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SUMMARY. The Implicit Corotational Method (ICM) is a powerful and consolidated approach
for recovering objective and suitable for FEM implementation nonlinear models fully reusing the
corresponding linear ones [1, 2]. An appropriate stress/strain (Biot) representation for the description
of the nonlinear elastic continuum, the use of corotational algebra for splitting the body motion into
rigid and deformative parts and some assumptions on the reinterpretation of linear theory in the
nonlinear context, constitute the basis of the ICM.

An important feature of the method is the possibility of obtaining a tool that allow an easy FEM
implementation. Different kinds of interpolation strategies (Total and Updated Lagrangian, Coro-
tational) are used within the approach. A standard format and an automated way of implementing
the nonlinear models into the FEM context based on the use of algebraic manipulator and aimed at
path-following or asymptotic analyses have been developed [3].

The FEM implementation is provided for 3D beam and plate models recovered using ICM. For
the 3D beam model, based on Saint Venánt theory [2], the assumptions about the rotation parameters
and the details on handling finite rotations are given clearly. The accuracy of some mixed finite
elements that differ for the interpolation laws assumed for the kinematics and statics fields and for
the interpolations strategy is pointed out. For the thin plate model , based on Kirchoff hypothesis [1],
the proposed finite element is implemented as specialized one in asymptotic FEM code (see [7]).

A numerical investigation has been performed, also comparing beam and plate based solutions in
the case of thin–walled beams. The good agreement between the recovered results with the theoreti-
cal ones and the numerical benchmarks, shows clearly the correctness and capability of the proposed
approach for numerical implementations.

1 IMPLICIT COROTATIONAL METHOD: BASIC ITEMS
The goal of the Implicit Corotational Method (ICM) is to reuse the results of linear theories in

nonlinear context in order to obtain objective structural models (e.g. beam, shell) which are suitable
for FEM implementations. An appropriate stress/strain representation for the description of the
nonlinear elastic continuum, the use of corotational algebra for splitting the body motion into the
rigid and deformative parts and some assumptions about the reinterpretation of linear theory in the
nonlinear context, constitute the basis of the ICM. The basic items of the method are summarized in
this section while for a more detailed discussion the reader can refer to [2].

1.1 Some continuum mechanics
The nonlinear elastic continuum is described using Biot stress σb and strain εb, so in mixed form,

strain energy is expressed as:

Φ[σb, εb] :=
∫

V

{
σb · εb − 1

2
σb ·Cσb

}
dV (1a)
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C being the bilinear compliance operator defining the constitutive law, so that the ICM is assumed
to be equal to that of the linear continuum and being V the volume of the body in the undeformed
reference configuration. Through a corotational (CR) frame defined by a rotation tensor Q with
respect to the global fixed frame {e1, e2, e3}and using the polar decomposition theorem, the Biot
strain can be expressed in CR frame as:

εb := U − I = RT F − I = R̄
T
F̄ − I , F̄ = QT F , R̄ = QT R (1b)

where we have denoted quantities in CR frame with a bar and being F is the deformation gradient,
U the right stretch tensor and R the polar decomposition rotation. Assuming ,in the CR frame, the
polar decomposition rotation R̄ to be small and relating it with the skew–symmetric W̄ part of the
gradient of displacements ∇ū = F̄ − I we have:

R̄ ≈ I + W̄ (1c)

With some algebra the following quadratic expression for Biot strain is obtained:

εb ≈ Ē +
1

2
(ĒW̄ − W̄ Ē − W̄W̄ ) , Ē := sym[∇ū] , W̄ := skew[∇ū] (1d)

When W̄ = 0, it holds that Biot strain is equal to linear strain tensor εb = Ē. Therefore the, Biot
stress/strain representation appears to be the most appropriate representations for recovering linear
solutions.

1.2 Reuse of linear solutions in nonlinear context
Linear solutions, when structured continua (e.g. beam, shell) are considered, provide in general

the stress field σ̄[t] in terms of global stress parameter t and the gradient of displacement ∇ū[d̄] =
Ē[d̄] + W̄ [d̄] in terms of global kinematics parameter d̄. The ICM assumes that Biot stress σb

is equal to the linear stress tensor and that Biot εb is evaluated, in an appropriate CR frame, using
quadratic formula (1d) in which the gradient of displacements is evaluated from linear solutions:

σb ≡ σ̄[t] , Ē ≡ Ē[d̄] , W̄ ≡ W̄ [d̄] (2)

In the frame of a Galerkin approximation, the mixed energy (1) can be rewritten in terms of the
global stress and kinematics parameters t and d̄ :

Φ[t, %] =
∫

s

{
tT %[d̄]− 1

2
tT Ht

}
ds (3)

where %[d̄] is the deformation work-conjugate with t, H a compliance operator and s an appropriate
abscissa describing the structured continuum. The relationships between kinematical parameter d̄ in
CR frame and d in fixed frame complete the kinematics. When d̄ collects displacements and rotation
derivatives d̄ = {ū,s , R̄,s [ϕ̄]}, through a vector parametrization, the corotational relationships can
be easily evaluated:

ū,s := QT (e1 + u,s )− e1 , R̄,s [ϕ̄] := QT R,s [ϕ] (4)

The constitutive law becomes:
t = H−1 %[d̄] (5)
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Finally, ICM assumes rotation Q defining the CR frame is fixed so that |W̄ | ¿ 1. A good compro-
mise is to assume Q = R[ϕ], thereby (4) become:

ū,s := RT [ϕ](e1 + u,s )− e1 , W̄ [ϕ̄],s := RT [ϕ]R,s [ϕ] (6)

in which a linearization of rotations R̄[ϕ̄] = I + W̄ [ϕ̄] + · · · is used.

2 IMPLICIT COROTATIONAL METHOD: FEM IMPLEMENTATION
The FEM implementation of the nonlinear model for beams and plates recovered using the ICM

can be performed through different kinds of interpolation strategies [2].
In particular once obtained the continuum model for both Corotational (CR) or Total Lagrangian

(TL) interpolations is obtained it could be easily used in a standard fashion to produce a discrete
model suitable for use in asymptotic and path–following solution strategies.

2.1 General remarks
ICM allows the recovery of the mixed strain energy of the nonlinear model exploiting the kine-

matical relationship %[d̄] in terms of kinematical parameters d̄ in the CR frame rotated by Q:

Φ[t, d̄] =
∫

s

{
tT %[d̄]− 1

2
tT Ht

}
ds (7)

s being a suitable one or two dimensional abscissa. Using the geometrical relationships

d̄ = g[d] (8)

between kinematical parameters d̄ and the corresponding ones in global fixed frame d, the strain
energy (7) can be expressed in terms of d:

Φ[t, d] =
∫

s

{
tT %[d]− 1

2
tT Ht

}
ds (9)

Assuming an interpolation of generalized stress field defined by

t = Dt[s]te (10)

the discrete form of the complementary energy becomes

Φce[te] =
1

2
tT
e Hete , He :=

∫

s

{DT
t [s]HDt[s]}ds (11)

Dt[s] being the operator collecting the interpolation functions and te the vector collecting the ele-
ment stress parameters. The discrete form of internal work We can be obtained in a different way
depending on the motion description used, CR or TL.

2.2 Corotational interpolation
In this case the interpolation is performed on kinematical parameters d̄ in the CR frame:

d̄ = D̄d[s]d̄e (12a)
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D̄d[s] being the operator collecting the interpolation functions and d̄e the kinematical CR parameters
of the element. Substituting the interpolation (13b) into (8) and performing integration we obtain
the following discrete energy

We[te, %] = tT
e %e[d̄e] , %e[d̄e] :=

∫

s

{DT
t [s] % [D̄d[s]d̄e]}ds (12b)

The interpolation is completed exploiting the geometrical transformation law

d̄e = ge[de] (12c)

between discrete kinematical parameters d̄e in the CR frame and the corresponding ones in the
global fixed frame de.

The aim of CR description is then to transfer the problem nonlinearity of the problem from the
kinematical relationships to the geometrical transformation contained in eq. (12c). As the frame
indifference requirements guarantee ’a priori’ in terms of the rotation Q by the geometric laws
eq.(12c) the interpolation matrix D̄d[s] could be the same used for the corresponding linear FEM
interpolation of the same model. Furthermore as in this context also the finite element kinematical
descriptor d̄e is also small, the discrete strain measure %[d̄e] can be expanded using Taylor expansion
(see [3] for further details), without any loss in accuracy. Usually linear or quadratic expansions are
used in this respect while the improvement in of accuracy is demanded for a refinement of the finite
element mesh that is to a local better evaluation of Q. Note that:

- When D̄d[s] is assumed to be the same as the linear finite element model, %e[d̄e] is linearized
in terms of d̄e we obtain the ”standard” form of the CR formulation [4] that allows us obtain,
in an easy way, a nonlinear finite element starting from the corresponding linear one.

- The evaluation of the CR frame could be not constant on the element and, for example, eval-
uated in a series of Gauss points for a better elimination of the mean rigid body motion. This
requires the integral in eq. (7) and the geometric law (8) to be split.

2.3 Total Lagrangian interpolation
In this strategy we interpolate the global kinematical parameters d

d[s] = Dd[s]de (13a)

Dd[s] and de being the operator containing the interpolation functions and de the vector collecting
the finite element kinematical parameters. The energy (9) then becomes:

We[te,%e] = tT
e %e[de] , %e[de] :=

∫

s

{DT
t [s] % [Dd[s]de]}ds (13b)

In particular is well known (see [5] and references therein) that to obtain a frame indifferent model
the finite element interpolation also needs to be frame indifferent so the choice of the interpolation
functions contained in Dd[s] is in general important.

3 FEM IMPLEMENTATION FOR SAINT VENÁNT BEAM MODEL
In this section the 3D nonlinear beam model recovered from the Saint Venánt general rod theory

through ICM method and described in the paper [6] will be implemented here to obtain a nonlinear
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element to be used within FEM analysis. The model account for shear deformability and for to the
section warping due to the helicoid distortion due to torsion, i.e. the so–called Wagner effect. A
separate (mixed) interpolation is used for section strengths t[s] and displacements d[s], s being a
material abscissa along the beam axis.

3.1 Handling the nonlinear beam model
The beam model proposed into [6] is briefly summarized and handled. We consider a beam

element, initially straight and of length `, global strengths t and strains % are defined as

t :=
[
N ,M

]T
, % = %L + %Q (14a)

N and M being the vectors collecting axial/shear strengths and torsional/bending couples and

%L =
[
εL, χL

]T
, %Q = Ψ[%L]%L (14b)

where εL and χL are defined by

εL := RT (u,s +e1)− e1 , χL := T T ϕ,s (14c)

as function of displacements u[s] and rotations ϕ[s] associated to a material abscissa s varying from
0 to `, and matrix Ψ[%L] defined into [6] account quadratic coupling (i.e. Wagner effect). Using
Rodrigues parametrization matrix R and T can be expressed as

R (ϕ) = I+
sinϕ

ϕ
W [ϕ]+

(1− cosϕ)
ϕ2

W 2[ϕ] , T [ϕ] = I+
1− cosϕ

ϕ2
W [ϕ]+

ϕ− sin ϕ

ϕ3
W 2[ϕ]

Finally, the model is completed by compliance operator H (see [6]), which is here split as

H :=
[
Hnn Hnm

HT
nm Hmm

]
(15)

3.2 Mixed finite beam element
The finite element for the SV beam model assumes N is constant and M linear while displace-

ments and rotations, to avoid locking, are interpolated independently. In particular for the local
rotation vectors ϕ̄, a quadratic interpolation is assumed while displacements ū are assumed as linear
on the element. In the following quantities evaluated on the edge of the beam (s = 0 and s = l),
will be denoted with the pedex i and j, while the average quantities will be denoted with the pedex
m (for further details see [2]). Note that a Rodrigues parametrization for the rotation will be used in
the sequel.

Introducing the symmetric and skew–symmetric couples ms and me:

ms := −(M j + M i) , me := (M j −M i) (16a)

the constant interpolation for the axial-shear forces and the linear interpolation for bending and
torsional moments becomes:

N =
ne

l
, M = −1

2
(ms + fsme) (16b)

Letting te := {ne,ms, me} the vector collecting the natural stress eq.(16b) becomes

N = Dnte , M = Dmte (16c)
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with
Dn :=

1
l

[
I3 03 03

]
, Dm :=

1
2

[
03 −I3 fsI3

]
(16d)

with I3 and 03 the identity and zero matrix in R3and fs := 1− 2 s
l .

Substituting stress interpolation (16) into complementary energy (11), the discrete complemen-
tary matrix He then becomes

He :=




1
l
HNN − 1

2l
HNM 03

− 1
2l

HT
NM

l

4
HMM 03

03 03
l

12
HMM




(17)

As regards kinematics, the displacement and rotation vector field is assumed to be linear and
quadratic on the element. Defining the vector d̄e := {φ̄r, φ̄s, φ̄e, φ̄m}, collecting the natural
modes:

φ̄r :=
ūj − ūi

l
, φ̄s :=

ϕ̄i − ϕ̄j

2
, φ̄e :=

ϕ̄i + ϕ̄j

2
− φ̄m , φ̄m :=

1
l

∫ l

0

ϕ̄ds (18a)

the interpolation can be expressed as:

ū,s = D̄ud̄e , ϕ̄ = D̄ϕd̄e (18b)

with
D̄u :=

[
I3 03 03 03

]
, D̄ϕ :=

[
03 fsI3 feI3 I3

]
(18c)

and interpolation function fe := 1 − 6 s
l + 6 s2

l2 . Substituting strength interpolation laws (16) into
internal work (13b) with some algebra we have for finite strain

ρe[d̄e] := [φ̄r + W 1φ̄m, φ̄s, φ̄e]
T , W 1 = spin (e1)

The element definition is completed by the geometrical relationship between corotational and
fixed frame denoted with d̄e = ḡe[de] (see (12c)), that allows the recovery of %e[de]. Introducing
de := {φr, φs, φe, φm}, where

φr :=
uj − ui

l
, φs :=

ϕi −ϕj

2
, φe :=

ϕi + ϕj

2
− φ̄m , φ̄m := Q[α]T R[φm]

and selecting CR frame so that α ≡ φm (that is φ̄m = 0), we have for %e[de]

%e[de] :=




QT (φr + e1)− e1

1
2 (log

[
QT Ri

]
− log

[
QT Rj

]
)

1
2 (log

[
QT Ri

]
+ log

[
QT Rj

]
)


 (19)

with Q = R (φm), Ri = R (φe − φs) and Rj = R (φe + φs) and log [·] standing for the extrac-
tion of the rotation vector from a rotation tensor (for further details on algebra and rotation handling
see [2]). Finally note that, splitting rotation R as

R[ϕ] = Q[φm]R̄[ϕ̄]
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and using for u,s and ϕ̄ the following interpolation

u,s = D̄ude , ϕ̄ = D̄ϕd̄e , D̄u :=
[
I3,03,03,03

]
, D̄ϕ :=

[
03, fsI3, feI3,03

]
(20)

the evaluation of the energy (13b) gives for %e[de] the same expression as the CR case (19). Finally
note that the element can be improved as previously stated using a quadratic expression for local
rotation strain (see [3]).

3.3 FEM implementation for plate model: some remarks
For the nonlinear plate model recovered using ICM a FEM implementation can be performed

following the methodologies proposed for the non linear beam model. The details of the implemen-
tation can be found in [2], however an outline is given here.

The nonlinear plate has been implemented in an already available asymptotic code named KASP
( see [7]), in order to perform the post–buckling analysis of plate assemblages. The previous version
of the codes was based on a technical plate suitable for performing a nonlinear analysis of plate
assemblages.

The discrete model is based on a HC finite element interpolation [8] that avoids the need to use
3D finite rotation parameters so giving a simple energy expression even when a TL interpolation is
used.

4 NUMERICAL RESULTS
The numerical results are principally related to the Koiter asymptotic analysis of plate assem-

blages and of 3D beam this being the most sensitive context of analysis to the correctness of the
structural model and of its finite element implementation. However path–following analysis results
based on the same continuum and discrete model are also proposed to check the accuracy of the
obtained results. The equilibrium paths are compared with analytical results when possible, with
results obtained by other authors or with the equilibrium path recovered using the commercial code
ABAQUS.

The proposed Kirchoff plate model results, in the following denoted with the symbol (PM) have
also been compared with those obtained by the same code using the technical models complete Green
Lagrange (LC) and the simplified Green Lagrange (LS), previously implemented in [7] to which we
refer readers for further details. The proposed 3D beam finite element, implemented into a FEM code
named COBE (see [2]) has been tested for cross-shaped sections having shear and bending centers
which are not coincident, under axial and shear forces. The evaluation of compliance operator He

needed for the recovery of the complementary energy has been done through FEM technique applied
to the cross section domain (for further details see [9]).

The possibility of modeling the same structure as 3D beam or as plate assemblages make possible
a comparison regarding the accuracy of the proposed formulation both at the continuum and FEM
level.

4.1 Z–shaped section beam under axial/shear forces
The test is a cantilever beam with Z-shaped cross section, analyzed like the previous test for two

load conditions. The first is an axial force applied at the edge of the beam and at the centroid of the
cross section with a lateral imperfection ελ (see fig. 1) while the second is a lateral force applied at
the centroid of the edge of the beam (see fig. 2). The geometry and elastic modula are reported in
figures (1) and (2).
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Figure 1: Z-shaped beam under axial force. Geometry and equilibrium paths.

For both load conditions, for the beam model 16 finite elements were used while for the plate
model the mesh had 100 elements along the length of the cantilever beam and 5 elements for the
wings and 10 for the web. The buckling occurs at λb = 24.371, for the axial force condition load,
and is correctly and identically predicted by the beam and plate model, as in the previous test.

For the shear load case, there is some difference in the evaluation of the buckling load, for the
same reasons as in the previous test. For the beam the buckling is predicted at λb = 8.558 while for
the plate at λb = 9.887. The equilibrium paths are plotted for the axial and lateral displacements of
the beam edge. The results obtained using the beam model agree well enough in the pre–critical and
post–critical behavior with those recovered using KASP code.
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Figure 2: Z-shaped beam under shear force. Geometry and equilibrium paths.

4.1.1 C-shaped section beam

In the numerical analysis of the C–shaped section beam reported in fig.3 the good agreement
between the numerical results obtained by the PM model in comparison with the path–following
analysis performed by a co–rotational formulation proposed in [10] which is insensitive to the exact-
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ness of the strain measures can be observed. As the critical mode is a torsional buckling the behavior
of the plate assemblages is practically the same as a 3D beam. The buckling mode is not followed
by stress redistribution and the postcritical curvature becomes very sensitive to the exactness of the
strain model [10], as shown in fig. 4.

y,v

Figure 3: C section beam.
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Figure 4: Cantilever C section beam: equilibrium paths.

5 CONCLUDING REMARKS
The suitability of the ICM for FEM implementation is a very strong point of the method. In

fact, different kinds of interpolation (Total and Updated Lagrangian, Corotational) can be naturally
placed within the approach.

A standard format to handle 3D rotation algebra and suitable for the implementation of ICM
nonlinear models into path-following and asymptotic analyses has been proposed.

A FEM implementation is developed for both 3D beam and plate nonlinear model. In the former
case a FEM code called COBE has been built aimed at both the path–following and asymptotic
analyses of general spatial frame. In the latter case the proposed finite element has been implemented
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as a specialized element into KASP code, already available at the University of Calabria and aimed at
performing an asymptotic analysis of slender panel assemblages. A numerical investigation has been
performed using both COBE and KASP. The numerical results always agree with the theoretical
ones and the numerical benchmarks.

A good agreement is also found between the results obtained with the two different codes when
applied to thin–walled beams. In conclusion ICM appears very promising, being suitable for ap-
plication in different contexts and implementation in into FEM codes. Numerical simulations also
confirm its potential and correctness.
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