formally depend on the order of expansionN used in thez direc-
tion and on the description of variables (LW or ESL). By assembling such nuclei via indexesτ ands
for the order of expansion inz, k for the multilayer procedure andr for FGM properties, the global
matrices of governing equations are obtained.

4.1 Refined governing equation
In the case of refined models, the governing equation is:

Kkτsr
uu uk

τ = −Mkτsr
uu ük

τ . (15)

For a free vibration problem, the external forces are discarded and only the inertial ones are included.

4.2 Mixed governing equation
In the case of mixed models, both displacements and transverse shear/normal stresses are a priori

modelled, so governing equations are:

Kkτsr
uu uk

τ + Kkτsr
uσ σk

nτ = −Mkτsr
uu ük

τ

Kkτsr
σu uk

τ + Kkτsr
σσ σk

nτ = 0 .
(16)

A static condensation is applied for the free vibration analysis.

4.3 Free vibration analysis
The free vibration analysis leads to an eigenvalue problem. Upon substitution of harmonic ex-

pressions, the governing equations assume the form of a linear system of algebraic equations in the
Ωk domain:

K∗Û = ω2
mnMÛ , (17)
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whereK∗ is the equivalent stiffness matrix obtained by means of static condensation in case of
mixed model. M is the inertial matrix and̂U is the vector of unknown variables. Only the free
vibration analysis is investigated in this article, and the external loadings are therefore set to zero
and the relative boundary conditions are exactly fulfilled. By definingλmn = ω2

mn, the solution of
the associated eigenvalue problem becomes:

||K∗ − λmnM̂|| = 0 . (18)

The eigenvectorŝU associated to the eigenvaluesλmn (or to circular frequenciesωmn) define the
vibration modes of the structure in terms of primary variables. Once the waves number (m,n) has
been defined in the in-plane directions, the number of obtained frequencies is equal to the degrees of
freedom of the employed two-dimensional model. The relative eigenvector can be obtained in terms
of primary variables, for each value of frequency, in order to have the modes plotted in the thickness
direction.

4.4 Acronyms
Equivalent single layer theories based on PVD are named as ED1-ED4 where the last digit indi-

cates the order of expansion in the thickness direction. The relative layer wise models are named as
LD1-LD4 where the letter E (equivalent single layer) is replaced with the letter L (layer wise). In the
case of mixed models, based on RMVT, the letter D, for PVD, is replaced with the letter M; so the
acronyms are EM1-EM4 and LM1-LM4 for ESL and LW theories, respectively. Classical Lamina-
tion Theory (CLT) and First order Shear Deformation Theory (FSDT) are obtained from ED1 model
via a typical penalty technique.

5 NUMERICAL RESULTS
In order to validate the proposed models, two different assessments are here proposed: - a one-

layered simply supported FGM plate with polynomial material law as proposed in [5]; - a one-
layered simply supported FGM cylindrical shell with material polynomial law as given in [6]. Fur-
ther results will be given at the conference, in particular for the multilayered configurations.

First, the plate geometry is investigated. The plate is in aluminium at the top, and the properties
gradually change from metallic to ceramic (at the top). Further details about the material properties,
the geometry and the reference solution can be found in [5]. The solution by Matsunaga [5] is a
higher-order two-dimensional theory, so a quasi-3D solution is provided as suggested in [9] via a
discrete layer method. In Table 1, only PVD models are given because the use of mixed theories
does not improve the results in terms of circular frequencies; however mixed models are mandatory
in order to obtain the correct mode in terms of displacements and stresses, as indicated in Figure
1. The LM4 model permits to obtain correct evaluations of vibration modes in terms of transverse
shear/normal stresses. The plate is one-layered, so if higher orders of expansion are employed in
the thickness direction (N = 4), the quasi-3D results are obtained for both ESL and LW models.
Classical theories such as CLT and FSDT result inappropriate for FGM plates analysis. Imposed the
waves number (m = n = 1 in this case), only refined models give the higher frequencies related to
the further introduced degrees of freedom. CLT gives 3 frequencies because it has only 3 degrees of
freedom (dof) in the thickness direction; FSDT has 5 dof and it gives 5 frequencies, and so on for
the other refined models.

The second case is a cylindrical shell with the same material properties and thickness law of
the plate case, it has been proposed by Matsunaga in [6]. In [6], a higher-order two-dimensional
model has been proposed, these results can be improved by the use of refined and mixed models
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[5] LD4 ED4 ED1 FSDT CLT 3D
ω̄1 6.1932 6.1932 6.1932 6.2112 6.2112 6.3405 6.1932
ω̄2 30.685 30.685 30.685 30.686 30.686 30.687 30.685
ω̄3 51.795 51.795 51.795 49.455 51.867 51.873 51.795
ω̄4 222.43 222.43 222.43 246.37 246.37 - 222.43
ω̄5 227.29 227.30 227.30 251.59 251.59 - 227.30
ω̄6 403.06 403.73 403.73 414.70 - - 403.74
ω̄7 433.49 436.90 436.90 - - - 436.90
ω̄8 444.99 447.93 447.93 - - - 447.93
ω̄9 645.98 808.78 808.78 - - - 808.78

Table 1: FGM isotropic plate with polynomial material law [5] and exponentK = 1. Free vibration

problem, non-dimensional circular frequenciesω̄ = ωh
√

ρm

Em
for m = n = 1. Thickness ratio

a/h = 10.

with higher-order of expansions in the thickness direction, as clearly reported in Table 2. Here, for
several combinations of wavelengthsm andn, the fundamental frequency is given. The Matsunaga

K h/Rβ m [6] LM4 ED4 LD3 ED2 CLT FSDT
1 0.500 2 0.2720 0.2768 0.2765 0.2768 0.2771 0.2811 0.2778

0.200 4 0.7218−1 0.7113−1 0.7117−1 0.7113−1 0.7119−1 0.7206−1 0.7137−1

0.100 6 0.2821−1 0.2766−1 0.2771−1 0.2766−1 0.2768−1 0.2792−1 0.2770−1

0.050 6 0.1020−1 0.1013−1 0.1013−1 0.1013−1 0.1013−1 0.1015−1 0.1014−1

0.010 10 0.9454−3 0.9434−3 0.9446−3 0.9434−3 0.9434−3 0.9438−3 0.9436−3

0.001 18 0.3068−4 0.3090−4 0.3090−4 0.3090−4 0.3090−4 0.3090−4 0.3090−4

4 0.500 2 0.2209 0.2261 0.2258 0.2262 0.2267 0.2313 0.2280
0.200 4 0.5995−1 0.5879−1 0.5884−1 0.5880−1 0.5893−1 0.5980−1 0.5912−1

0.100 6 0.2391−1 0.2330−1 0.2334−1 0.2330−1 0.2335−1 0.2359−1 0.2336−1

0.050 6 0.8449−2 0.8372−2 0.8381−2 0.8372−2 0.8375−2 0.8395−2 0.8384−2

0.010 10 0.7879−3 0.7856−3 0.7856−3 0.7856−3 0.7856−3 0.7860−3 0.7858−3

0.001 18 0.2571−4 0.2569−4 0.2569−4 0.2569−4 0.2569−4 0.2569−4 0.2569−4

10 0.500 2 0.1972 0.2021 0.2018 0.2021 0.2030 0.2000 0.2000
0.200 4 0.5438−1 0.5344−1 0.5348−1 0.5345−1 0.5367−1 0.5469−1 0.5384−1

0.100 6 0.2224−1 0.2174−1 0.2178−1 0.2174−1 0.2181−1 0.2210−1 0.2182−1

0.050 6 0.7667−2 0.7601−2 0.7609−2 0.7601−2 0.7604−2 0.7628−2 0.7615−2

0.010 10 0.7219−3 0.7198−3 0.7198−3 0.7198−3 0.7199−3 0.7203−3 0.7201−3

0.001 18 0.2351−4 0.2349−4 0.2349−4 0.2349−4 0.2349−4 0.2349−4 0.2349−4

Table 2: FGM isotropic cylindrical shell with polynomial material law [6] and several exponentsK.

Free vibration problem, non-dimensional circular frequenciesω̄ = ωh
√

ρc

Ec
. For several thickness

ratiosh/Rβ , the fundamental frequencies are calculated forn = 1 andm from 2 to 18.

solution [6] gives good results for low values of thickness ratios (thin shells) or for low values of
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Figure 1: FGM isotropic plate with polynomial material law [5] and exponentK = 5, thickness
ratio a/h = 10. Mode in terms of displacements and stresses for the fundamental frequency for
m = n = 1. LD4 vs. LM4.

m (low modes). For thick shells and/or higher modes (higher values of the wavelengthm), the
use of refined and mixed models, with higher orders of expansion in the thickness direction, results
mandatory. The shell is one-layered, so no differences are exhibited for ESL and LW models. The
curvature does not introduce further considerations: so, as in the case of plate, the use of mixed
models is mandatory for a correct evaluation of vibration modes in terms of displacements and
stresses. At the conference, the Table 2 will be given in a complete way, by separately studying the
effect of the thickness ratio and the effect of the wavelengths: refined models are mandatory to study
thick shells and plates, and higher values of wavelengthsm andn.

6 CONCLUSIONS
A free vibration analysis of multilayered plates and shells, embedding FGM layers, has been

presented in this paper. Refined and mixed models have been employed, and their validity, in the
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case of functionally graded layers, has been demonstrated. Refined models permit to obtain a quasi-
3D evaluation of frequencies in case of vibration problem, but the use of mixed models is mandatory
in the case of vibration modes given in terms of displacements and stresses. Further results will be
presented at the conference, in particular the importance of refined and advanced models will be
remarked in the case of higher order modes, and/or thick and moderately thick plates and shells.
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