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SUMMARY. A procedure is illustrated in order to study beams with variable cross-sections 

subjected to sub-follower forces. The analysis is based on a variational approach with Boundary 

Characteristic Orthogonal Polynomials (BCOP) are chosen as trial functions polynomial trial 

functions, employed by the same authors for beams with constant cross sections [9]. The 

instability regions by divergence and flutter are examined in some detail, so allowing to determine 

the range of applicability of the static instability criterion. Some numerical examples are compared 

with other classical results from the bibliography, so confirming the goodness of the proposed 

approach.   

1. INTRODUCTION 

As well known, the instability phenomena of various engineering structures depend on the 

boundary conditions. Moreover, it is important to consider if the applied forces admit or not a 

potential function, because some kind of nonconservative follower forces lead to structural 

behaviour which cannot be examined by using the classical static criterion. Therefore, in the 

presence of follower forces it is mandatory to use the dynamic criterion in order to predict the 

correct critical load multiplier. [1-3]. 

Beams have been used for various purposed for many structures and hence the vibration 

behaviour of beams has a great importance in many engineering applications such as in the design 

of machines and structures.  

For nonconservative systems, the frequencies can be either real or complex. Therefore, when 

instability occurs, the lowest frequency can pass trough the origin, as for the conservative system, 

or two frequencies can approach each other, coincide, and the become complex conjugate. The 

latter situation is defined as flutter instability, and the load at which the two frequencies coincide is 

defined as the flutter load.  

Recently, Chen [3] studied the instability behaviour of beams with variable cross section 

subjected to sub-tangential nonconservative follower forces, and the solution is numerically 

attained by using a Runge-Kutta routine. 

An approximed – yet general – solution is proposed by Glabisz [2] for a generic structural 

element subjected to distributed follower forces (Leipholz) or to a concentrated tip force (Beck).  

The problem is approximated using a power series approach, and the dynamic loss-of-stability is 

deduced for beams on elastic soil and for various boundary conditions.  

In this paper the author gives a variational Rayleigh-Ritz solution to the instability problem of 

beams with variable cross-section subjected to subtangential follower forces. If the rotations at the 

ends of the beam are denoted by φL, and φR , then the nonconservative applied forces will 

considered to be functions of η·φL and η·φR respectively. The η parameter completely defines the 



system of sub-tangential concentrated follower forces at the ends,  and, consequently, completely 

defines the dynamic behaviour of the system. The classical conservative Euler case is recovered at 

η=0, whereas if η=1 the beam is subjected to purely tangential forces (follower forces).  As η 

varies in the range [0,1] critical loads are reached by means of divergence or flutter, so permitting 

to deduce the range of applicability of the static criterion. Usually, a precise parameter value  η=ηc  

exists, which separate the divergence region from the flutter region, and this parameter strongly 

influences the frequency-force relationship. As well known, in the case of a cantilever beam with 

constant cross section it is ηc = 0.5. If  η< ηc then the problem is governed by a selfadjoint 

boundary value problem and, hence, the instability is of the divergence type. Conversely, for η> ηc 

the problem is governed by the flutter. 

The paper will be devoted to this problem, for various boundary conditions, for beams with 

varying cross section subjected to sub-tangential follower forces [2].  The whole procedure is 

confirmed by numerical examples and comparisons with other classical results.  

2. FORMULATION OF PROBLEM 

Let us consider the general extended Hamilton principle,  in the presence of nonconservative 

applied loads:  
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where T is the kinetic energy of the system, V is the potential energy, and dW is the virtual 

work of the applied nonconservative loads. 

For this kind of problems, the functions u ∈  [0,L] are square integrable, so that it is defined the 

following inner product (u,u) [4]:  
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If the oscillations are supposed to be small, the elastic energy of the system can be written as:  
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where P  is the horizontal projection of the applied nonconservative forces at the ends. 

The other, nonconservative part of the applied loads gives rise to the following virtual work: 
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Finally, the kinetic energy can be written as: 
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where ρ is the mass density, ω the free vibration frequency, and A is the cross sectional area. 

According to the Rayleigh-Ritz approximation method, the solution will be expressed as a 

linear combination of independent functions, and it is convenient to express the displacements of 

the beams as a sequence of orthogonal polynomials.  

It will be:  

  nifqu iin ,..1=== qf
T   (6) 

where f is the eigenfunction vector, and q contains the lagrangian coordinates. The 

eigenfunctions fi should only satisfy the essential boundary conditions, and they can be deduced 

following an iterative method based on the ortho-normalization Schmidt method [4].    

If the approximation (6) is introduced into the Hamilton principle (1), the following 

homogeneous system is obtained:  
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where some nondimensional quantities have been defined: 
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       and the following matrices can be easily built up: 
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The free vibration frequencies can be calculated by imposing : 

 

 
2det[ ( ) ] 0.K B W Mp η Ω+ − − =  (10)    

 

From a computational point of view,  the presence of unsymmetrical matrices leads to complex 

conjugate solutions, and an iterative approach seems to be the simplest solution algorithm.  

Two different cases can be faced, according to the η value.  

If η<ηc  the normalized critical load  pc  corresponds to  Ω1=0, and it can be deduced using the 

static criterion. The condition: 

 



 det [ ( )] 0,K B Wp η+ − =  (11)  

gives the solutions pi  and the critical load is  pc=p1.  As η increases, a threshold value ηc is 

reached, beyond which the structure loses stability by flutter, and the static criterion is no longer 

applicable. At η>ηc the solutions pi of equation (11) turn out to be complex, and the critical load 

must be calculated using eqn.(10), corresponding to the coalescence of the first two free vibration 

frequencies. 

3.  NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate some numerical examples and comparisons with other known results, let 

us consider now a  beam with varying cross section, in which area and moment of inertia of the 

cross section obey to the following laws [3]: 
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where A0 and I0 area the cross sectional area and moment of inertia at  x=0,  respectively.  For 

a circular cross section,  it will be: 
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where a is the radius of the section at x=0,  and therefore: 
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 Figure 1: Cantilever beam with sub-tangential force. 

O 

ηφ 

L 

P 



 

As a first example, the column with constant cross section has been studied, subjected to a sub-

tangential load, α=0; (Fig. 1). 

Using eqn. (11) the critical load  is given, for different parameter value η. 

At η=0 we have two different values p1 and p2 , whereas the difference 1 2( )p p− diminishes 

with increasing η, and at η =ηc r the two values coalesce. At this parameter value ηc we have the 

passage from divergence to flutter [1,2, 9].  The results are given in the first columns of table 1, 

where a comparison with the Chen [3]. For the sake of completeness, the p2  values are also given. 

In table 2 the results can be compared with the critical loads given by Glabisz [2]. It can be the 

correlation of the result are excellent. 

 

 

 

α=0 Chen [3] Present α=0,5 Chen [3] Present 

η p1 p1 p2 η p1 p1 p2 

0 0,24 0,2499 2,24999 0 0,4 0,3997 4,9096 

0,2 0,337 0,3369 2,0151 0,3 0,625 0,6252 4,3078 

0,3 ------ 0,4109 1,8469 0,59 1,673 1,6725 2,5503 

0,45 ------ 0,6519 1,4279 0,6 ------ 1,9355 2,2499 

0,48 ------ 0,7644 1,2671 0,601 ------ 2,0036 2,1780 

0,49 0,829 0,8291 1,1868 0,6014 ------ 2,0630 2,1171 

0,5 1 1 1 0,60144 2,09 2,0860 2,0860 

 

 

 

 
α=−0,5 Present 

η p1 p2 

0,0000 0,1042 0,6114 

0,2000 0,1509 0,4960 

0,3000 0,2058 0,4007 

0,3200 0,2274 0,3703 

0,3300 0,2431 0,3501 

0,3400 0,2702 0,3185 

0,3425 0,2938 0,2938 

 
 

Table 1 :The dependence of  critical load vs subtangential parameter; η<ηcr. 

 

A geometrical sketch of the functional relationship between critical loads and subtangential 

parameter is given in Figure 2 for various α values. As can be seen,  p1 → p2  for η → ηc. 

If η is higher than its critical value ηc the static criterion is no longer applicable, and the critical 

flutter load must be sought by applying the dynamic criterion and the complete equation (11). The 

critical value ηc is the threshold value between the divergence region and the flutter region. 

 

 



 

α=0 Chen [3]  Present  α=0,5 Chen [3]  Present  

η pC Ω1=Ω2 pC Ω1=Ω2 η pC Ω1=Ω2 pC Ω1=Ω2 

0,51 1,627 0,732 1,6267 0,7315 0,61 3,854 0,799 3,8542 0,7982 

0,55 1,632 0,788 1,6321 0,7876 0,80 4,020 0,964 4,0203 0,9631 

0,80 1,782 1,009 1,7815 1,0085 1,0 ----- ----- 4,3731 1,0733 

1,00 2,032 1,118 2,0316 1,1161 1,2 4,932 1,145 4,9325 1,1438 

1,5 ----- ----- 3,1033 1,2215 1,5 ----- ----- 6,2413 1,1697 

2 ----- ----- 3,8272 1,1855 1,6 6,765 1,155 8,4900 1,0313 

 

 

 

α=−0,5 Glabisz [2]  Present  

η pC Ω1=Ω2 pC Ω1=Ω2 

0,3425 0.3771 0.5490 0,3771 0,5490 

0,5 0,3808 0,8735 0,3808 0,8735 

0,80 0.4968 1.1433 0,4969 1,1434 

1,0 0.6560 1.2650 0,6592 1,2709 

1,5 0,9486 1,3211 0,9487 1,3212 

2 1.0251 1.2780 1,0252 1,2782 

 

 

Table 2: The dependence of  critical load vs subtangential parameter; η>ηcr. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The dependence of  critical load vs subtangential parameter for various tapered 

 coefficients (α). 
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In the flutter region η≥ηc, the dynamic criterion is followed, and the axial load is found, such 

that the first two frequencies coalesce, Ω1 =Ω2.  The corresponding data for different taper ratio, 

are given in the Figure 3. For η = ηc=0.5  the first two frequencies become zero at p=1 the two 

force-frequency curves are merged into one point Q, and the force-frequency curves become AQ 

and BQ. In fact, ηc=0.5 is the limitation for which the static criterion of the loading by following;  

for η<ηc=0,5, the lowest root of p from equation (11) is the bucking loading of the cantilever. In 

the case η>ηc, the relevant curves are plotted in Figure 3, we see that the force-frequency curve is 

significantly changed, if one compare to the case of  η=ηc. For example, for η=0.51 case, we see 

that there is no solution for p from the equation (11). That is to say, the static formulation of the 

buckling   problem cannot give a solution of p.  

For η>ηc  the force-frequency curves are gradually changed  from AB for η=0.51 to ATB for 

η=2.  It is natural to define the critical force by the following dynamic criterion.    
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Figure 3: The dependence of the free vibration frequency vs subtangential force for various η; 

uniform section α=0. 

 

Analogous results are shown in Figures 4 for α=0.5 with  η > ηc=0.60144, the force-frequency 

curves are gradually changed  from AB for η=0.61 to ATB for η=2.  

Similarly, for α=-0.5 with  η > ηc=0.3425, the results are  shown in Figures 5. 



4. CONCLUSIONS 

A general approach is discussed for the analysis of tapered beams subjected to non-

conservative sub-tangential loads. The analysis does not depend on the boundary conditions, and 

allows the determination of the critical parameters signalling the passage from divergence to 

flutter. The whole procedure is extremely stable, even in critical conditions. 

The use of the dynamic loss-of-stability criterion made it possible to find the critical loads of 

the flutter type for different boundary condition.  

Using one computer package the natural frequencies are calculated and the effects of the 

incorporated parameters are examined. Moreover, numerical examples are solved to make 

comparisons with the existing results in open literature and it is observed that the agreement 

between the results is very good. 

The numerical examples have been completely carried through by means of the powerful 

software symbolic program. 

The basic concept to form this set of admissible function is reasonable and simple and requises 

no complicated mathematical knowledge. Moreover, from the above analysis, it can be seen that 

the admissible functions presented in the paper are closely related to the variation of flexural 

rigidity of the beam, but near unrelated to the variation of cross-sectional area of the beam which 

shows that the effect of flexural rigidity on the model shape function of the tapered beams is much 

greater than that of cross-sectional area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The dependence of the free vibration frequency vs subtangential force for various η; 

tapered beam α= 0,5. 
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Figure 5: The dependence of the free vibration frequency vs subtangential force for various η; 

tapered beam α= -0,5. 
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Nomenclature 

 a radius of section in x=0 

δW virtual work 

A; Ao cross-sectional area of beam; cross-sectional area of beam in x=0 

B; W matrix in eq. (11) 

E Young’s modulus of beam material 

f vector eigenfunction vector 

I; Io area moment of inertia; area moment of inertia in x=0 

K; M stiffness matrix; mass matrix 

L length of the beam 

p ;p dimensionless partially tangential load, eq. (7); eq. (14) 

P partially tangential load 

pc critical buckling load parameter   

q vector coefficients of trial function 

T kinetic energy 

u amplitude of the transverse deflection 

V  potential energy 

ii ΩΩ ;   ith non-dimensional eigenfrequency of beam, eq. (8); eq. (14) 

α thickness ratio 

η tangential coefficient 

ηc critical tangential coefficient 

ρ mass density 

ωω,  natural frequency, eq. (5); eq. (14) 

 

 

 


