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SUMMARY. This paper deals with the evaluation of the strength domain for non-periodic masonry
using a random media micromechanical approach. The strength domain of the homogenized con-
tinuum is evaluated through the use of the hierarchy theory related to partitions with increasing size
and using a failure criterion based on the mean stress state of each phase. The generalized plane
state formulation, employed in the numerical models, allows to take into account the out-of-plane
stresses and their effects on failure mechanisms. As a benchmark, the proposed procedure is applied
to a sample of periodic masonry subjected to biaxial stress states: the strength domains obtained are
in good agreement with the experimental ones; furthermore, the numerical model correctly repro-
duces the main failure mechanisms. Then, the application of the procedure to an actual non-periodic
masonry allows to evaluate its strength surface and to verify the convergence of the domains with
the increase in size of the portions of the partitions.

1 INTRODUCTION
During the past thirty years, several investigations were carried out with the aim to determine the

behavior of various kinds of masonry in different states of stress. The complex aspects of such a kind
of study are due to the combined effect of the anisotropic overall response and the nonlinearities of
the constituents and of the interface. These surveys were directed on one hand to determine masonry
failure criteria in an analytical form, i.e. with the use of mathematical relations, employing limit
analysis or models based on elastic stress distributions [1, 2, 3]; on the other hand, they exploited the
results of experimental tests. For what concerns the latter kind of investigation, it is well-known that
the most thorough testing programme on biaxial behavior of masonry was carried out by Page [4, 5].
The tests and the subsequent elaborations [6] allowed to establish failure surfaces for brickwork
loaded in orthogonal biaxial compression and tension-compression states of principal stresses.

Furthermore, the qualitative observation of experimental results [7] permitted to single out dif-
ferent kinds of failure mechanisms. In particular, when one of the principal stresses prevailed, failure
was reached in a plane normal to the panel, otherwise, failure occurred by splitting on a plane parallel
to the panel.

For this reason, many kinds of mathematical frames commonly used to study masonry behavior,
such as plane stress, appear inadequate, because they cannot consider the presence of out-of-plane
stresses and so they do not allow to model some of the failure mechanisms. On the contrary, the use
of generalized plane state can be suitable to describe a micromechanical model for masonry material,
as suggested by several authors [8, 9].

In this paper, starting form the homogenization approach proposed by Cluni and Gusella [10, 11],
a method for the determination of the masonry strength domain is presented.
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Figure 1: Reference solid for the generalized plane state for homogeneous (a) and heterogeneous (b)
material.

2 MODELING STRATEGIES FOR THE BEHAVIOR OF MASONRY MATERIAL: THE
GENERALIZED PLANE STATE OF AXIAL STRAIN

The generalized plane state is a kinematic two-dimensional problem, provided with three-dimen-
sional components at the constitutive level, that can be specialized in several plane problems. The
reference solid is a finite length cylinder Ω placed in a R3 Euclidean space, which refers to a coor-
dinate system x1, x2, x3 (Fig. 1), with x3 as the longitudinal axis. In the following we will take into
account both the cases of homogeneous (Fig. 1(a)) and multi-phase solid, the latter made up of n
phases whose distribution varies randomly in the x1x2-plane but not in the x3 direction (Fig. 1(b)).
A linear elastic and isotropic behavior is assumed for the materials.

The foundamental hypothesis is that the stress tensor is independent from the x3 direction. This
implies, through the compatibility and kinematic equation, that the general form of the displacement
field is

u1 = −A

2
x2

3 + Dx2x3 + Fx3 + f(x1, x2) (1)

u2 = −B

2
x2

3 −Dx1x3 + Hx3 + g(x1, x2) (2)

u3 = (Ax1 + Bx2 + C)x3 + h(x1, x2). (3)

where the constants A, B, C, D, F , H and the functions f , g and h depend on the boundary
conditions imposed on the bases and determine different kinds of plane problems [12].

The case of generalized plane state of axial strain, considered in the following to analyze masonry
panels, is characterized by A = B = D = 0, F = H = 0 and h = 0: these assumptions determine
the absence of the tangential components in the longitudinal direction for stress and strain tensors
and make two generic cross sections remain plane and parallel.

The solving equations of the elastic problem are reduced to 10 (2 equilibrium equations, 4 kine-
matic conditions and 4 constitutive laws) with 11 unknowns (stress and strain components and dis-
placements field). The further equation is obtained by the overall equilibrium condition in the x3
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direction; in the case of heterogeneous solid, it can be written as a summation over the n phases
n∑

i=1

∫

Ai

σ
(i)
33 dAi = 0 (4)

where Ai indicates the area of the ith phase .
Using the (4) together with the constitutive relations and the compatibility equation

ε33 = C

the value of the constant C is

C = −
∑n

i=1
λi

2(λi+µi)

∫
Ai

(
σ

(i)
11 + σ

(i)
22

)
dAi

∑n
i=1

µi(3λi+2µi)
λi+µi

Ai

. (5)

Unlike the most commonly used plane stress state, this kind of mathematical frame allows to
take into account the out-of-plane behavior of the masonry panel. In particular, the presence of the
σ33 stresses assumes a relevant rule in the modeling of some failure mechanisms, as will be shown
in the following.

3 EVALUATION OF NON-PERIODIC MASONRY STRENGTH DOMAIN
3.1 Homogenization approach

The estimation of the strength domain of the homogenized continuum is performed through the
approach proposed by He [13] as an extension of the one proposed by Huet [14] in the elastic field.

Let us consider a partition Pδ of the solid Ω constituted by portions Ωi with a nominal size d,
where i = 1 . . . nδ , such that

Ω = Ω1 ∪ Ω2 ∪ . . . ∪ Ωnδ
, with Ωi ∩ Ωj = ∅ ∀ i 6= j. (6)

For each portion Ωi, the apparent strength domains Dapp
σi (for natural BC) and Dapp

εi (for essential
BC) can be evaluated. Being Dapp

σδ and Dapp
εδ the apparent strength domains of the heterogeneous

solid corresponding to the partition Pδ , the following relations are given

Dapp
σδ ⊇

nδ⋂

i=1

Dapp
σi Dapp

εδ ⊆
nδ∑

i=1

γi Dapp
εi (7)

where γi is the volume ratio of the portion Ωi over Ω such that 0 ≤ γi ≤ 1 and γ1+γ2+. . .+γnδ
= 1.

Moreover, in presence of two partitions, Pδ′ , with nδ′ portions of size d′, and Pδ′′ with nδ′′ portions
of size d′′ > d′, the next hierarchy of inclusions is demonstrated [13]

⋂

x∈Ω

D(x) ⊆ Dapp
σδ′ ⊆ Dapp

σδ′′ ⊆ Dapp
εδ′′ ⊆ Dapp

εδ′ ⊆ 〈D〉 (8)

where D(x) is the local strength domain of a generic point and the two bounding values

⋂

x∈Ω

D(x) 〈D〉 =
1

vol(Ω)

∫

Ω

D(x)dΩ (9)

represent the limits of Sachs and Taylor respectively, analogous to the limits of Voigt and Reuss in
elastic analysis.
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3.2 Failure criteria for the masonry material and its constituents
The application of the approach proposed in 3.1 requires the definition of a failure criterion for

the masonry material. This is a problematic matter because, generally, all phases participate to the
overall strength, each with a peculiar, different behavior.

The method proposed in this paper consists of considering that the overall strength limit of the
specimen is reached when, with the increase of the boundary loads or of the boundary displacements,
the mean stress tensor of one of the phases satisfies its own yield condition. It should be noted that,
in this way, the local evolution of microcracks and/or plastic strains developed before the global col-
lapse is taken into account in an overall way. On the other hand, the method allows to perform elastic
analyses in generalized plane state of axial deformation with significant computational advantages
and, at the same time, adequate results, as will be shown in the following.

Owing to the linearity of the method, which allows effects superposition, and since the problem
is kinematically plane, each specimen has been studied under only six different kinds of boundary
conditions (σ0

ξ and ε0
ξ , with ξ = 1, 2, 3):

σ0
1 =

[
1 0
0 0

]
, σ0

2 =
[

0 0
0 1

]
, σ0

3 =
[

0 1
1 0

]
(10)

ε0
1 =

[
1 0
0 0

]
, ε0

2 =
[

0 0
0 1

]
, ε0

3 =
[

0 1
1 0

]
. (11)

Then, the general state of stress 〈ση〉 has been obtained from the variation of the a, b, c coeffi-
cients in the expression

〈ση〉 = κ
[
a〈σ0

1η〉+ b〈σ0
2η〉+ c〈σ0

3η〉
]

(12)

where κ is a small factor that provides a state of stress far enough from the crisis.
Being 〈σ(i)

η 〉 the mean stress state of the ith phase and λ
(i)
η a stress state multiplicative factor by

which the strength condition of the phase is satisfied

F (i)(λ(i)
η 〈σ(i)

η 〉) = 0, (13)

the ultimate strength value of a heterogeneous material portion determined by the application of a
certain set of boundary conditions is defined by the following overall mean stress tensor

σf
η = min

i
{λ(i)

η } · 〈ση〉. (14)

For what concerns the choice of the strength condition for each phase (yield function F in (13)), a
failure criterion in which both the isotropic and the deviatoric parts of the stress tensor participate to
the ultimate strength, proposed by Lubliner et al. [15], has been used. The yield function calculated
on the mean stress tensor of the ith phase is

F (〈σ〉) =
1

1− α

[
αI1 +

√
3J2 + βσ̂max

]
− σc (15)

where I1 and J2 are the first invariant of the isotropic part and the second invariant of the deviatoric
part of the stress tensor respectively, α and β are parameters which depend on uniaxial tension and
compression (σt and σc) and equibiaxial compression (σb) of each single phase, as defined below

α =
σb − σc

2σb − σc
β =

σc

σt

(
1− α

)− (
1 + α

)
(16)

and σ̂max is the maximum value of the principal stress tensor.
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4 NUMERICAL RESULTS: STRENGTH DOMAIN FOR PERIODIC MASONRY
As a benchmark of the method, the experimental tests of masonry under biaxial stress states

carried out by Page [4, 5] and then elaborated by Dhanasekar et al. [6] have been used.
The numerical model has been developed in ABAQUS environment, using bidimensional el-

ements with 3 and 4 nodes with a generalized plane state formulation [16]. The choice of the
mechanical parameters has been based on the experimental data and the numerical elaborations of
Shieh-Beygi and Pietruszczak [17] for the missing values (Tab. 1).

Phase E [MPa] ν σc [MPa] σt [MPa] σb [MPa]
Brick 6740 0.167 15.41 1.5 17.0
Mortar 1700 0.20 5.08 0.5 6.0

Table 1: Mechanical characteristics of the masonry constituents - E: Young’s modulus; ν: Poisson’s
ratio; σc: failure stress in uniaxial compression; σt: failure stress in uniaxial tension; σb: failure
stress in equibiaxial compression. See [15] for details.

Three models, at different values of bed joints slope (90◦, 67.5◦ and 45◦ from the vertical direc-
tion), have been studied with the application of natural and essential boundary conditions.

The results obtained using the basic cases of boundary conditions, σ0
1, σ0

2, ε0
1, ε0

2, have been
superposed to have several states of stress and to plot the whole curves, which appear very close
each other owing to the dimension of the analyzed models, greater than those of the RVE (defined
according to Hill [18]).

In Fig. 2 experimental and numerical strength domains are compared. The numerical results
are in good agreement with the experimental ones. It should be noticed that the proposed method
allows to recognize some experimental failure mechanisms: ultimate stress in biaxial compression
is reached owing to the failure of the brick phase, while in tension-compression the failure occurs
for the one or the other phase. Obviously, biaxial tension cases are characterized by the failure of
the weaker phase, i.e. the mortar.

5 NUMERICAL RESULTS: STRENGTH DOMAIN FOR NON-PERIODIC MASONRY
5.1 Statement of the problem

The numerical approach previously introduced has been applied to a quasi-periodic masonry wall
of a monumental and historical structure sited in the center of Italy (Fig. 3(a)).

To obtain a consistent separation of the phases, a photographic image of the wall (Fig. 3(a))
was elaborated through DIP (Digital Image Processing) techniques [19] (Fig. 3(b)). Then, a regular
mesh with 4-nodes square elements has been created through an automatic numerical procedure, in
which the algorithm assigns each 5 mm square cell of a prefixed grid to either one phase or the other
according to the local concentration of the phases. Fig. 3(c) shows as an example a portion before
and after the meshing process.

The wall, having 2000 mm square size, has been subdivided using four partitions named P1, P2,
P3 and P4 made of 25, 16, 9 and 4 portions respectively (Fig. 4); the term P5 indicates the entire
panel.

5.2 Evaluation of the overall strength domain
The procedure explained in section 3.2 has been used to estimate the overall strength domain of

the homogenized continuum. In particular all basic cases of boundary conditions σ0
1,σ

0
2, σ

0
3 and
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Figure 2: Strength domains of periodic masonry obtained by experimental tests [4] (a)-(c)-(e) and
numerical procedures (b)-(d)-(f).
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(a) (b) (c)

Figure 3: Photographic image of the non-periodic masonry wall analysed (a); processed digital
image (b) and a portion after the discretization process.

(a) (b)

Figure 4: Examples of partitions of the masonry wall: P1 with n1 = 25 (a) and P3 with n3 = 9 (b).

ε0
1, ε

0
2, ε

0
3 have been considered to obtain three-dimensional surfaces in the σn, σp, τ space, where

n and p indicate the direction normal and parallel to the bed joints. This choice of reference frame
identifies an intrinsic orthotropic property of masonry that directly arises from the pattern and the
arrangement of inclusions.

For each portion, the superposition principle has been applied by varying a and b coefficients
at fixed values of c (eq. 12) for natural and essential boundary conditions, to obtain several closed
curves which belong to the spatial strength domain [20].

The strength domains Dapp
σδ and Dapp

εδ are obtained from the relations (7).
Figure 5 graphically shows the convergence of the surfaces with the increase in size of portions.

In particular, the surfaces of partitions P1 (red), P2 (blue) and P4 (black) evaluated in natural (dashed
line) and essential (continuous line) boundary conditions have been sectioned by planes with con-
stant values of τ .

Figure 6 shows the overall strength domain obtained for the homogenized continuum, repre-
sented by iso-tangential curves projected in the σn, σp plane (Fig. 6(a)), and by curves in σn, σp, τ
3D space (Fig. 6(b)).
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Figure 5: Strength domains: convergence of the homogenized failure surfaces of the partitions P1,
P2 and P4 on τ = 0.0 (a) and τ = 4.0 (b) planes.

6 CONCLUSIONS
Starting from a critical study of the experimental results given in literature and considering the

masonry material as a composite, in this paper a method for the evaluation of strength domain of
non-periodic masonry has been proposed.

The adopted procedure uses a generalized plane state of axial strain formulation, which allows
to keep into account the presence of out-of-plane stresses with a low computational load; the failure
criterion adopted for brick and mortar is concrete-type, while for the whole specimen it is defined
through average stresses in the phases.

The failure surfaces are obtained through the application of natural and essential boundary con-
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Figure 6: Strength domain: (a) Projections of failure surface sections at τ = const planes on σn, σp

plane. (b) three-dimensional representation in σn, σp, τ space.

ditions. The homogenization technique is based on the Hill’s definition of the RVE; using parti-
tions with increase in size of the portions, the hierarchy relations that can be established among the
strength domains allow to single out the failure criterion for the homogenized material.

One of the best advantages of the procedure is the quickness of calculus. In fact the general state
of stress of a test portion is obtained by the effect superposition of three basic cases for each type of
boundary condition analyzed in the elastic field.

The reliability of the method is proved, for periodic masonry, by the comparison of the numerical
results with the experimental ones given in literature and by the recognition of some basic failure
modes. Then, the method is applied to a non-periodic masonry wall: the results obtained for portions
of different size show a good convergence.

In this way for the first time, as much as the authors are acquainted with, a method for the
estimation of the strength domain of non-periodic masonries which takes into account the actual
material heterogeneity and its pattern is proposed.

References
[1] Francis, A.J. and Horman, C.B. and Jerrems, L.E., “The effect of joint thickness and other

factors on the compressive strength of brickwork”, in Proceedings of the Second International
Brick Masonry Conference, (British Ceramic Research Association, Stoke-on-Trent), West, H.
W. H. and Speed, K. H., 31-37 (1971).

[2] Hilsdorf, H.K., “An investigation into the failure mechanism of brick masonry loaded in axial
compression”, Design, Engineering and Constructing with Masonry Products, Johnson, F. B.,
Gulf, Houston, Texas, 34-41 (1969).

[3] Hendry, A.W., Structural Masonry, Macmillan, UK (1998).

[4] Page, A.W., “The biaxial compressive strength of brick masonry”, Proceedings of the Institu-
tion of Civil Engineers, Part 2, 71, 893-906 (1981).

[5] Page, A.W., “The strength of brick masonry under biaxial tension-compression”, International
Journal of Masonry Construction, 3, 26-3 (1983).

9



[6] Dhanasekar, M., Page, A.W. and Kleeman, P.W., “The failure of brick masonry under biaxial
stresses”, in Proceedings of the Institution of Civil Engineers, Part 2, 79, 295-313 (1985).

[7] Andreaus, U., “Failure criteria for masonry panels under in-plane loading”, in Journal of Struc-
tural Engineering, 122, 37-46 (1996).

[8] Pegon, P. and Anthoine, A., “Numerical strategies for solving continuum damage problems
with softening: application to the homogenization of masonry”, Computers & Structures, 64,
623-642 (1997).

[9] Anthoine, A., “Homogeneization of periodic masonry: plane stress, generalized plane strain
or 3D modelling?”, in Communications in Numerical Methods in Engineering, 13, 319-326
(1997).

[10] Cluni, F. and Gusella, V., “Homogenization of non-periodic masonry structures”, in Interna-
tional Journal of Solids and Structures, 41, 1911-1923 (2004).

[11] Gusella, V. and Cluni, F., “Random field and homogenization for masonry with nonperiodic
microstructure”, in Journal of Mechanics of Materials and Structures, 1, 357-386 (2006).

[12] Cheng, A.H.-D., “On generalized plane strain poroelasticity”, International Journal of Rock
Mechanics and Mininig Science, 35, 183-193 (1998).

[13] He, Q.-C., “Effects of size and boundary conditions on the yield strength of heterogeneous
materials”, Journal of the Mechanics and Physics of Solids, 49, 2557-2575 (2001).

[14] Huet, C., “Application of variational concepts to size effects in elastic heterogeneous bodies”,
Journal of the Mechanics and Physics of Solids, 38, 813-841 (1990).
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