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SUMMARY. The present paper is devoted to the optimal design of structures subjected to static
and dynamic loading. The constitutive material is assumed to have an elastic perfectly plastic
behaviour. The relevant optimal design problem has been formulated as a minimum volume
problem and reference has been made to the so-called statical approach. The minimum volume
structure is determined under suitable constraints on the design variables as well as accounting for
different resistance limits: it is required that the optimal structure satisfies the elastic shakedown
limit and the instantaneous collapse limit, considering acting for each different limit condition a
suitably chosen load combination and imposing for each different condition suitably chosen load
amplifiers. The adopted load combinations are characterized by the presence of fixed loads, of
quasi-statical cyclic loads and dynamic (seismic) loads. In the present context the effects of the
dynamic actions are studied on the grounds of the dynamic features of the relevant structure taking
into account the natural frequencies. The proposed treatment is referred to the most recent Italian
Codes related to the structural analysis and design: therefore, the minimum volume design is
developed at first as the search for the optimal structure with simultaneous constraints on the
elastic shakedown behaviour (related to serviceability conditions), on the instantaneous collapse
(under the combination of fixed and cyclic loads due to the wind effect), on the instantaneous
collapse (under the combination of fixed and seismic loads). The Bree diagrams of the optimal
structure have been determined in order to characterize the structural behaviour and it has been
always found that the structure approaches the instantaneous collapse in conditions of ratchet.
With the aim of avoiding such a dangerous condition a further constraint has been introduced into
the relevant optimal design problem: in particular, the fictitious plastic activations have been
suitably limited. The obtained results show that suitably limiting the referenced quantities the
optimal structure exhibits an alternating plasticity behaviour even for load combinations very close
to the limit ones. The numerical applications are related to steel frames.

1 INTRODUCTION

Since the first years of the second half of last century, many scientists and engineers faced the
problem of the optimal design of elastic plastic structures (see, e.g., [1-6]). Today, many of the
fundamental features of the behaviour of an optimal structure under different loading
combinations and limit conditions are sufficiently known. These results together with the
technological progress led to the gradual introduction of some aspects of optimal design in
national and international codes. The main goal of such codes (in the present paper the Italian
National Codes [7] is referred to) is to allow the structural engineers for designing structures more
adequate for the loading conditions that they will suffer during their design lifetime and, as a
consequence, more safe than those given by traditional approaches. In general, the formulation of



an optimal design problem, besides the choice of an objective function that very often coincide
with the structural volume, substantially requires the definition of appropriate load conditions and
the choice of special limiting criteria to impose on the structural behaviour (elasticity, shakedown,
instantaneous collapse, sometimes simultaneously imposed) (see, e.g. [8-12]).

As known, the intensity of the loads which the structure must suffer during its lifetime is often
a very difficult task due to their randomness characteristic. Furthermore, the definition of a special
load model, together to the assignment of reasonable limit values that the load can not overpass,
strongly influence the choice of the limit behaviours that the structure must satisfy. So, the optimal
design problem might be formulated taking into account quasi static as well as dynamic loads,
imposing constrains identifying with different limit conditions related to as many different load
conditions characterized by appropriate load multipliers. Therefore, the formulations proposed will
make reference to the Italian code, that prescribes that the structural design be effected taking into
account different combinations of static and dynamic loadings, amplified by prefixed load
multipliers, below which the structure must respect the serviceability conditions and not reach the
instantaneous collapse condition.

Unfortunately, imposing the ultimate limit load condition it is not possible to have information
on the structural behaviour slightly below the instantaneous collapse: actually, before the collapse
the structure could be subjected to ratcheting, i.e. in any case to a fast incremental collapse, or it
can be in the field characterized by an oligocyclic fatigue behaviour, i.e. it possesses the capability
for resisting to several load cycles before collapsing. Obviously, it could be preferable to have a
more safe structure that under the action of high intensity loads doesn't exceed the alternating
plasticity limit and exhibits small plastic deformations. Therefore, in this paper the optimal design
problem of elastic perfectly plastic frames subjected to fixed, quasi static and dynamic loadings is
performed. No constraints on the material ductility have been considered and the hypothesis of
small displacements has been assumed. The relevant optimal design problem has been formulated
as a minimum volume problem and reference has been made to the so-called statical approach, i.e.
the constraints on the limit behaviour of the structure are written in terms of generalized stresses.

The optimal design problem is formulated at first simultaneously imposing an elastic
shakedown limit, related to appropriate serviceability conditions, an impending instantaneous
collapse limit, related to a combination of fixed and high intensity (dynamic) loads, and an
impending instantaneous collapse limit, related to a combination fixed and cyclic loads (wind
effect) suitably amplified, as prescribed by the referenced code. The linear elastic response to
dynamic loads has been computed by a modal technique [13]. Subsequently, the sensitivity of the
structural response has been investigated on the ground of the determination and interpretation of
the Bree diagrams of the obtained optimal structure. In all the examined cases it has been observed
that the optimal structure exhibits an incremental collapse behaviour even for loads not very close
the ones characterizing the instantaneous collapse condition. On the contrary, it is well known that,
even suffering same plastic deformations, the structure shows adequate resistance and safety
characteristic in conditions of plastic shakedown. Therefore, in order to prevent an incremental
collapse condition a suitable further constraint has been introduced into the relevant minimum
volume problem consisting in the limitation of the fictitious plastic activations, i.e. same fictitious
plastic deformations which characterize the limit behaviour of the relevant design.

The effected numerical applications are related to steel plane frames subjected to fixed and
quasi static perfectly cyclic actions as well as dynamic loads. The obtained results are encouraging
and they show that suitably limiting the referenced quantities the optimal structure exhibits an
alternating plasticity behaviour even for load combinations very close to the limit ones.



Furthermore, the new designs are characterized by just a very modest cost increment with respect
to the safety improvement related to the plastic shakedown behaviour.

2 THE MODEL

Let us consider now a shear plane frame just subjected to an horizontal ground acceleration
a, (t) It is modeled as a Multi-Degree-Of-Freedom (MDOF) structure, such that the total
number of degrees of freedom is equal to n -

The dynamic equilibrium equations can be written in the following form:

Mi(t)+Au(t)+Ku(t)= f(1) (1)
being f(t)=-ma < (), and are related with the following initial conditions:
u(0)=0, u(0)=0 @
In equations (1) and (2) M, A and K are the mass, damping and stiffness matrices (with
dimensions 7 x n ), respectively, which are assumed to be positive ones; m = M t , being 7 the
A

(nyx1) influence vector; f(t) is the (ny x1) excitation vector, while u(t), u(t) and u(t) are
the displacement, the velocity and the acceleration (1, x1) vectors of the system, respectively, and

the over dot means time derivative of the relevant quantity. In equation (2) u(0), #(0) represent

the initial displacement and velocity vectors.

As it is usual, the dynamic characteristics of the structural behaviour are identified in terms of
natural frequencies as well as damping coefficients. In this framework, the following coordinate
transformation is usually adopted:

u(1) = (1) 3)

being z(t) the modal displacement vector and @ the so-called modal matrix of order (n,xny),

normalized with respect to the mass matrix and whose columns are the eigenvectors of the
undamped structure, given by the solution to the following eigenproblem:

K'Mo=007 (4a)
@MQzQ/ (4b)
PKD =0 (4c)

In equations (4a,c), besides the already known symbols, I,

; represents the (n FXny ) identity

matrix while @7 is a diagonal matrix the elements of which are the square of the natural
frequencies of the structure, while the over tilde means the transpose of the relevant quantity.
Once the modal matrix @ has been determined, the structure can be defined as a classically-

damped one if AP == is a diagonal matrix whose jth component is equal to 2¢; @;, being



w; and ¢ the j’h natural frequency and the j’h damping coefficient, respectively.

According to the Italian Code a study is performed taking into account all structural modes and
assuming a constant damping coefficient equal to 0.05. Making reference to the response spectrum

S;(T) defined in the relevant code and known the natural frequencies and the modal matrix, the
displacement vector due to the j’h mode can be determined as follows:

T
@M, (7)

- —_— 6))
J J w/Z

According to the above referred guidelines the displacements # and the generalized stresses P
are combined in a full quadratic way following the equation:

E, :\/Zkz]‘pjk E, Ey (6)

being E, the component of the combined effect of the relevant quantity, £, ,Ey, the o

t

component of the effect due to j " and k™ modes, respectively, and p; the correlation

coefficients between jth and k™ modes expressed by the equation:

8¢° g’

(z+ﬂjk)[(z—ﬁ,~k)2+452 ﬂjk}

Pjk = (7

in which S =T /Tj and 7,7} are the periods of the j’h and £ modes.

Let now consider the relevant structure as discretized into » finite elements constituted by

h

elastic perfectly plastic material. The typical v" element geometry is fully described by the s

components of the vector d,(v=12,.,n) so that ¢7=l¢71,¢72,...,2v,...,¢7nl represents the nxs

supervector collecting all the design variables.

According with the guidelines of the great part of international codes, in particular with the
Italian one, the design of the relevant structure must be performed taking into account a fixed
action mainly related with the gravitational loads, a quasi statical load related to the wind effect,
and a dynamic perfect cyclic load, suitably combined. In the present context even the load related
to the wind is modeled as a perfect cyclic load; actually, in any case a generic cyclic load can be
described through the superposition of a fixed and a perfect cyclic load.

For the aim of the present paper, we now assume that the actions are represented by
appropriate combinations of the above referred loads each of which related to different limit
conditions; combination C1: fixed load Fj, and (reduced) seismic action related to the response

spectrum 85 , function of the up-crossing probability in the lifetime selected for the structure;

combination C2: amplified fixed load Fj, and perfect cyclic load related to the wind action F,,, ;

ciw



combination C3: fixed load F,, and seismic action related to the response spectrum S/, function

of a different up-crossing probability in the lifetime selected for the structure.

Obviously, the structure must be capable of suffer the above described load combinations
according to different limit conditions; in particular, it must respond in an elastic manner (elastic
shakedown) when subjected to load combination 1., it must prevent the instantaneous collapse
when subjected, alternatively, to combinations 2. or 3.

In the above defined combinations, Fj,, and F, are special combinations of gravitational

loads as prescribed by the referenced code, S5 and S} are the response spectra related to

serviceability and instantaneous collapse conditions, respectively, while the reference mechanical
cyclic loads related to the wind action are defined as two opposite and independent load conditions
F, ,(i=12),suchthat F, =F, and F,, =-F, ;therefore, F,, is a perfectcyclic load.

1w c2w ciw

3 OPTIMAL DESIGN PROBLEM FORMULATION

Let us consider now an elastic plastic structure as above described and, according to the Italian
code and to the assumed load model, be subjected to fixed mechanical loads, quasi static perfect
cyclic loads (wind effect) and perfect cyclic dynamic seismic loads. The minimum volume design
problem formulation, where suitable constraints are imposed on the elastic shakedown behaviour
and on the instantaneous collapse, can be written as follows:

min V (8a)
(d’MO’MOh’”cw’u‘?‘ch’”‘ﬁch’YOS’Yl)]iw’Y()[ih)
d—d>0 (8b)
Td-t>0 (8c)
Py=Bu,, Ku,—F,=0 (8d)
Py, =Buy,, Kuy, —Fy, =0 (8e)
Pcw:Bucw’ Kucw_ch=0 (89
@Mz S (T))
s B..S s J d\"Jj S S N
Py, =Bujy,, u;, =P, e Fope = \/ijk Pij Brene Picne (82)
J
@Mz S} (T;)
5 J d\"Jj v / I
P j[ch =B “jch ’ “;ch =, - 2 Fope = \/ )y j 2 Pig Ficne Piene (8h)
J
9= NPy, +(-1) NP -SYS ~R<0, ¥$>0 (8)
¢ h=NP,+(-1) NP, ~SYy, ~R<0, Y/ >0 ()
¢ b= NPy, +(~1) NP}, —SYj;, ~R<0, Y}, >0 (8K)
where equations (8a,i,j,k) hold for i=1,2 and (=1,2,....... ,n, , being n, the total number of

plastic nodes.
In equations (8) d is the design variable vector while d represents the vector collecting the
imposed limit values for d, T is the technological constraint matrix with # a suitably chosen



technological vector, u, and Py, u,, and Py, , u,, and P,

S S 1 1
cw cw ujch and I)jchﬁ ujch and chh are

the purely elastic response to the assigned fixed loads, the mechanical cyclic load, the reduced
dynamic load related to the ;™ structural mode, the full dynamic load related to the ;™ structural

mode, respectively, in terms of displacements and generalized stresses, sz and Pclh the

combined generalized stress vectors related to reduced and full seismic actions, @7, ¢ and
0 fh , (i=1,2), are the plastic potential vectors related to the elastic shakedown limit (apex S) and

to the instantaneous collapse limit (apex 1), respectively, ¥; , YOIiW and Yoll-h, (i=12), are
fictitious plastic activation intensity vectors related to the elastic shakedown limit and to the
impending instantaneous collapse, respectively. Finally, —S is a time independent symmetric
structural matrix which transforms the plastic activation intensities into the plastic potentials.

4 NUMERICAL RESULTS

In this section the optimal designs of steel frames have been numerically obtained making
reference to the formulations proposed into the previous sections. In particular, a multicriterion
design (elastic shakedown, instantaneous collapse) has been determined for two six floor frames.

The relevant frames under examination is plotted in Fig. 1a,b; they are constituted by square
box section elements (Fig. 1c). The square side measure is assigned for beams and columns,
¢ =300 mm, and for cross bracing, { =200 mm , while the constant thickness s is assumed as
design variable. The cross bracing elements are suitably weakened by holes so that they posses
great extensional stiffness and low plastic resistance, do not fear buckling and exhibit plastic
dissipation capacity for traction and for compression. Furthermore, L; =700 cm , L, =400 cm

and H =400 cm, Young modulus £ =21 MN/cm2 , yield stress o, =23.5 kN/cm2 . Two rigid

perfectly plastic hinges are located at the extremes of all elements, considered to be purely elastic,
and an additional hinge is located in the middle point of the beams. The interaction between
bending moment M and axial force N has been taken into account. In Fig. 1d the dimensionless
rigid plastic domain of the typical plastic hinge is plotted in the plane (N / N, ,M /M » ), being

N, and M, the yield generalized stress corresponding to N and M , respectively.

The structure is subjected to a fixed uniformly distributed vertical load on the beams,
go =30kN/m, to perfect cyclic concentrated horizontal loads (kIN) applied on the nodes (wind

effect) F, =|24 262 284 30.5 327 34.9| , and to seismic actions. We assume that the

seismic masses are equal for each floor, m =33.64 kN -sec’ /m , and located in the intermediate

node at each floor, (Fig. la,b). The selected response spectra for serviceability conditions (up-
crossing probability in the lifetime 81%) and instantaneous collapse (up-crossing probability in the
lifetime 5%) are those corresponding to Palermo, with a soil type B, life time 100 years and class
IV. The optimal multicriterion design has been computed solving problem (8), assuming

Fy; /Foh/ =1.25, with F; and F;, the ;™ component of the relevant vectors.

The obtained results show that the optimal structures exhibit an incremental collapse behaviour
even for loads not very close to the required limit ones, as it is possible to observe through the
relevant Bree diagrams (Fig. 2a,c,e,g). In order to prevent such a behaviour, problem (8) has been
improved, for structure in Fig. 1a, by introducing the following constraints:
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Z[ﬁYOI[w < l_)w >
ZiEYOIih <D,

being Ew and 5,, two suitably chosen limits imposed for the fictitious plastic dissipation at the

%o

80
(8m)

iiiigiiég‘ﬁ%ﬁlg &HLLLL@LLLI%L}LELLLHFG
& @
(&) @ (&) @
UM %
iiii@iiigi‘miit@iiiHE Fsﬂiiiigiigi iit@ii —
B
@ ) 2] @ el @
9, 9
LLLL(SLLI.%LWHE EHLLLL@iLLéi —
(&} @ @ © @
U 9y
iiligiiéi‘miiiliHE R iiligiiéi iiil o
& ®
@ @
UM %
iJ,J,J,(g#J,gi’HE FZHJ,J,J,J,CSJ,J,I%L -y
©@ @ @ ©@ @
49, 9
iili@;ii;i‘:ii@iliHE Eﬂiiliiii;i}ii@il —
o o
2] <ty 2] <)
% A Vi Z A
L ‘ L, ‘ L, ‘ L,
1 b)‘ f
MM,
. 1
- [N
-1 ii 1
-0,15/ 0,15 N/N,
L
c) d) -1

Fig. 1 Steel frames: a) geometry and load condition; b) geometry and load condition for the cross-
braced frame; c) typical box cross section; d) rigid plastic domain of the typical plastic hinge.



instantaneous collapse limit related to wind and earthquake effects, and for structure in Fig. 1b
simply imposing equal to zero the fictitious plastic activations related to columns and beams. In
Fig. (2b,d,f,h) are plotted the Bree diagrams of the improved structures.

An examination of these results shows that for the optimal design reached through the original
problem (8) the fixed load condition is quite close to the collapse one, especially for the cross
braced frame; the serviceability condition are substantially not influent; the structure collapses for
ratcheting even for loads lower than the prescribed ones. In order to deeply investigate the
structural response, some useful chosen displacements are determined for the relevant frames

performing an elastoplastic analysis with the following load multiplier values: &/, =1, &/, =0.85
(multipliers of fixed and seismic actions in the seismic limit load combination), folw =1.25,

fclw =1 (multipliers of fixed and wind actions in the cyclic limit load combination). In Table 1 and
2 the results are summarized, where u° is the horizontal elastic displacement of the upper floor in
serviceability conditions, u” is the horizontal residual displacement of the same floor deduced by
the above described analysis, w{, wjy, wy, w, and w} are the vertical residual displacements of

the middle point of the longer beams at floor 1, 2, 3, 4 and 5, respectively. In the following Tables
B and C indicate Bending and Cross braced frame results, respectively.

Frame Volume u® u” W/ W, W A A
earth. 68.5 108.6 13.3 221 229 228 212
B wind i — 344 472 8.89 596 405 7.5
carth. 34.5 136.1 84 144 20.1 420 136.0
wind 099 == 3.08 588 16.7 176 179 19.2

Table 1. Volumes (m®) deduced by solving problem (8), elastic and residual displacements (mm).

Frame Volume u® u” W W W, W W
earth. 65.8 104 1.8 2.3 0.62 144 167
B wind B 1.20  0.002 0.012 0.005 2.63 6.64
earth. 324 252 043 .12 142 054 272
wind i 0.05  1.46 0.35  0.008 0.002 0.08

Table 2. Volumes (m’) deduced by solving the improved problem (8), elastic and residual
displacements (mm).

5 CONCLUSIONS

The present paper has been devoted to the optimal design of elastic perfectly plastic frames
subjected to different load conditions defined as suitable combinations of fixed load, perfectly
cyclic loads and dynamic actions. The optimal design problem has been formulated, on the
grounds on a statical approach, as the search for the minimum volume structure and two different
resistance limits have been simultaneously considered: the elastic shakedown limit and the
instantaneous collapse limit, imposing for each one suitably chosen load combinations and
appropriate load amplifiers. In the proposed formulation reference has been made to the Italian
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Figure 2: Bree diagrams. a), b) bending frame with seismic loads: original and improved problem; c), d)
bending frame subject to wind: original and improved problem; e), f) cross braced frame with seismic loads:
original and improved problem; g), h) cross braced frame subject to wind: original and improved problem.



codes related to the structural analysis and design; actually, the serviceability conditions have been
defined as the combination of fixed and reduced seismic loads, the ultimate limit loads have been
defined alternatively as the combination of fixed and perfect cyclic loads, or as the combination of
fixed and dynamic loads. The dynamic features of the given structure have been taken into account
in order to identify the seismic loads and to determine the structural response. Two different
formulations of the minimum volume design have been proposed: the first one is devoted to the
optimal design of the structure with constraints on the elastic shakedown behaviour related to
serviceability condition loads and on the instantaneous collapse related to suitably alternative
combinations of fixed and perfectly cyclic or dynamic actions, the second one is devoted to the
optimal design with the same conditions as before but introducing new constraints related to
suitably imposed limits on the fictitious plastic activations. The introduced further constraints
guarantee a more safe behaviour of the optimal structure; actually, it has been verified that in such
a case the relevant structure exhibits an alternating plasticity behaviour even when the loads reach
values very close to the instantaneous collapse ones. The effected numerical applications are
related to steel plane frames. In particular, two six plane frames has been investigated. The
obtained results are encouraging and furthermore they show that the new designs are characterized
by just a very modest cost increment with respect to the safety improvement related to the plastic
shakedown behaviour.

References

[1] Massonet, C.E. and Save, M., Plastic analysis and design, Blaisdell Publishing Company,
New York (1965).

[2] Gallagher, R.H. and Zienkiewicz, O.C., Optimum structural design, John Wiley & Sons,
London, England (1973).

[31 Majid, K.1., Optimum design of structures, Newnes-Butterworths, London, England (1974).

[4] Save, M and Prager, W., Structural Optimization, Plenum Press, New York, U.S. (1985).

[5] Rozvany, G.LN., Structural design via optimality criteria, The Nederlands, Kluwer
Academic Publishers, Dordrecht (1989).

[6] Haftka, R.T., Giirdal, Z. and Kamat, M.P., Elements of structural optimization, The
Netherlands, Dordrecht: Kluwer Academic Publishers (1990).

[7] Repubblica Italiana, Consiglio Superiore dei Lavori Pubblici, Norme Tecniche per le
Costruzioni, D.M. 14 gennaio 2008.

[8] Konig, J.A., "On optimum shakedown design", in Optimization in structure design, Edit by
A.Sawczuk and Z. Mroz, Springer-Verlag, Berlin, Germany, 405-414, (1975).

[9] Maier, G., Srinivasan, R. and Save, M., "Optimal plastic design", J. Structural Mechanics, 4,
349-378 (1976).

[10] Giambanco, F., Palizzolo, L. and Polizzotto, C., "Optimal shakedown design of beam
structures", Structural Optimization, 8, 156-167 (1994).

[11] Giambanco, F., Palizzolo, L. and Caffarelli, A., "Computational procedures for plastic
shakedown design of structures", Journal of Structural and Multidisciplinary Optimization,
28 (5), 317-329 (2004).

[12] Giambanco, F., Palizzolo, L. and Caffarelli, A., "An optimal plastic shakedown design", The
Sixth International Conference on Computational Structures Technology, Prague, Czech
Republic, Sept. 4-6 (2002).

[13] Benfratello, S. and Muscolino, G., "Mode-superposition correction method for deterministic
and stochastic analysis of structural systems", Computers and Structures, 79, 2471-2480
(2001).



