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SUMMARY: The paper considers the problem of evahgathe maximum load that an elastic-
plastic frame structure can withstand when matesiaklement softening is present. Here we
propose an extension of the Linear Matching Mettmébke into account material softening. A
three steps procedure is described which systeafigtievaluates the structural response for
different levels of softening. Stable solutions abtained for high and low levels of softening,
but numerical stabilities in the procedure can ofouintermediate degrees of softening.

1 INTRODUCTION:

It is well known that localized strain softeninghlb@ior causes important consequences for the
overall structural response. There are a numbesirctimstances where the softening issue is
relevant: local buckling of beams in portal framlesal buckling in sandwich shell structures; and
degradation in strength of composite structures tduimternal cracking and fiber failure. In all
such cases classical limit analysis is not appat@rand the prime motivation is the development
of appropriate mathematical programming methodgHerdirect evaluation of a maximum load.
It is well known that localized strain softeninghla@ior causes important consequences for the
overall structural response. Recently, the appboadf mathematical programming methods to the
limit analysis of portal frames has been consadidatnd summarized by Cocchetti and Maier [1].
These methods have also been extended to the belwdélastic-softening plastic portal frames,
emphasizing the importance of Mathematical Programgrwith Equilibrium Constraints (MPEC)
methods by Ferris and Tin-Loi [2] and Tangaramvamgl Tin-Loi [3, 4]. Here we propose an
extension of the Linear Matching Method to take® iatcount material softening. Linear Matching
Methods are a class of programming methods whereeagh iteration, equilibrium and
compatibility are satisfied and convergence is isgub by ensuring material consistency.
Convergent methods have been derived for clasdicat analysis by Ponter, Fuschi and
Engelhardt [5] and shakedown by Ponter and Engdihi@]. Recently, a detailed study of
convergence of both upper and lower bounds forabdrames has been carried out by Barrera,
Cocksand Ponter [7]. In this paper the work is extenttedvaluate the maximum load that portal
frames with a softening moment/curvature relatignshn support.

2 PROBLEM SPECIFICATION:

In common with all structural systems, portal frame@an be analyzed within a kinematic
framework defined by a set of displacements, ia taise the deflectiorﬂf at the intersection of



beams atx; that are compatible with a set of plastic hingetions ®¢ at positionsh, . Hence
the deformation of the structure is subjected teewere subclass of all the poss&)Ie modes of
behavior, those defined b& anquC The equilibrium of bending momenM with loads
F’is then defined by a Galerkin crlterlon such Hemmllbnum is satisfied if the foIIowmg virtual

work relationship holds fall possible sets ofy; and GJI ;
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Consider a structure composed of an elastic-plastiterial that exhibits softening (see
Figure.1a). The structure is subjected to a sgiroportional loadsiF, and the objective is to
find the values oA} dDjC that will yield the largest value of the load farct
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WhereM ; is the plastic moment correspondinghviite hinge rotationbjc at hinge
positionh; . We consider the moment-rotation relationship d¢atéd in Figure 1a, where three
different regions can be distinguished: elastidaede), plateau regiond ), and softening region
(9). The value of M for each region is given below:
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whereP is the slope of the softening branch as showrigarg 1.
3 LINEAR MATCHING METHOD .

The Linear Matching Method (LMM) attempts to ctost, as the limit of an iterative
procedure, linear solutionsp; andM ;, for the loadAF; by varying the set of linear moduli

Rj:
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by a particular scaling factor, which is differdat each region in Fig.1, as discussed below. Eq.
(4) describes an arbitrary sign consistent desoriptf the relationship between the moments, in
equilibrium, and compatible rotations which is daleaof describing any type of holonomic
constitutive assumption. The procedure descrlbddv\bprowdes an iterative procedure which
seeks a sequence of valuesRjfdenoted bﬁj , So that each solution more closely approaches
the correct solution.

We start the procedure with a linear squtionR«?r= R, a constant and arbitrafy, producing an

initial solution CTJ? and l\7|?. In the subsequent iterative procedure the modRhi are adjusted



R

according to a specified design criterion so thdisaribution of can be found, which for a

prescribed rotatiom&)'j‘ , Whereu is a scaling factor that is determined by the gestriterion, the

moment can be brought onto the moment-rotationec(sge Figure 1b). This procedure takes into
account the three different regions of the constiélresponse as given by (3 a-c). Hence the new
R distribution is:
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Figure la-b. a) Material behavior; b) Matching mdare at incremeikt+1 in the plateau region

Rt = M
]

where the value oM ; associated with the prescribed rotatm is given by (3a-c).

A new linear solutlon is now constructed R>r— :“1 The Ioad for thigk+1)" solution is
ch(kJsen by computing the loading paramertﬁrN correspondmg to the previous soluUdﬁ and
CD

At each iteration a correspondlng static appreiom to the maX|mum load can be found by
scaling the moment dIStI’IbutIOMJ which is in equilibrium WItMK|N F; so that, for the largest
possible value ofl = AST the scaled moments lie on or below the momentaiure curve of
Fig 1:

Rf (5)
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In this process the solution converges to the ek#og kinematic and static bounds are equal.
For P=0 convergence certainly occurs [7] but, theoito proceed to the more general case, we



need to identify a suitable criterion for scalihg totations. This is the subject of the following
section.

4 EXTENSION OF THE LINEAR MATCHING METHOD FOR BTERMINATION OF
THE MAXIMUM LOAD

The process of evaluating the maximum load a straccan support for a softening
moment/curvature relationship consists of the feitg three major steps based on the LMM (see
Figure 2):

1) The Linear Matching Method is employed to determihe maximum load at which
® < ®. throughout the structure.

2) The range of values of the slopefor which the load can be increased beyond that
determined in (1) is identified.

3) For values ofP which satisfy the criteria established in (2) thaximum load that the
structure can withstand is determined through a dtege iterative procedure based on
the Linear Matching Method.

4.1 Step 1 — rotation limit
A linear analysis with an initial arbitrary valué»and an initial moduli distributiorR; is

performed. The solution is then scaled considettiegconstraints on the rotatiods< d)'c (see
Figure 2) so that a scalar parameggiis given by:
CD'
U= —Fc (7)
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A kinematic boundA¥,,, , to the maximum loadAy** at which® < ®! is determined by the

following virtual work statement:
k -
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where the expressions fod _. are given by (3a-c). At each iteration the rotsl stiffnesses

Pl
are updated using the LMM and a new linear solutiith the new moduli and load given by (8)
to calculate an improved kinematic bound. At eidetation a static bound can be determined
using (6). The iterative process is stopped wherkthematic and static bounds are within
0.00001% of each other.

4.2 Step 2 — Values of P for which the load cainbeeased beyond that of step 1
We now evaluate the values of the softening s®far which the load can be increased
beyond that given by eqn (8). Step 1 provides afseinge rotationsud)j . From the moment

curvature relationship of (3) in Fig 1 we can detiere the tangent stiffness(see Figure 2). Note



that for hinges whergap; = d)'c the tangent stiffness i&=-P. It can be shown [8] that a

sufficient and necessary condition for the loadapa@eter to be able to be increased beyond
AMAX iS
J

defk™T)> 0 9)

where K T°7 is the global tangent stiffness matrix for thaisture, which, for a prescribed elastic
stiffnessR, is a function of the softening modulBsinequality (9) is satisfied foP < P ,

where Pj; is the value oP at which the determinate is zero. For larger eslafP the load

cannot be increased beyond that determined inlsteq the maximum value of the load

parameter ig"A* = AWAX

4.3 Step 3- Maximum load fd? < P

Barrera et al [8] demonstrate that a two stage mméxx-iterative procedure can be employed to
determine A" for values of the softening slopePcrit. The first stage involves using the
LMM to provide a set of rotations for an arbitrdoad factorA (in practice it is generally most
appropriate to start with the set of rotations deteed from the calculation 9]?’”‘). We now

scale the distributioprq)j . Asp is increased the rotations translate along the embmelation

curve of Fig 1 as illustrated in Fig 2. For a givalue ofy we can calculate the local tangent

stiffnessk and global tangent stiffness for the structdfe™ . We now wish to maximise the

value of subject to the constraint that the solution iblgta This again requires that the

determinate oK T°T is positive, i.e. the maximum value gfis obtained by equating the

determinate to zero. This maximisation projectrars that for step 2, but nolis prescribed and
M s the variable, whereas befqrewas prescribed from step 1 aRdvas the variable.

Having determined a compatible set of rotationefsiage 1, eqn (8) is used to provide a
kinematic estimate of the maximum load and a cpording static estimate can be obtained using

(6). The kinematic and static estimates are ngdoformal bounds to the exact valuelyf*
but it can be shown [8] that the exact result imwted when the two solutions are equal to each
other.

The rotations'uq)j are now employed to determine a new set of modiigithe LMM

procedure described in section 3. These providertbduli for the new linear problem which is
solved by minimising the total potential energytlé system. This procedure results in a new
compatible displacement field which can be useih@ist into stage 1 of the min-max process.

For the situation wheré=0, the constitutive model of 3(a-c) reduces to astid perfectly

plastic material. In this limit the determinant & °" is equal to zero whepis increased to a

value such that a mechanism of collapse is activayethe hinges corresponding to the set of
curvatures that lie along the plateau of Figure The LMM sequentially evolves the mechanism



until the exact limit load for the structurd, , is obtained. In this limit the procedure is

equivalent to the method described by Barrera pt]dbr determining the collapse load of a

perfectly plastic material.

For values oP in the range 0 tdP.;; AV

is bounded from above b}, and from below by
/]?Ax . The min-max procedure of step 3 interpolates betvwbese extreme values. We describe

an application of this three steps procedure irfdhewing section.
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Figure 2. Three steps procedure for determiningrtagimum load

5. APPLICATION OF THE THREE STEPS PROCEDURE TO MBILE PORTAL FRAME

In this section we apply the procedures describegkction 4 to the single story portal frame of
Figure 3. The frame is fixed at its base nodesd. & The vertical loa¥ =aH and horizontal
load H =4 remain proportional, with the magnitude represeénby the load factod . We
present results for the situatian=0.25. For problems where concentrated loads apdiealp
equilibrium requires that the maximum and minimuenting moments occur at the intersection
of uniform beam sections, or the points of appiwabf the loads, i.e. at nodes 1 to 5 of Figure 3.
Hence plastic hinges may only occur at these nadesthe rotation of local plastic hinges are

given by®,, j=1to j =5 as shown in Figure 4. For this combination of b#ue exact limit

load solution consists of a sway mechanism [7] (Sgare 3c).

We consider the situation where the elastic mod&a45 kNm andg, = 0.033, so that the
plastic momentM . = 148kNm, and define the extent of the plateau regiondasg — ¢, .
Figure 4a shows the variation thl%('Ax as a function of the size of plateau regidn For values
of 5 greater than 0.018, step 1 of the above procegiuesAy™* = A, =0.594. Thus steps 2 and

MAX

3 are redundant. For smaller valuesdpfi;™" <A and we need to employ steps 2 and 3 to

determine the peak load. Fdr= 001 AY** =0576 and the value of the critical slogcrit
determined from step 2 of the procedure describexkction 4.2 is 22 kNm. Results for the third



step of the procedure (see section 4.3) is showiguare 4b where the evolution of the maximum
load is reported as a function of the sldhevvhere/lMAX decreases monotonically frod to

AYAX asP is increased from 0 to 22 kNm.
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Figure 3. a-c. a) A single story frame; b) consitiet behaviour; c¢) collapse
mechanism foa=0.25

5.1 Graphical representation of the solution process
Convergence of step 3 of the maximum load proceduagy be shown through the following
graphical representation of the iterative processHe example shown in Figure 3a-cdor 0.
The problem of Fig 3 is essentially a two degredreédom problem. It proves convenient to
illustrate the solution process in terms of thepldisements u and v defined in Figure 3. A
graphical representation of the solution procegddagied in u-v space in Figure5. In the first part
of step 3 of the procedure outlined in section 4t method simply scales the mechanism
determined from a linear calculation. Thus the sotulies along a radial line radiating from the
origin in u-v space as illustrated in Figure 5. eTprocess of maximising the scaling factor

locates a solution along this radial path (pdinitithe Figure) and this is used to calculateltiael
factor /I}QN using egn (8). In the second part of the procedigscribed in section 4.3 the
effective stiffnesses are updated by applying thM_and a linear problem is solved for a
prescribed Ioad’lelN . A surface of constant potential energy for thizd is plotted in Figure 5

that passes through point 1The radial solution path used in the first gartangential to the
surface at this point. This is a general featuréhe solution process [8]. The combination of u
and v that minimises the total potential energyesponds to point 2 of Figure 5.

The above process is repeated with the displacemettérn obtained from the minimising

process scaled to determine a new value of the fmadr/if(,,\, . The new radial path plotted on

the figure passes through point 2, with the newtsmh represented by point.2 A surface of
constant total potential energy is again tangemtidhe radial line. Minimising the total potentia
energy produces a new solution, point 3. This @seds repeated until the kinematic and static



results agree within a small tolerance. It is emidfrom Figure 5 that as this iterative process
proceeds the elliptic surfaces of constant poteetieergy get smaller and successive solutions
become closer together.
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Figure 5. Graphical representation of the min-maacpss for step 3 of the iterative
procedure

6. CONCLUSIONS

The Linear Matching Method provides a programminrgthod for the evaluation of limits in
classical plasticity that differs significantly froother programming methods. As demonstrated in
[7] the procedure exhibits strong convergence pttgse This paper has concentrated on the
extension of the LMM to materials which exhibit wfing. A three step process has been
described which systematically maps out how theimam load that a structure can support
depends on parameters within the model. As withctassical method of Ponter et al [5-7], step 1
of the process exhibits strong convergent propeertiglso a unique solution foP.; is obtained
directly through implementation of step2, but thare currently no uniqueness and convergence
proofs for the min-max procedure of step 3. Foremmmplex problems than considered here the
solution process can become unstable for valueB cfose toP, . Solutions for frameworks
with more degrees of freedom than considered hadeam evaluation of these instabilities is
presented elsewhere [8].
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