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SUMMARY. An analytical approach for the elastic stability of thin rectangular plates under 
arbitrary boundary conditions is here presented. Because a closed-form solution is developed, the 
proposed method can be described as ‘exact’ under the Kirchhoff-Love assumption. The analytical 
nature of the proposed procedure returns exact buckling load and modal displacements using a 
very coarse mesh. In the present paper an enriched longitudinal variation of displacements is 
adopted, in order to remove the restriction about one-dimensional nature of analytical model 
usually represented in literature and obtain a full two-dimensional model. Several cases of plate 
buckling are studied to show the generality of the method. The improvement of the method is 
demonstrated through comparison with finite element analysis and existing analytical solution 
available in literature.  

1 INTRODUCTION 
 
The understanding of the buckling behavior of plates subjected to in-plane forces has been an 

important area of investigation for many researchers, due to its wide use in many engineering 
applications. For the elastic buckling analysis numerical methods have been employed over the 
last years,  most of them dealing with rectangular plates. Many of the useful results have been 
summarized in several texts and handbooks [1-3]. Finite Element Method (FEM) has represented a 
powerful tool, able to define buckling load and buckling mode to any structural member, loading 
and boundary condition, and a large number of FEM software packages is available. However, to 
provide accurate prediction of buckling response a large number of elements is required, and 
numerical instabilities as well as inefficient results can occur, especially when close buckling 
modes are present. When the geometry of structure becomes regular (i.e. open ruled surface), more 
efficient techniques can be successfully adopted.  The Finite Strip Method (FSM), based on the 
discretization of the structure along the transverse direction only, is systematically employed in 
buckling analysis and it is often found to be more efficient to determine the critical loads for thin 
plates because of its reduced both computation times and numerical  instabilities. The price of the 
reduced computational effort is that the method can be only applied on structures with specific 
geometry and boundary conditions: it works only on prismatic structures, and require simply 
supported edges. Semi-analytical, or exact, models can be considered variation of FSM. In the 
usual FSM the lengthwise variation of displacements is represented by harmonic functions, and a 
polynomial shape function is retained for the transverse variation of displacements. In a semi-
analytical approach, under the same kinematical assumption about lengthwise displacements, 
represented by harmonic functions, it is possible to reduce the partial differential equilibrium 
equations (PDEE), that doesn’t allow closed-form solutions, into a set of one-dimensional 
ordinary differential equilibrium equations (ODEE), suitable for analytical solution. Using closed 
form solutions as shape function in numerical approach can define exact buckling load and modal 



displacements throughout very coarse mesh. Semi-analytical method for buckling analysis has 
been extensively studied by Williams et al.  works [4,5]. They proposed a FEM-like procedure for 
critical and post-critical behavior of isotropic and homogeneous plates rigidly connected, solving 
equilibrium equations obtained via perturbation technique [6-7]. Closed form solutions of 
buckling analysis of rectangular plates with different in-plane loads and  improved mechanical 
models, removing Von-Karman or Kirchhoff hypothesis, can be found in literature: Hosseini-
Hashemi et al. [8] presented an analytical closed form solutions of rectangular Mindlin plates, in 
order to deal with thicker and laminated composite plates. Leissa and Kang found out the solutions 
for free vibration and buckling of plates loaded by linearly varying in-plane distributed forces and 
moments, simply supported edges in y direction, clamped [9] or free [10] in x direction, using the 
classical power series method. Reddy and Pan [11]  in a  pioneer work defined a model capable to 
obtain critical load and critical mode of isotropic/orthotropic laminated plate. Minutolo et al. [12]  
removed the Von-Karman assumption about deformation-displacement relationship, in order to 
couple the second-order in-plane and out-of plane displacements in stiffened rectangular plates. 
Iuspa e Ruocco [13] adopted a closed form approach in an optimization procedure for the optimal 
design of isotropic/orthotropic thin structures involving weight limitation and/or buckling load, 
using genetic algorithm. For kinematical assumption in any analytical models proposed in 
literature, two opposite edges simply supported are required. In the present paper an enriched 
longitudinal variation of displacements is adopted, in order to remove the restriction of simply 
supported edges. It has been obtained coupling two different 1D models to get a 2D model capable 
to describe the boundary conditions completely. The improvement of the method is shown through 
comparison with results obtained using commercial FEM package ANSYS  and existing analytical 
solution available in literature. 

 

2 THE MODEL 
We can consider an isotropic thin rectangular plate having lengths of a e b and constant 

thickness h, subject to in-plane compression LN (fig. 1).  
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Fig. 1. Thin rectangular plate under in-plane load: dimension and reference frame 
 
 
Under the classical thin plate hypothesis (Kirchhoff-Love’s theory and von Kàrman strain-

displacement relationship),  the partial differential equation of  equilibrium, in terms of out-of-



plane displacement, is: 
 

0,4 =+∇ xxLwNwD     (1) 
 
Where 4∇ is the biharmonic differential operator ( yyyyxxyyxxxx wwwei ,,2,.,. ++  in rectangular 

coordinates), ( )2

3

112 ν−
=

EtD  is the flexural rigidity of the plate. Here ( ) i,•  represents ( )
ix∂
•∂ .  

 
Eq. (1) does not allow a closed form solution but, under more restrictive hypothesis on the 

displacement field, it is possible to reduce the PDEE to a set of one-dimensional ordinary 
differential equations of equilibrium, suitable for analytical solution. Classical approaches based 
on closed-form solution are Semi-analytical approach (SAA), where displacements are 
represented by harmonic function in y direction and beam-like theory (BLT), where displacements 
are represented by constant function in x direction. 

The buckling solution defined using analytical solutions as shape function in a FEM-like 
approach doesn’t depend on discretization adopted, and the number of representative elements  is 
the minimum required for a complete representation of the geometry. In fig. 2 classical 
discretization required for a full description of plates in a FEM, FSM, and analytical approach is 
represented.  
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Fig. 2 A-B-C-D. (A) Typical stiffened plate and comparison between analytical (B), FSM (C) and FEM (D) required 

discretization 
 
Counterpart of numerical and computational advantages are some geometrical restrictions, due 

to intrinsic one-dimensional nature of the analytical models adopted in literature. Both SAA and 
BLT models are briefly reported to show similitude and restrictions.  

Let’s consider the out-of-plane displacement ( )yxw , as: 
 
( ) ( ) ( )ywxwyxw 21, =     (2) 

 



substituting Eq. (2) into eq. (1) we obtain: 
 

( ) 0,,,,2, 12211 =+++ xxLyyyyyyxxxxxx wNwwwwD   (3) 
 

Two analytical models, characterized by closed form solutions of Eq. (3), can be derived using 
in eq. (2) suitable displacements field. In a Semi-analytical approach  we put ( )xw1  as 

 

( ) ,....)3,2,1(cos1 == m
b

xmxw π    (4) 

 
With m  number of half-wave characterizing the buckling mode. Substituting Eq. (4), the eq. 

(3) becomes 
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Eq. (5) can be solved analytically:  
 

( ) ycycececyw yy ββαα sincos 43212 +++= −    (6) 
 
Depending by LN via  α  and β : 
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In (6) ic  represent coefficients defined imposing boundary conditions along 
2
by ±=  . 

   
In a Beam-like theory  a solution for the displacement ( )yw2  may be taken as a constant 

function 
 

( ) kyw =2      (8) 
 
Substituting (8), the (3) assuming the form 

( ) ( ) 0,, 11 =⎥⎦

⎤
⎢⎣

⎡ + xx
L

xxxx xw
D

Nxwk     (9) 

 
Eq. (2.9) is suitable to following closed form solution  
 

( ) 43211 sincos dxdxdxdxw +++= γγ    (10) 

Depending by LN via  γ  : 



D
N L=γ      (11) 

 

In eq. (10) the constants id  are defined by imposing boundary conditions along 
2
ax ±=  .

 The SAA and BLT models have the same philosophy, and they are both well posed. 
Using the (6) or the (10) as shape function in a fem-like procedure, it is possible to define critical 
load and critical mode of structures with complex geometry and general boundary conditions 
along y-edges (SAA procedure) or x-edges (BLT procedure). The required input is one-
dimensional, according to hypothesis (4) or (8) on displacement field, therefore buckling response 
of structures represented in figure 3 can be easily defined.  

 
 

 
Fig. 3. Examples of typical one-dimensional input required by SAA and BLT method 

 
Due to different displacement functions, the one-dimensional input represented in figure 3 

recalls different two-dimensional structures (see fig. 4), with different boundary conditions 
imposed: the sinusoidal behaviour in y-direction for the SAA model requires simply supported 

edges in 
2
ax ±= , where constant behaviour in x-direction for BLT model requires free ends in 

2
by ±= .  
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Fig. 4 A-B-C: two-dimensional representation of a typical one-dimensional input (A),  in SAA approach (B) and BLT 

approach (C)  
 
 
If we consider condition of plate clamped/free represented in fig. 5, for example, using a SAA 

approach we get: 
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whereas for BLT model the same conditions are defined as: 
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it considers the expression (2.6), representative of ( )yw2 , yields: 
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The (12) and (14) assume the form ( ) 0xK =γk  and ( ) 0xK =βαπ ,cos
b

xm , respectively.  
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Fig. 5. Imposed boundary condition of a free plate (A) in BLT (B) and SAA (C) approach  
 

 
Critical load can be defined imposing  ( ) 0det =K . Taking into account the expressions (7) and 

(11) of ( ) ( ) ( )SAA
cr

SAA
cr

BLT
cr NNN γβα ,, , it gets the critical loads represented in fig. (6) for different a 

values.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Critical load of clamped-free plate via SAA approach and BLT approach 
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The correlate critical mode: 
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are representative of different normalized displacements field, as shown in fig. (7) and fig. (8).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig 7: first mode of clamped-free plate of dimensions L and H,  with BLT approach 
 
The basic idea of the proposed model is a coupling of one-dimensional SAA and BLT models, 

in order to remove the restriction contained in both and to obtain a full two-dimensional model. 
Let us assume that the displacement function (2.2) is:  

 
( ) ( ) ( )yxyxw wn=,      (16) 

 
Where  
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and ( )yw   a vector containing the four unknown functions  
 

( ) ( ) ( ) ( ) ( )[ ]TDCBA ywywywywy =w    (18) 
 
Substituting the eq. (16), the eq. (3) assuming the form 
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The (19) admits solution for each x if  each expression in square bracket is equal to zero. It is 

then possible to obtain four uncoupled ODEE , suitable for analytical solution: 
( ) ( ) aFw ⋅= yy      (20) 
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Depending on ( )LNα  and ( )LNβ  , defined in (7). In (20) a is a vector containing 16 

constants defined imposing boundary conditions in four points of each element of the structure 
 

[ ]Tddddccccbbbbaaaa 4321432143214321=a  (22) 
 
 Substituting (3.5) in (3.3) we obtain  
 

( ) ( ) ( ) aFn ⋅⋅= yxyxw ,      (23) 
Using (23) as a shape function in a Fem procedure, it is possible to obtain critical load and 

critical mode of full 2D structures solving the associated eigenvector and eigenvalue problem. It 
does not depend on discretization adopted, as (21) are closed form solutions of equilibrium 
equation, and solutions are obtained with very coarse mesh. Since the uncoupling of  equation of 
equilibrium (3) in four independent ordinary differential equations, it is not possible to obtain 
kinematical congruence everywhere: the classical fem approach is based on a kinematic 
formulation: it means that chosen displacement functions satisfy the displacement continuity 
between each point of adjacent elements but the equilibrium equation only in some representative 
nodes [14]. Differently, the proposed approach can be seen as a static  formulation which means 
that chosen displacement functions satisfy the equilibrium equations between each point of 
adjacent elements but the displacement continuity only in some representative nodes. 

  

3 CONCLUSIONS 
In the presented study an exact solution procedure for buckling analysis of plates having all 

possible combinations of boundary conditions was performed. The proposed work unifies two 
one-dimensional models usually adopted in literature, obtaining a full 2-dimensional model 



capable to remove geometrical constrains on boundary conditions, in 1D models applied 
continuously along the x and y edges. Comparison with numerical results and analytical solutions 
available in literature has shown the performance of the model, capable to obtain closed form 
solutions and comparable results with very coarse mesh. The study can be extended defining a 
FEM procedure, coupling in-plane and out-of-plane displacements, in order to define critical 
response of stiffened plates with general geometry. 
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