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SUMMARY. A variationally consistent finite element approach for solving nonhomogeneous 
nonlocal elastic 2D boundary value problems is presented and the related computational issues are 
discussed. The method is developed in the framework of nonlocal integral elasticity grounding on 
a numerical procedure known, in the relevant literature, as Nonlocal Finite Element Method. The 
behaviour of the considered nonhomogeneous nonlocal elastic material is described assuming a 
recently proposed phenomenological strain-difference-based constitutive law. Numerical results, 
concerning a simple 2D example, are presented and discussed. 

1 INTRODUCTION 
The classical (local) elasticity theory has been widely employed in the context of continuum 

theories to solve with success a large number of engineering problems. However, as known, such 
theory is unable to capture phenomena which indeed can be reasonably explained only at 
microstructural level. Well-known examples are: the occurrence of size effects; the dispersion of 
elastic waves; the singularity of the stress at crack tip. Several remedies have been proposed since 
the late fifties to get around the failure of classical continuum theories. Approaches dealing with 
the detailed description of material microstructure have been developed in the framework of 
atomic and lattice mechanics (see e.g. [1]). However, it has been soon recognized that the 
application of such theories to realistic engineering problems is computationally unfeasible. 
Therefore, it appeared more sensible to account for the effects of material microstructure within a 
continuum formulation. This is the key idea behind the nonlocal elasticity theories which include, 
besides the contact forces between particles (occurring in a local elastic approach), long-range 
cohesive forces [2,3] able to catch the capacity of an elastic material to transmit information to 
neighbouring points within a certain distance. This distance, herein named influence distance, is 
strictly related to an internal length material scale which enters the constitutive material model in 
different ways i.e. by considering body couples as in polar elasticity; or by gradient operators or, 
moreover, by integral operators or, very recently, by fractional quantities (see e.g. [4-8]). Several 
applications of nonlocal elastic continuum approaches to nanomaterials, where size effects often 
become prominent, are also traceable in the recent literature from the work of Peddieson et al. [9], 
who developed a nonlocal Euler-Bernoulli beam model, till the remarkable contribution of 
Aifantis [10]. The latter study shows that continuum elasticity can indeed be properly extended to 
address a variety of problems at micro/nano regime by including long-range or nonlocal material 
point interactions and surface effects in the form of higher-order stress/strain gradients. 

The above list of contributions, far to be exhaustive, testifies the increasing interest of 
researchers towards nonlocal approaches. In the authors’ opinion, besides some theoretical aspects 
still open to discussion, the issues that need further investigations are those related to the solution 



of nonlocal elastic boundary value problems. However, the complexity of analytical solutions, 
even for simple 1D problems, implies that only numerical approaches can be efficiently applied in 
a more general 2D or 3D context. Recently, the authors have implemented a finite element method 
for analyzing 2D Eringen-type nonlocal elastic problems [11]. The procedure, named NL-FEM -
where NL stands for “NonLocal”- has been first theorized by Polizzotto [12] on the base of a 
nonlocal total potential energy principle conceivable as an extension of the analogous principle of 
classical (local) theory. The obtained numerical results, though showing the potentialities and the 
effectiveness of the NL-FEM, are often distressed by some numerical oscillations or incoherencies 
such as undesired boundary effects. A typical example is the increasing trend of the strain profile 
close to the end sections of an Eringen-type nonlocal bar under uniform tension [13]. 

In order to overcome the above drawbacks, recently the authors have implemented an 
enhanced version of the NL-FEM [14] by assuming a phenomenological nonlocal constitutive 
model proposed by Polizzotto et al. [15] for (macroscopically) nonhomogeneous linear elastic 
materials in isothermal conditions. The latter, based on a firm thermodynamic formulation, turns 
out to be a two components local/nonlocal model since the stress is expressed as the sum of two 
contributions: one is the local stress governed by the standard elastic moduli tensor assumed 
variable in space; the other is of nonlocal nature and is expressed in terms of an averaged strain-
difference field. A notable feature of the assumed constitutive relationship is that in the presence of 
a uniform strain field the nonlocal aliquot of the stress vanishes and the local behavior is recovered 
both in terms of stress and energy, while the symmetry of the nonlocal operators is preserved. This 
circumstance enables to avoid numerical instabilities and incoherencies on the strain distribution 
close to the domain boundaries. The present paper aims to explore the validity of the strain-
difference-based NL-FEM when dealing with nonhomogeneous nonlocal elastic 2D boundary 
value problems. In particular, the method is formulated assuming nonhomogeneous elastic moduli, 
constant internal length and an attenuation function depending on the Euclidean distance. The 
numerical implementation of the NL-FEM is described with reference to a simple 2D example 
focusing the attention on the nonlocal operators, their physical meaning as well as on the main 
differences they exhibit with respect to the operators pertaining to the standard FEM.  

2 CONSTITUTIVE ASSUMPTIONS 
Let us consider a nonlocal linear elastic nonhomogeneous continuum in its undeformed state, 

occupying the volume V  of a three-dimensional Euclidean domain referred to orthogonal axes 
with Cartesian coordinates 1 2 3( , , )x x x=x . The constitutive behavior of the considered material is 
herein described assuming the phenomenological nonlocal model proposed by Polizzotto et al. 
[15], that is: 

 
 [ ]( ) ( ) : ( ) ( , ) : ( ) ( ) d    ( , ) .

V
Vα ′ ′ ′ ′= − − ∀ ∈∫x D x ε x J x x ε x ε x x x xσ  (1) 

 
The constitutive relation (1) expresses the stress response, ( )σ x , to a given strain field, ( )xε , 

as sum of two contributions: the first one is the local stress governed by the standard symmetric 
and positive definite elastic moduli tensor ( )D x  assumed variable in space; the second one is of 
nonlocal nature and depends on the strain difference field [ ]( ) ( )′ −ε x ε x  through the symmetric 
nonlocal tensor ( , )′J x x  defined as: 

 
 [ ]( , ) : = ( ) ( ) ( ) ( ) ( , )  ( , )     ( ,  ) ,g Vγ γ′ ′ ′ ′ ′ ′+ − ∀ ∈J x x x D x x D x x x x x x xq  (2) 
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In the above operators, ( , )g ′x x  denotes a positive, symmetric scalar attenuation function 

which assigns a weight to the nonlocal effects induced at the field point x  by a phenomenon 
acting at the source point ′x ; it contains the internal length material scale, say l , and it rapidly 
decreases with increasing (Euclidean) distance between x  and ′x , vanishing beyond the so-called 
influence distance RL . The latter is a multiple of the internal length l  and both RL  and l  are 
much smaller than the smallest dimension of the body. Moreover, in Eq. (1) α  is a positive scalar 
coefficient driving the “degree” of nonlocality (the positiveness of the latter material parameter 
being required to avoid numerical instabilities; refer to the above quoted paper for details). 

An attractive feature of the assumed nonlocal constitutive model (1) is that for any uniform 
strain field the nonlocal contribution vanishes and the stress recovers the local value, in agreement 
with some experimental findings on thin wires in tension executed by Fleck et al. [16] dealing 
with strain gradient plasticity. To this concern, the averaged strain-difference in Eq. (1) plays the 
same role of the strain gradient for strain gradient-dependent materials. By inspection of Eq. (1), it 
is also observed that material inhomogenities affect both the local and nonlocal part of the stress 
related to a given strain field through the spatially variable elastic moduli tensor ( )D x . 

It can be verified that the stress-strain relationship (1) can be expressed in the following 
notable alternative form: 

 
 

 
( ) ( ) : ( ) ( , ) : ( )d        ( , )

V
Vα ′ ′ ′ ′= + ∀ ∈∫x D x ε x S x x ε x x x xσ  (4) 

 
where ( , )′S x x , related to the additional nonlocal stress contribution, can be interpreted as a 
nonlocal stiffness tensor. Specifically, the (singular) symmetric and positive definite tensor 

( , )′S x x  is given by: 
 

 2 21( , ) : = ( ) ( ) ( ) ( ) ( )  ( ,  )      ( ,  ) ,
2

Vγ γ δ⎡ ⎤′ ′ ′ ′ ′ ′+ − − ∀ ∈⎣ ⎦S x x x D x x D x x x J x x x x  (5) 

 
where ( )δ ′ −x x  denotes the Dirac delta function.  

Notice that both ( , )′J x x  and ( , )′S x x  vanish outside the influence zone defined by RL  being 
( , ) 0g ′ ≈x x . This implies that the nonlocal contribution to the stress in the assumed constitutive 

model (Eq. (1) or (5)) depends only on the strains within the influence region. 

3 NONLOCAL FINITE ELEMENTS FOR NONHOMOGENEOUS MATERIALS 
Introducing the further hypotheses of small displacements and loads acting in a quasi-static 

manner, the boundary value problem for the above considered nonlocal linear elastic 
nonhomogeneous continuum is governed by the standard equilibrium and compatibility equations 
besides the assumed constitutive relation (Eq. (1) or (5)). In Ref. [15], the extension of the total 
potential energy principle to nonlocal continua obeying to the strain-difference based constitutive 
model has been presented. Taking into account Eq. (4) and the definition (5) of the nonlocal 



stiffness tensor ( , )′S x x , the pertinent functional can be expressed as follows: 
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where: ∇  denotes the gradient operator; ( )u x  is the unknown displacement field subject to the 
boundary conditions ( ) ( )=u x u x  on the surface portion uS ; ( )b x  are assigned body forces; 
finally, ( )t x  denotes tractions prescribed on t uS S S= − .  

A finite element procedure for analyzing nonlocal nonhomogeneous elastic problems can be 
formulated grounding on the discretized form of the nonlocal total potential energy functional 
given in Eq. (6). To this aim, the domain V  is subdivided into eN  finite elements (FEs) of volume 

nV  and, adopting the standard formalism of FEM, the displacement and strain fields within the n -
th FE are given the following shapes 

 
 ( ) ( ) ;      ( ) ( ) ( ) ,       ,n n n n nV= = ∇ = ∀ ∈u x N x d x u x B x d xε  (7a,b) 
 
where ( )nN x  and ( )nB x  are the matrices of shape functions and their derivatives, respectively; 
 nd  denotes the nodal displacement vector. Substituting Eqs. (7a,b) into Eq. (6), the functional 
[ ]( )π u x  takes the following discretized form: 
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where loc

nk  and nf  are the standard element (local) stiffness matrix and equivalent nodal forces 
vector, given by: 
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The novelties in Eq (8), with respect to the standard local FEM formulation, are represented by the 
element nonlocal stiffness matrices nonloc

nk  and nonloc
nmk , defined as: 
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Notice that the matrix nonloc

nk  differs from the standard local stiffness matrix in Eq. (9a) just for the 
presence of the nonlocal operator 2 ( )γ x  (see Eq. (3a)) which accounts for the influence exerted 
on the n -th element by the nonlocality diffusion processes over the whole domain. A quite 
different meaning may be given to nonloc

nmk  which, as can be inferred by its mathematical structure, 
takes into account the nonlocality effects of the m -th element on the n -th current one through the 



nonlocal operator ( , )′J x x  and is therefore called element nonlocal cross-stiffness matrix. Notice 
that nonloc

nmk  vanishes when the elements # m  and # n  are far from each other with respect to the 
influence distance RL  since, as already mentioned, beyond this distance the attenuation function 

( , )g ′x x  and consequently ( , )′J x x  take on almost negligible values. Following a similar 
reasoning, it is also observed that nonloc

nk  actually accounts just for the nonlocality diffusion 
processes taking place within the influence zone of the n -th element, namely within the portion of 
the whole domain in which ( , )g ′x x  and therefore 2 ( )γ x  are different from zero.  

Equation (8) can be obviously rewritten in terms of global DOFs, collected in the vector U , 
by using the standard correspondence  n n=d C U  where nC  denotes the usual connectivity matrix. 
The following global solving linear equation system, formally similar to the one pertaining to the 
local FEM, is then recovered in the shape: 

 
 ˆ = ,KU F  (11) 
 
where:  
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K̂  and F  denote the nonlocal global stiffness matrix and the standard global force vector, 
respectively. It is worth mentioning that K̂  turns out to be symmetric, positive semi-definite and 
banded but with a bandwidth larger than in the local FEM. Moreover, it can be observed that the 
nonlocal global stiffness matrix in Eq. (12a) clearly reflects the two/components local/nonlocal 
nature of the assumed constitutive model since it is given by the sum of two contributions: the first 
one coincides with the standard local global stiffness matrix; the second one represents the 
nonlocal addition controlled by the coefficient α . Finally, it is noted that, contrary to nonloc

nk , the 
matrices nonloc

nmk  do not follow the standard assemblage procedure thus leading to a bandwidth of 
K̂  larger than in the local case. 

From a numerical point of view, special attention should be devoted to the evaluation of the 
nonlocal operators ( )γ x  and ( , )′q x x  as well as of the cross-stiffness matrices nonloc

nmk . In 
particular, both ( )γ x  and ( , )′q x x  (see Eqs. (3a,b)) require integrations over the whole domain 
which, following a standard FE treatment, can be performed resorting to a Gauss-Legendre 
quadrature involving all the Gauss points in the mesh. The computation of nonloc

nmk  can be carried 
out by standard quadrature as well, considering in this case only the Gauss points belonging to 
elements # n  and # m  since cross integrations between elements are involved (see Eq. (10b)).  

To reduce the relatively prohibitive computational efforts implied by such integrations, the 
nonlocal operators ( )γ x  and ( , )′q x x  can be evaluated considering not all the Gauss points in 
the mesh but only those falling within an influence region determined by RL . In a similar way, for 
the generic element # n , the computation of the cross-stiffness matrices nonloc

nmk  can be confined to 
the elements # m , say eM , falling within the influence region.  

As regards the numerical integrations, it has also to be mentioned that an advantage of the 
adopted quadrature rule is that it allows the implementation of the expounded NL-FEM just by 
enriching standard (local elastic) FE codes with apposite subroutines. Appropriate comparisons 



with different standard procedures, available in many commercial codes (see e.g. [17]), have 
shown that a standard Gauss quadrature provides reliable approximations of the nonlocal operators 
and cross-stiffness matrices, at least for the run cases. 

4 NUMERICAL APPLICATION 
The presented NL-FEM has been implemented and applied to the nonhomogeneous plate under 

tension depicted in Fig. 1a.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1: a) A nonhomogeneous plate under tension with piecewise constant Young modulus; b)  
3D plot of the strain distribution ( , )y x yε . 

 
The plate, with 1cma =  and thickness 0.5cmt = , is constrained along the edge at 0y =  and 

it is subjected to a uniform displacement 0.001cmyu =  at the opposite edge 5y a= . The Young 
modulus is piecewise constant with 2 0E E=  over the whole structure except in two rectangular 
regions where it takes a smaller value 1 0 / 3E E= . The strain-difference-based nonlocal 
constitutive model (1) with an attenuation function of the form /

0( , )g eλ ′− −′ = x xx x l  (with 
2

0 1/(2 )tλ π= l  denoting the normalization factor, t  the thickness of the structure and 6RL = l ) 

)b
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has been adopted. The material properties have been selected as follows: Young modulus 
6 2

0 2.1 10 daN / cmE = × , Poisson ratio 0.2ν = , internal length 0.1cm=l  and 50α = . Finally, 
the analysis has been carried out using 8-node Serendipity elements with 3×3 Gauss points per 
element and assuming a uniform mesh of 800 FEs with 40 subdivisions along x  and 20 along y .  

Figure 1b displays a 3D plot of the NL-FEM solution in terms of strain distribution ( , )y x yε  
over the plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Strain profile of the local (dashed lines) and nonlocal (solid lines) solutions: a) yε  versus 
x  at 2.528cmy = ; b) yε  versus y  at 3.028cmx = . 

 
Plane sections of the 3D plot given in Fig. 1b at 2.528cmy =  and 3.028cmx = , respectively, 

along with the corresponding local FEM solutions are reported in Fig. 2(a,b). These plots clearly 
show that, both along the x  and y  directions, the nonlocal diffusion processes have a notable 
influence on the strain distribution arising around the transition sections between E1 and E2. In 
particular, by inspection of Fig. 2a it is observed that around the sections at 2y a=  and 3y a= , 
where the value of the elastic modulus abruptly changes, the strain profile along the direction of 
the prescribed displacement yu  (see Fig. 1a), is smoother than the one given by the local approach. 
Furthermore, it is noted that near the boundaries, the NL-FEM solution is very close to the 
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corresponding local one thus confirming that the enhanced strain-difference-based constitutive 
model does not give rise to undesired boundary effects.  

The nonlocal plate herein considered has also been analyzed in the case of homogeneous 
elastic modulus, i.e. 0E E=  over the whole structure. In agreement with the essential feature of 
the strain-difference-based nonlocal model, it has been found that the NL-FEM yields a uniform 
strain distribution, exactly coincident with the local one, for any choice of l  and α . Finally, it is 
worth mentioning that several numerical analyses have been carried out considering different FE 
meshes and the obtained results, herein omitted for conciseness, do not exhibit mesh dependence. 
Nevertheless, a rigorous proof to this concern is still missing and further investigations would 
certainly be necessary. 

5 CONCLUSIONS 
The paper has focused on the implementation of a nonlocal finite element approach which 

makes use of a strain-difference-based constitutive model. A nonlocal elastic nonhomogeneous 
material as well as a 2D boundary value problem have been considered. Issues related to the 
definition of the nonlocal operators have been discussed highlighting their physical meaning and 
giving details on the related integration procedures. The obtained results, though confined to a 
simple 2D academic example, have proved the capability of the method to overcome some 
drawbacks of nonlocal integral elasticity typically arising at the domain boundaries as well as to 
avoid numerical instabilities. The strain-difference-based NL-FEM thus seems to be a useful tool 
to handle a wide class of engineering problems. 
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