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SUMMARY. The paper presents a beam-theory based method to partition fracture modes in 

planar laminated beams affected by through-the-width delaminations. According to classical 

laminated beam theory, the axial, shear and bending deformabilities, as well as bending-extension 

coupling, are taken into account. The kinematics of crack growth is analysed by defining the 

crack-tip displacement rates as the relative displacements at the crack tip per unit crack extension. 

Besides, the crack-tip forces exchanged between the separating laminates are computed. Lastly, by 

considering the work done by the crack-tip forces for the corresponding crack-tip displacement 

rates, explicit expressions for the energy release rate and its modal contributions are deduced. 

1 INTRODUCTION 

Classical laminated plate theory [1] is commonly applied in the analysis of delamination 

fracture in composites [2, 3], since the delaminated laminates are modelled as assemblages of 

sublaminates connected by rigid or deformable joints and interfaces. Besides, delamination growth 

criteria usually assume that crack propagation occurs when the energy release rate, G, reaches a 

critical value, Gc [4]. In general, however, delamination cracks propagate under mixed-mode 

fracture conditions, so it becomes necessary to partition the energy release rate into two additive 

contributions, GI and GII, related to fracture modes I (opening) and II (sliding), respectively. To 

this end, various alternative, but not equivalent, methods have been proposed. 

For rigidly connected sublaminates, Williams [5] developed a global method to partition the 

energy release rate, based on analysis of the global forces acting on the cracked laminate. 

Schapery and Davidson [6] observed that Williams’ assumptions were not generally fulfilled for 

asymmetrically delaminated laminates and proposed a method based on classical plate theory. 

Alternatively, Suo and Hutchinson developed a local method [7], where the mode mixity, i.e. the 

ratio GII / GI, is determined by analysing the singular stress field at the crack tip of a semi-infinite 

crack between two infinite isotropic elastic layers. Recently, the local method has been extended 

to include the effects of shear forces at the crack tip [8] and orthotropic materials [9]. 

On the other hand, if the sublaminates are connected by a deformable interface, the modal 

contributions to G can be computed directly, based on the (peak) values of the interfacial stresses 

at the crack tip [10–13]. Nonetheless, Qiao and Wang [14], yet considering a deformable interface, 

proposed to evaluate the mode mixity via an adaptation of the local method. This approach 

appears somehow questionable since the local method, originally developed in the context of plane 

elasticity, assumes that a stress singularity is present at the crack tip, but this hypothesis does not 

hold true when the sublaminates are connected by a deformable (elastic) interface. 

In this paper we show how the energy release rate associated with the growth of a delamination 

in a laminated beam can be partitioned into its modal contributions within the context of beam 

theory. To this aim, we consider a laminated beam, affected by a through-the-width delamination, 



as an assemblage of three rigidly connected laminated beams. Each beam is modelled according to 

classical laminated beam theory, while taking into account the axial, shear and bending 

deformabilities, as well as bending-extension coupling. Under general load conditions, a small 

extension of the existing crack is considered. Thus, the kinematics of crack growth is analysed by 

defining the crack-tip displacement rates as the relative displacements occurring at the crack tip 

per unit crack extension. Besides, the crack-tip forces exchanged between the separating laminates 

are computed. Lastly, by considering the work done by the crack-tip forces for the corresponding 

crack-tip displacement rates, explicit expressions for the energy release rate and its modal 

contributions are deduced. 

One example is presented to illustrate the effectiveness of the method. 

2 DELAMINATED BEAM MODELLING 

2.1 Beam-theory model of a delaminated laminate 

Consider a laminate AB of length L, thickness H = 2 h, and width B, affected by a through-the-

width delamination of length a (Fig. 1). The delamination runs from the end section A to the 

intermediate section C, to which the crack tip C belongs, thus splitting the laminate into two 

sublaminates of thicknesses H1 = 2 h1 and H2 = 2 h2, respectively. We denote with b L a= −  the 

length of the unbroken part of the laminate, included between sections C and B. 

 

  
 Figure 1: Delaminated laminate subjected to concentrated and distributed loads. 

 

We suppose the laminate to be in equilibrium under the action of a known system of in-plane 

concentrated and distributed loads. Moreover, we assume that no out-of-plane effects are present, 

so that the delaminated laminate can be modelled as a planar laminated beam or, more precisely, 

as an assemblage of three planar laminated beams, each rigidly connected to the others at section C 

(Fig. 2a). In particular, beams 1 and 2 correspond to the upper and lower sublaminates, 

respectively, in the delaminated part of the laminate (between sections A and C), while beam 3 

corresponds to the unbroken part (between sections C and B). 

A rectangular reference system Ozx is fixed with the origin O at the intersection between the 

crack-tip cross section and the centreline of the unbroken part of the laminate, the x- and z-axes 

aligned with the laminate’s axial and transverse directions, respectively (Fig. 2b). Correspondingly, 

we indicate with uα(x) and wα(x) the axial and transverse displacements of the beams’ centrelines, 

and with φα(x) their cross sections’ rotations, positive if counter-clockwise (here and in the 

following the beams are identified by the subscripts α = 1, 2, 3). 
 



  
 Figure 2: (a) The delaminated laminate as an assemblage of three laminated beams; 

 (b) An enlargement of the crack-tip region and the fixed reference system. 

 

According to Timoshenko’s beam theory kinematics, we define 
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respectively as the axial strain, shear strain, and curvature. The related internal forces in beams 

are the axial force, shear force, and bending moment, respectively, given by 
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where Aα, Bα, Cα, and Dα respectively are the extension stiffness, bending-extension coupling 

stiffness, shear stiffness, and bending stiffness (per unit width) of the beams, computed according 

to classical laminated plate theory [1]. By inverting Eqs. (2), we obtain also 
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are the extension compliance, bending-extension coupling compliance, shear compliance, and 

bending compliance of the beams, respectively [1]. 

(a) 

(b) 



2.2 Crack-tip relative displacements and crack-tip displacement rates 

Imagine now that a small segment S of the laminate is cut out in the neighbourhood of the 

crack tip C (Fig. 3a). Regardless of the actual load system applied to the laminate, if we exclude 

the presence of concentrated loads at the crack-tip cross section, the segment S will be in 

equilibrium under the internal forces acting on the cross sections close to the crack tip. Thus, for 

0x → , if we denote with N1, Q1, M1 and N2, Q2, M2 the internal forces in beams 1 and 2, 

respectively, the internal forces in beam 3 will be 
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Next, suppose that the crack propagates in a self-similar way, increasing its length by a small 

amount, ∆a. Hence, the crack-tip segment S transforms into the segment S0 (Fig. 3b), where the 

crack tip reaches a new position, identified by point D, and the point C splits into two points, C1 

and C2, belonging to beams 1 and 2, respectively. If crack growth occurs under fixed load 

conditions, the internal forces in the cross sections close to the crack tip do not change appreciably 

and S0 can still be considered in equilibrium under the same internal forces acting on S. 

 

  
 Figure 3: Elementary segments of the laminate in the neighbourhood of the crack tip: 

 (a) S, before crack propagation; (b) S0, after crack propagation. 

 

Obviously, however, the displacement compatibility is not preserved by going from S to S0, as 

in the latter system the points C1 and C2 generally undergo non-zero relative displacements (Fig. 4), 
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where all the (generalised) displacements are tacitly evaluated at the crack-tip section (x = 0). 

 

(a) (b) 



  
 Figure 4: Crack-tip relative displacements in system S0. 

 

By solving the auxiliary problem of a laminated cantilever beam loaded at its end (details are 

here omitted for brevity), it is easily shown that the crack-tip relative displacements are 
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where higher-order powers of ∆a have been neglected. 

In order to eliminate the dependence on ∆a, we define the crack-tip displacement rates as 
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By recalling Eqs. (2) and (4), it can be shown that 
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where all the strain measures are evaluated at the crack-tip section (x = 0). 

The crack-tip displacement rates appear as very helpful tools for fracture mechanics problems, 

since they sum up a description of the kinematics of crack growth and, in particular, will play a 

crucial role in the partition of the energy release rate into its modal contributions. 



2.3 Crack-tip forces 

The displacement compatibility of system S can be recovered from S0 by superimposing to the 

latter an auxiliary system, SC, where suitable axial forces, NC, transverse forces, QC, and couples, 

MC, are exchanged between points C1 and C2 (Fig. 5). 

 

  
 Figure 5: Crack-tip forces in system SC. 

 

The intensities of the above crack-tip forces are determined in such a way as to restore 

displacement compatibility previous to crack growth. To this aim, we compute the crack-tip 

displacement rates associated with system SC, which turn out to be 

 

 , , ,
C N M C Q C N M

u u C u w C w C CC
N M Q N Mφ φ φη η η η η η η η= − − = − = − −  (10) 

 

where 

 

 

2 2

1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2

1 2 1 2

1 1
( 2 2 ), ( ),

1 1
( ), ,( )

N M N

u u

M Q

w

h h h h h h
B B

B B

φ

φ

η η η

η η

= + + − + + = = + + −

= + = +

a a b b d d b b d d

d d c c

 (11) 

 

are generalised compliances, which describe the deformability of the crack-tip element. 

Then, we require that 
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By substituting Eqs. (10) into (12) and solving for the crack-tip forces, we obtain 
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3 ENERGY RELEASE RATE AND FRACTURE MODE PARTITIONING 

3.1 Energy release rate 

Under fixed load conditions [2], the energy release rate associated with crack growth is 
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where ∆U is the change in strain energy related to the increase in crack length ∆a. According to 

the definitions given in the previous section, 
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where U and U0 are the strain energies in systems S and S0, respectively. Since system S can be 

obtained by superimposing systems S0 and SC, it is also 
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where UC is the strain energy in system SC. By substituting Eq. (15) and (16) into (14), we obtain 
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The strain energy stored in SC can be evaluated by direct calculation, however it is more 

convenient to apply Clapeyron’s theorem, which yields 
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where ∆u, ∆w, and ∆φ are the crack-tip relative displacements in system S0, given by Eqs. (7), 

which are equal in magnitude and opposite in sign to those caused by the crack-tip forces in SC. 

By substituting Eq. (18) into (17), and remembering Eqs. (8), we obtain the energy release rate 

as a function of the crack-tip forces and crack-tip displacement rates, 
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Furthermore, by substituting Eqs. (12) into (19), the energy release rate can be expressed in 

terms of the crack-tip forces only, 
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or, by substituting Eqs. (13) into (19), in terms of the crack-tip displacement rates only, 
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3.2 Fracture mode partitioning 

In planar fracture mechanics problems the energy release rate can be decomposed as 
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where the addends GI and GII are related to the so-called opening and sliding fracture modes, 

respectively. In particular, the opening mode, or mode I, corresponds to a fracture process where 

the separating parts of material move away one from another perpendicularly to the direction of 

crack propagation; while the sliding mode, or mode II, occurs when the separating parts undergo a 

relative displacement parallel to the direction of crack propagation. 

In our model, mode I is related to the crack-tip displacement rates ηw and ηφ, while mode II is 

related to ηu. However, some caution is required in order to correctly recognise the contributions 
to G related to each fracture mode. If we closely examine both Eqs. (20) and (21), it is apparent 

that the terms depending on QC and ηw contribute to GI only (incidentally, these terms are relevant 

only if we include shear deformability in the analysis); on the other hand, the terms depending on 

NC, MC and ηu, ηφ are strongly tied one another and, hence, contribute to both fracture modes. 

The key to solve the enigma of fracture mode partitioning is to start from determining the 

contribution GII, which must be in the following form: 
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is the crack-tip axial force that would be able to cancel the crack-tip sliding displacement rate, ηu, 

if no crack-tip couple, MC, were present. Remembering Eqs. (11) and (12), we observe that 
II

C
N  is 

in general distinct from NC, since the latter also contributes to cancel ηφ, but they coincide if 

0
M N

u φη η= = . This happens, for instance, when the delaminated sublaminates are uncoupled in 

bending-extension (b1 = b2 = 0) and such that d1h1 = d2h2. 

By substituting Eq. (24) into (23) and (23) into (22), we finally obtain the explicit expressions 

of the modal contributions to the energy release rate in terms of the crack-tip displacement rates 
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Expressions of GI and GII as functions of the crack-tip forces are here omitted for brevity. 



4 AN EXAMPLE OF APPLICATION: THE ADCB TEST 

As a first example of application, we consider the asymmetric double cantilever beam (ADCB) 

test (Fig. 6), used to measure the mixed-mode fracture toughness of composite laminates [15]. 

According to the global method [5], the ADCB test should be a case of pure mode I, however this 

prediction is contradicted by all other methods of analysis, such as the local method, the virtual 

crack closure technique, the elastic-interface based models and so on, which correctly distinguish 

the mixed-mode character of this test (see Ref. [13] for a detailed discussion on this topic). 

 

  
 Figure 6: The asymmetric double cantilever beam (ADCB) test. 

 

The internal forces at the crack-tip sections in this case are 
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By assuming that the delaminated laminates are uncoupled (b1 = b2 = 0), from Eqs. (8) we 

compute the crack-tip displacement rates, 
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and from Eqs. (11) we get the crack-tip compliances, 
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Hence, Eqs. (25) yield the mode I and II contributions to the energy release rate 
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To confirm that the above result is correct, we notice that Eqs. (29) are identical with those that 

can be obtained from the elastic-interface model of the ADCB test [13] in the limit case of a rigid 

interface (i.e. when the elastic constants of the interface go to infinity). 



5 CONCLUSIONS 

We have presented a beam-theory based method to partition fracture modes in planar 

laminated beams affected by through-the-width delaminations. According to classical laminated 

beam theory, the axial, shear and bending deformabilities have been taken into account. Moreover, 

our analysis has included also bending-extension coupling, which, to our knowledge, has never 

been considered before by the fracture mode partitioning methods proposed in literature. 

The kinematics of crack growth has been analysed by defining the crack-tip displacement rates 

as the relative displacements occurring at the crack tip per unit crack extension. These quantities 

appear as very helpful tools for fracture mechanics problems, since they sum up a description of 

the kinematics of crack growth. In this paper, we have used the crack-tip displacement rates to 

determine the explicit expressions of the crack-tip forces, energy release rate and modal 

contributions. Extension to planar and spatial elasticity problems looks promising. 

Due to length restrictions, only one applicative example could be presented here. A more 

detailed explanation of the method and more examples will be presented in an extended paper. 
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