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SUMMARY. The modern use of through-thickness reinforcenenvood glulam (glued lami-
nated) beams, bridging the potential delamination cracksahas shown to be an effective techno-
logical solution to improve their interlaminar fractureestgth. In this paper, the behaviour of wood
glulam beams is investigated from an experimental and nicaigooint of view, comparing the
mechanical response of unreinforced and reinforced (by feRRE) beams subjected to four points
bending tests. For the numerical analysis, a simple twagh§oint and reinforcement) interface
model has been formulated and implemented in a finite elegwm®. In particular, the classical
interface model for adhesive joint, able to describe theodding between adjacent laminae, has
been enriched to take into account the heterogeneity dinetivansversal reinforcement.

1 INTRODUCTION

Glulam beams, obtained bonding wood laminae of limited viaihd length, in order to cre-
ate structural elements with huge flexibility and reduceadvonperfections, present an intrinsic
composite nature: constituents may have different qealdind their assembly occurs through lon-
gitudinal adhesive joints. Moreover, since often each fentioes not have a length able to cover the
longitudinal development of the beam, a finger joint betwiemadjacent laminae is necessary.
The global mechanical behaviour of this beams depends oméebanical properties of each lam-
ina and the adhesive joints. To enhance the mechanical piegpef these wood beams, both in
terms of strength and stiffness, several prototypes hase tEalized in form of FRP laminae exter-
nally bonded to the beam or internally embedded during neantufing process [1], [2]. A further
reinforcement technique, which is the object of the studgeddl on the one recently used for com-
posite laminates, consists in the introduction of FRP rbdsugh the beam thickness direction. This
transversal reinforcement increases the delaminatigghtoess both in mode | and Il as experimen-
tal tests, performed on through-thickness reinforced amite laminates, show.
The reinforcement rod in pure mode | opposites to the craekimg displacement through a bridg-
ing axial force initially proportional to the relative disgement up to the pull-out of the rod from
the composite matrix. Shear tests (pure mode Il) demoedtnat the single pin reacts to the relative
tangential displacement by shear forces and bending mamehtch are elastically related to the
displacement jump as long as a multiplicity of failure resiitro-mechanisms appear.
A classical interface model able to catch the main kinerahfibenomena that characterize the de-
lamination can describe effectively the non-linear defation process between adjacent laminae
whereas an enriched interface model has to be defined tortakadcount the heterogeneity due to
the presence of through-thickness reinforcement.
Therefore, the principal aim of the paper is to develop a timtise framework able to describe
the anisotropic elastic and post-elastic interface respaaused by the through-thickness hetero-
geneity. In particular a simple and original two-phases{jand reinforcement) interface model is
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Figure 1: Interface model: general assumptions.

formulated: the two phases, having two independent coitisttlaws, are coupled at the equilib-
rium level. The relevant advantage is to conjugate in a @y two or more phases, even with
different constitutive behaviours. The mechanical betavof unreinforced and reinforced (by FRP
rods) wood glulam beams is investigated subjecting the baaraxperimental and numerical four
points bending tests. The numerical analysis has beeredantit by a finite element code (FEAP)
in which the two-phase interface constitutive laws havenbeglemented.

2 BASIC ASSUMPTIONS AND ELASTIC RESPONSE

The interface model for heterogeneous joints, reinforoedhort rods, is developed following
a similar approach to that used by the authors in [3]. TweedHfit phases are distinguished: the
adhesive joint and the reinforcement, the latter consttlasea beam element.
The static and kinematics quantities of the interface de¥med to a Cartesian coordinate system
Y, Z) with Y, Z axes lying within the middle plang of the joint2* and theX axis directed towards
the bodyQ ™, fig. 1a.

The strain state of the joint is assumed constant along thknbssh and classically described as
function of displacement discontinuities at the interface
(Ur-u") _[U]
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whereU* = [UE U U£]”" are the displacement vectors at the interfatésand [U] the dis-
placement discontinuity vector.

The traction components™ on X+ andt™ on X~ can be regarded as external surface loads for the
joint Q*. The stress state of the adhesive phage= [0 77y TJZ]T is related to the elastic strain
by the linear constitutive law in the following form:

oy =E;e9, (2

beingE; = [E;n E;r E;r| the elastic joint stiffness matri¥y;y and E ;1 the normal and
tangential elastic moduli of the joint material.
The joint is reinforced through the thickness by a numibgrof cylindrical fibres, all oriented in



the same direction. Each fibre is referred to the coordinggtemz, y, z with z-axis coinciding
with the fibre axis, fig.1b and is considered as a Timoshenkahef lengthl ; semi-clamped at the
extremities by rotational springs of stiffne&st and K —, except for the twisting rotation which is
free. The circular cross section is characterized by an dggabending moment of inertid and
shear factoy.

The kinematics of the beam is described by the continuoysadisments () and strain fieldgy(z)
defined as:

u(z) = [u,| ucp]T = [us uy uzlepy ‘Pz}Ta ()

q(z) =[es ey e, ky kz]T. (4)

In the following, for simplicity's saken (&) = u*, u (=) = u~ is assumed.
Under the previous hypotheses, the compatibility equattogether with the boundary conditions
read:

q(z) =B (2) (ut —u") =B (2) [u], ~¢ <z <y ©)
u,"=Au, u,”=A"[u, u, (l;) =u,", u, (—l;) =u, (6)

beingB () the compatibility matrix defining the continuous straindiek function of the displace-
ment discontinuityu]:
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In absence of any distributed generalized forces alongd¢hendength, the internal forces
Q(z) = [Qu| QLP]T =[N T, T | M, ]V[z]T (13)

arise due to the displacement imposed at the fibre extremifléne axial (V) and shear internal
forces ([, andT,) are therefore constant along the beam, whereas the bemdingents {/, and
M.,) vary linearly. The equilibrium equation with its boundagnditions can be written as:

Q(z)-BTQ(z) =0, “t <z <l (14)

v;f =Ktu,*, v, =K u,", vi=Q5 v, =-Q,. (15)

The components of the matri— andK ™ are the rotational springs stiffness at the extremities of
the beam:

KF=[-K* KT|, K =[K~ —K~| (16)

The elastic response of the beam is described by the classitstitutive law:

l l
Q) = ®q(x), —5 <z <, (17)
where
D=[® | B = [ERAR GrAr Grir ‘ Erl ERIJ (18)
X

is the elastic stiffness matrix, in whickizp andG i are the elastic normal and tangential moduli of
the beam.

2.1 Elastic response of the heterogeneous joint

Considering the periodic arrangement of figure 2, the joart be subdivided intez small
cells, each one containing only one single reinforcement filvith reference to the representative
volume element (RVE), having domain and upper/lower surface boundaty", the linear elastic
behaviour of the reinforced joint permits to establish thistence of the total potential energly
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Figure 2: Fibre reinforced interface: periodic cells angresentative volume element.

Introducing egs (2), (6), (15) and (17) and using the tramsédionu = TU, II can be written as
function of the reinforced interface degrees of freeddmandU :

1 E E
n(U+,U-) = 5/ ([U]ThJUJF - [U]TTJU‘ ot Ut — 2t—TU—) dA+
A

T R S
i /A T / U TTB” (2)®B () T[U]ded A+ (20)

2A7~ 7lR/2
1

1/ (vi'TUt + v, TU" )dat

2; / ([U}TTTA+TK+A+T[U]+[U]TTTA‘TK‘A‘T[U]>dA.
r JA,

In (20) AF = A~ = A, andV, = hA, is assumed.
The equilibrium equations are derived by the minimum coadibf the total potential energy:

B ) .
O = 50U + 5 dUT =0 YoU~, §UT £0. (21)

From equation (21) making use of the positions:

+ _ ¢~ +_vV-— TTvt - TTyv—
t t ’ Vu:V”2V”: vu2 vu7 22)

Vu=Vi+V, =TTAY vi+ TTA v, (23)
the following equilibrium equation for the reinforced jbis derived:

vV, V.
A, A,

=0y +OoF. (24)



The resultant of the additional contact layer tractiens related to the reinforcement presence and
constant on the cell middle surfaek., produces the same virtual work as the one produced by the
internal forces along whole fibre length.

oFp = — / TTB7 (2) ®B (z) [u] dz. (25)

Furthermore, using the compatibility matrix partition,(#)- can be splitted into two different con-
tributes: o is associated to normal and shear fibre internal foregs, to the bending moments.

op1 = Z*RTTBT‘I’1B1 [u], (26a)
1 "lRr/2 - -

TR = / TTBI (z) ®,B, () [u] dz. (26b)
T 7lR/2

Resolving the r.h.s. of equations (26) it is also easy tdyénat:

Vau vu
=0
AT F1, Ar

= Of2. (27)

Equation (26b) shows that the bending contribute along thelevfibre length is smeared on the
middle interface surface by two shearing forces. From e§3, (@) and (2) the stiffness of the
reinforced joint can be obtained:

E; 1 ['7? -
Kir=K;+Kp=="+—+ / TTBT (v) ®B (r) Tdz. (28)
T —lR/2

3 POST-ELASTIC RESPONSE OF THE HETEROGENEOUS JOINT

The interface constitutive laws, relating the contacttioast with the displacement disconti-
nuities[U], are defined by the constitutive equations of each singlseophamely the thin adhesive
layer and the reinforcement fibre.

3.1 Jointresponse

The constitutive behaviour adopted for the adhesive ptaskerived in a thermodynamically
consistent approach in the context of damage mechanicsiaheconstitutive equations are reported
in [3].

3.2 Reinforcement response

The post-elastic response of the reinforcement rod is iestim detail in the paper of Cox and
Shridar [4]. Following their problem schematization, afanin cross sectional shape rod lies in
the X-Z plane and bridges a delamination crack on the planeX ¥he bridging rod is inclined
relative to the joint delamination plane by the initial amgl. If deformed, the rod axis deflects
through some angle, (z) andy,o = ¢,(0) is the deflection angle in correspondence to the fracture
surface. Following the terminology introduced in [4], thegée ¢,,0 may have the same or different
sign as the initial slopev,distinguishing theagainst the nap andwith the nap loading conditions,



respectively.

The experimental tests show that the failure modes for the ewe substantially different for the
two above mentioned loading conditions. For the case of ddeldaded with the nap the axial
stress is positive (tension) and in presence of unidireaticomposite rod the stiffness of the joint
is strongly influenced by the high value of the axial rod ses. Two dominant failure mechanisms
can occur, namely thegullout of therod, due to the progressive debonding of the reinforcement from
the surrounding laminate matrix and tteenforcement rupture, reached when the axial stress equals
the tensile strength of the rod.

If the bridging rod is loaded against the nap, the axial stieénitially negative (compression) and
the tendency of the rod to shear and deflect is maximized. &hdibg and shear stiffness of the rod
influence the joint response and for composite rods, beosfusdevant shear stresses, numerous
matrix cracks, parallel to the rod direction, appear up to the completausgjpn of fibres from the
matrix. In this case the rod becomes a set of independemtdstrand it can accommodate large
rotations orienting along the load direction, therefore tomposite reinforcement loses shear and
bending stiffness and turns into a truss element, i.e. irgaonly to axial forces. Also in this case
the ultimate failure can occur by two mechanisms: the rgpturder tension or, in the case of short
rod, the pullout from the laminate.

The goal of the present paper is to describe each failure amésins above illustrated, making use
of a non-linear constitutive law for the rod phase based ercliassical concepts of solid mechanics
like as plasticity and continuous damage theories.

The pullout failure mechanism occurs if the composite rod is subjected to tensile axiaddNg >

0). At the beginning the rod reacts elastically mainly by itgaastiffness up to the pullout (due to
the progressive debonding from the laminate matrix) takssep The pullout is here simulated by an
elasto-plastic model for which anelastic discontinuowspldicements evolve if a limit elastic axial
force is reached. The evolution of slipping discontinuoispldcements is governed by a simple
bilinear Nr — [u,] constitutive law in which the limit elastic and final (corpesmding to the pullout

of the rod) discontinuous displacements gy and|u,]:

Ne = Hup P28 (] - ) (29)

x

where H,, is a Heaviside function defined d$,; = H ([uI]f - [um]) in which H (e) = 0 if

(¢) <0,H (o) =1if (o) > 0.
The failure mechanism is activated if the following yieldlput condition is verified

@, (Np,xp) = Np — No — xp =0. (30)

The additive decomposition of the axial strain in the etaatid plastic parts is postulated:
1
ex = e +eg = — ([ug] — [uz]) - (31)
R

The evolution of slipping discontinuous displacement isaied by the following associative plas-
tic flow rules and loading-unloading conditions
@] =X  &=X ®,<0, A>0, Ao, =0 (32)

where)\ is the plastic multiplier Ny = [u.]oErAR/Ir represents the pull-out activation threshold
andy,, is the static internal variable defined gs = h,¢,, beingh, the hardening parameter. In



particular,h, = 0 can be chosen for long rods ahg < 0 for short ones.

The reinforcement rupture under tensile axial forces is described making use of daksbncepts

of Damage Mechanics. The progressive stiffness degradatithe rod is analytically described by:

2 ErAR
lr

The damage variable, assumes values in the range< w, < 1. The damage activation function
is assumed with the following form:

®4(Ca, Xa) =Ca—C —xa <0 (34)

where(, is the thermodynamic force conjugateddpandy is the static variable conjugated to the
internal variable,:

NF ZHuf (1 —ws)

). (33)

x

Ca=(1—ws) EJZ?R [We)*, Xa = haa- (35)

The flow rules and the loading/unloading conditions readeesvely:
s =X\, Ea=As; ®4<0, X\g>0, X\g®yq=0. (36)

In order to describe thieeam-truss degeneration, Damage Mechanics has been applied to the bend-
ing and shear stiffness of the rod. The kinematic variabtesngy this failure mechanism are the
rotation angles at the two extremitie@F = wy(i%ﬂ), depending on the shear and bending stiff-
ness of the rod and on the rotational springs stiffi§sg* = K~ = K is assumed for sake of
simplicity):

Lpi _ __ GERIGRAR [uz]
v T YT T GRARIEK + 6Bl (GrARly + 2xK)

(37)

An integrity function is applied to the stiffness of the ridaal springs, therefore, in equation (37)
the stiffness valuds is replaced by

R (l-w) K (“”‘“”f) (38)

- [%]f

in whichw, is the damage variable assuming the zero value for a soundatriik and the unit value
when the rod matrix is totally damaged and the fibres beconet @f strands, i.e. truss mechanical
behaviourw, is defined as function of the damage history variah)g as follows:

2
(pyd
We =

= (39)
‘Pid + he

whereh, is a constitutive parameter. The matrix damage onset idatgliby the following damage
function with the loading-unloading conditions:

(bdc = Py — Pyd — Py0 < 07 (I)dc < 07 ¢yd > 07 ¢yd (I)dc = 0. (40)

In equation (40)p,o represents the damage activation threshold.

The reinforcement reduced to a set of strands, can sufige latations determined by the applied
total discontinuity displacement following the directiofthe applied loading condition. The rupture
of strands under tension characterizes the final failurehangsm.



4 APPLICATIONS TO WOOD STRUCTURES: GLULAM BEAMS

Four points bending tests on real-scale wood glulam bearestieen carried out at the DISAG
Laboratory of Palermo University. The glulam beam T3-1 isstituted by 12 laminae, 4 of wood
denoted L30£;,=18 MPa, E=12 GPa) and 8 (beam core) of wood L25=(14.5 MPa, E=11 GPa).
The experimental tests regarded a simple glulam beam anadangbeam reinforced with GFRP
rods inserted in the normal direction to the laminae. In lwatkes the beams have been subjected to
force-controlled tests.
The numerical analysis of the unreinforced glulam beam leas lzarried out by the research ori-
ented finite element code (FEAP) in which the through-thédaninterface laws have been imple-
mented. Space discretization has been achieved emplayoigitnensional 4 nodes isoparametric
elements simulating laminae and by 4 nodes interface elenfienthe bed and finger joints, for a
total of 1980 nodes and 1862 elements. The comparison betweeinforced experimental load-
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Figure 3: Comparison between experimental and numerice¢infiorced and reinforced glu-
lam beam load-displacement curves and constitutive paeasesed for the numerical analysis
(U=unreinforced, R=reinforced) (JB=bed joint, JF= fingan;).

displacement curve and the numerical one is shown in fig. 8.nimerical results match quite well
the experimental ones both in terms of elastic response eaklIpad value attained during the test.
After an initial elastic response, non linear effects oabwe to the delamination along the longitu-
dinal joints. Once the peak load has been reached a softbramgh with unstable response takes
place due to a collapse mechanism corresponding to thegasige slipping of the bed joints which
has been also observed experimentally up to the final gtesifeseached at the middle plane. The
constitutive parameters adopted for the numerical sirauiatre reported in table of figure 3.

The second test has regarded another glulam beam T3-1 RNV dvdifferent geometrical distribu-
tion of finger joints) reinforced by 64 GFRP rods having a dééngy = 8 mm and a lengthh = 370
mm embedded in the beam through an epoxy-amino resin. Thehad been distributed in two
rows between the load application points and the supportsder to improve the delamination
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Figure 4: Geometrical scheme of the rods location in theaghubeam T3-1 RV.

toughness and to increase the overall beam strength. Irefigtive geometrical scheme of the rods
location is reported. As done for the previous test, theaglubeam has been subjected to a four
points bending test and the vertical forces have been isedeap to beam failure. The comparison
between reinforced experimental and numerical result®rins of load-displacement curves, is re-
ported in figure 3. It can be noticed that the reinforced giutkeeam shows an increment of stiffness
and the peak load attained is 380 kN, that i§clifigher than the unreinforced value detected (350
kN). The failure mechanism observed both experimentaltyraomerically is not so much different
from the one observed in the unreinforced glulam beam tass, the peak load increment depends
on the modest increase of bed joints toughness. New chaac#seffuture are the comparison of
numerical post peak results with experimental ones deffrad displacement controlled tests and
the employment of different materials for the through-hiess reinforcement.
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