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SUMMARY. A homogenized full 3D limit analysis model for the evaluation of collapse loads of 

FRP-reinforced masonry vaults is presented. A two steps approach is adopted in the paper; in step 

I, a simplified kinematic procedure is proposed at a cell level to obtain macroscopic masonry 

behavior in the case of unreinforced masonry curved structures, whereas in step II strips are 

applied at a structural level on the already homogeneous material.  

Six-noded rigid infinitely resistant wedges are used to model masonry. Three-noded rigid 

infinitely resistant triangles are used to model FRP strips. Plastic dissipation is allowed only at the 

interfaces between adjoining elements. Masonry ultimate strength is evaluated through an 

admissible rigid-plastic homogenization model, where joints are reduced to interfaces with 

frictional behavior and bricks are assumed obeying a Mohr-Coulomb failure criterion and are 

modeled by means of six noded infinitely resistant wedge shaped limit analysis elements with 

possible dissipation at the interfaces. The curved representative element of volume (REV) is 

constituted by a central brick interconnected with its six neighbors. A recently presented 

compatible identification procedure is finally adopted on the REV, a priori assuming a sub-class of 

macroscopic deformation modes on the REV and equating power dissipated in the heterogeneous 

model to power dissipated in a continuous homogeneous plate. A fast and reliable FE estimation 

of masonry homogenized failure surfaces when loaded in- and out-of-plane is thus obtained.  

At a structural level, a possible dissipation at the interfaces between FRP triangles and masonry 

wedges is considered in order to take into account, in an approximate but effective way, the 

possible delamination of the strips from the support. Italian code formulas are used to evaluate 

peak interface tangential strength. A numerical example is analyzed in order to evaluate the 

capabilities of the model proposed, relying on a hemispherical masonry structure reinforced with 

hooping FRP strips. For the example presented, both the unreinforced and FRP reinforced case are 

discussed in order to have a deep insight into the efficiency of the strengthening intervention 

proposed. Additional non-linear FE analyses are performed, modeling masonry through an 

equivalent macroscopic material with orthotropic behavior at failure and possible softening, in 

order to assess limit analysis results. Comparisons with experimental evidences, where available, 

are finally reported. Reliable predictions of collapse loads and failure mechanisms are obtained 

with the model proposed, meaning that the approach proposed may be used by practitioners for a 

fast and reliable evaluation of the effectiveness of a strengthening intervention. 

1 INTRODUCTION 

The recent earthquakes occurred in Umbria and Marche (Italy 1997-1998), Molise (Italy 2002) 

and Abruzzo (Italy 2009) indicated that the historical Italian buildings, essentially constituted by 



masonry structures, are scarcely resistant to horizontal loads and highly vulnerable to seismic 

actions [1]. Such inadequate behavior of brickwork under earthquakes is a common issue of 

masonry buildings in many countries worldwide. Inadequate resistance under seismic actions may 

be observed also for curved masonry structures, as for instance vaults, domes and arches, which 

typically are designed to withstand vertical loads under membranal regimes only. Conventional 

retrofitting techniques, such as external reinforcement with steel plates, surface concrete coating 

and welded mesh, have proven to be impractical, time expensive and add considerable mass to the 

structure (which may increase earthquake-induced inertia forces). In this context, the utilization of 

FRP strips as reinforcement instead of conventional methods seems the most suitable solution for 

their limited invasiveness, durability and good performance at failure.  

Nevertheless, it is worth noting that, despite the great importance and the increasing diffusion 

of such innovative strengthening technique, few numerical models devoted to the prediction of the 

ultimate load bearing capacity of out-of-plane loaded FRP-reinforced masonry are nowadays at 

disposal. Furthermore, when dealing with curved masonry structures, the complex interaction 

between membrane and flexural actions is very complex and brings additional complexity to the 

structural analyses. 

As well known, limit analysis (a valuable alternative to expensive non-linear FE simulations) 

has been widely used for the analysis at failure of masonry structures (e.g. Heyman [2], Sinha [3], 

Orduna and Lourenço [4], etc.), because it requires only a reduced number of material parameters, 

providing limit multipliers of loads, failure mechanisms and, at least on critical sections, the stress 

distribution at collapse. 

Reliable results have been obtained also in the specific case of curved structures (see for 

instance Heyman [2], Milani et al. [5]). Very recently, limit state approaches have been attempted 

for masonry arches also in presence of FRP reinforcement strips, see e.g. Caporale et al. [6]. 

As a matter of fact, non linear complex damaging models should be used for the analysis FRP 

reinforced masonry. The FRP delamination from the support is, indeed, typically brittle, as well as 

the tensile cracking of mortar joints. These aspects preclude, in principle, the utilization of limit 

analysis, which is based on the assumption of perfect plasticity for the constituent materials. 

Despite the aforementioned limitations connected to the hypotheses at the base of the approach 

proposed, following also what suggested in the Italian Code CNR-DT200 [7], limit analysis may 

be useful for design purposes, to provide a fast and reliable estimation of collapse loads at a 

structural level and the change in the failure mechanism when FRP strips are inserted to preclude 

the formation of premature mechanisms. 

The most important effect of a generic strengthening intervention executed with FRP strips is, 

indeed, to preclude the formation of the failure mechanism which causes the collapse of the 

unreinforced structure, with the subsequent formation of a new collapse mechanism different from 

the un-strengthened case, with higher internal dissipation. Obviously, “hand” calculations may not 

be performed easily for complex structures, especially in presence of curved shells with 

unsymmetrical loads. Therefore, the adoption of an upper bound approach combined with FEM 

seems particularly suited for the prediction of FRP-masonry behavior prone to collapse. A 

homogenized full 3D limit analysis model for the evaluation of collapse loads of FRP-reinforced 

masonry vaults has been presented by the Authors in [8], where six-noded rigid infinitely resistant 

wedges to model masonry and three-noded rigid infinitely resistant triangles to model FRP strips 

have been used.  

In this paper, some of the simulations performed in [8] are concisely reviewed and a numerical 

example is discussed, consisting of a masonry dome with annular reinforcement. For the example 

presented, both the unreinforced and FRP reinforced case are discussed. Additional non-linear FE 



analyses are performed (DIANA 9.2) modeling masonry through an equivalent macroscopic 

material with orthotropic behavior at failure and possible softening, in order to assess limit 

analysis results. Comparisons with experimental evidences, where available, are finally reported. 

Reliable predictions of collapse loads and failure mechanisms are obtained with the model 

proposed for the analyzed structure [9], meaning that the approach proposed may be used by 

practitioners for a fast and reliable evaluation of the effectiveness of a strengthening intervention. 

2 HOMOGENIZATION OF RIGID-PLASTIC CURVED MASONRY STRUCTURES 

The kinematic definition of 
hom

S , used in this paper, is obtained following the general 

procedure suggested by Suquet [10], i.e. assuming in the elementary cell a velocity field v  equal 

to 
per~~~

vyΓyχyE +++
���

, where E
�~

 is a macroscopic strain rate field, χ�~  contains the 

macroscopic curvature rate field, Γ
�~

 contains the macroscopic out-of-plane sliding rate, and 
perv  

is a periodic velocity field. Under these hypotheses, the so called support function 
homπ  can be 

evaluated as follows: 
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Where ( )vP  is the power dissipated in the elementary cell for a given v . 

It has been shown (see for details Suquet [10] and [5]) that a kinematic definition of 
hom

S  can 

be obtained as follows:  
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where: 

- S is any discontinuity surface of v in the unit cell Y, n is the normal to the disconituity 

surface S; 

- [ ]( ) [ ] [ ]( )σnnσnσ ⊗+⊗= 2/1;π ; 

- ( ) ( ){ }yσd:σd
σ

S∈= ;max ��π ; 

- N , M  and T  are the ultimate homogenized membrane, bending and out-of-plane shear 

actions respectively. 

In the model, masonry ultimate strength is evaluated through a FE upper bound limit analysis 

homogenization approach, where joints are reduced to interfaces with frictional behavior and 

limited tensile and compressive strength and bricks are assumed obeying a Mohr-Coulomb failure 

criterion and are modeled by means of six noded infinitely resistant wedge shaped limit analysis 

elements with possible dissipation at the interfaces. The curved representative element of volume 

(REV) is constituted by a central brick interconnected with its six neighbors, see Figure 1. A 

recently presented compatible identification procedure (the reader is referred to [8] for a detailed 

discussion of the model) is finally adopted on the REV, a priori assuming a sub-class of 

macroscopic deformation modes on the REV and equating power dissipated in the heterogeneous 

model to power dissipated in a continuous homogeneous plate. A fast and reliable FE estimation 



of masonry homogenized failure surfaces when loaded in- and out-of-plane is thus obtained. 

 

3 THE STRUCTURAL LEVEL F. E. MODEL: BASIC ASSUMPTIONS 

The simplest FE discretization of a curved masonry structure reinforced with FRP strips is 

represented by a piecewise linear approximation of the middle surface by means of rigid flat six-

noded wedge elements. The utilization of wedges (i.e. 3D elements) instead of plate and shell 

triangles for masonry is useful to reproduce the flexural behavior of the structures when a surface 

reinforcement with FRP strips is introduced. This approach has, indeed, the further advantage of 

(1) automatically distinguishing between intrados and extrados reinforcement and (2) requiring 

only in-plane and out-of-plane shear homogenized masonry failure surfaces, since flexural 

behavior is derived at a structural level by integration along the thickness.  

In this framework, the less expensive limit analysis approach which may be proposed is a 

model with rigid infinitely resistant wedges. Thus, following a general approach widely diffused in 

the technical literature for masonry plates out-of-plane loaded (see e.g. Sinha [3]), in the model, 

plastic dissipation is allowed only at the interfaces between adjoining elements. 

3.1 6-noded wedge masonry element 

A 6-noded wedge element E  utilized for bricks discretization at a cell level is used at a 

structural level to model homogenized masonry. Kinematic variables for each wedge element are 

represented by three centroid velocities (
E

xu , 
E

yu , 
E

zu ) and three rotations around centroid G  

( E

xΦ , E

yΦ , E

zΦ ), Figure 2. e

12Γ  edge surface of an element E , connecting 
1P , 

2P , 
4P  and 

5P  

nodes is rectangular and jump of velocities on it is linear. In particular, velocity field of a generic 

point P  with global coordinates ),,( PPP zyx , on 
E

12Γ  is expressed in the global frame of 

reference as: 
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Where ( )PU  is the point P  velocity, 
G

EU  is the element E  centroid velocity and 
ER  is 
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Figure 1: Two steps approach adopted. –a: reinforced heterogeneous structure. –b: micro-scale, 

unreinforced kinematic approach. –c: macro-scale, FRP-reinforced masonry material. 



element E  rotation matrix. 

From equation ( 3 ), jump of displacements [ ])(PU  at a point P  on the interfaces I  between 

two contiguous elements N  and M  can be evaluated as difference between velocities of P  

regarded belonging respectively to N  and M : 

( )[ ] ( ) ( )NNMM

G

N

G

M GPGPP −−−+−= RRUUU
 

( 4 ) 

We introduce for each interface I  between contiguous elements the vector field 
I

t , defined as 

[ ]I

s

IITI σττ 21=t  and representing the stress acting along local axis I

1r (
I

1τ ), I

2r (
I

2τ ) and 

Is ( I

sσ ), as indicated in Figure 2. 

Power dissipated at the interface can be evaluated analytically as: 
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( 5 ) 

Where 1r∆ , 2r∆  and s∆  are velocities jumps (two tangential and mutually orthogonal and 

one perpendicular to the interface, see Figure 2) in the local coordinate system 
I

1r -
I

2r -
Is . 

Velocities jumps in the local system may be easily evaluated from ( 4 ) once that the rotation 

matrix 
I

R  for 
I

1r -
I

2r -
Is  is evaluated: 

( ) ( )[ ]PP
I

URU =∆  ( 6 ) 

Where ( )PU∆  is the jump of velocities vector in the local system. 

For each interface I of area 12Ω  connecting nodes 1-2-3-4 (Figure 2), we suppose to have at 

disposal a homogenized (linearized) strength domain in the local coordinate system 
I

1r -
I

2r -
Is  

and constituted by 
I

m  planes. Such a linearization for each interface (and, in principle, for each 

point of the interface) can be obtained from 
hom

S  applying the procedure recommended by 

Krabbenhoft et al. [11], and the reader is referred there for further details. 

In particular, we assume that a generic linearization plane 
Iq  has equation 

IIq

I

Iq

r

I

s

q

s

Iq

r mqCAAA
IIII

≤≤=++ 12211 τστ . Introducing plastic multipliers fields at the interface 

(one for each linearization plane), from equations ( 5 ), power dissipated at the interface can be re-

written as: 
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Obviously, field ( )21 , rr
I

q

Iλ�  assumes the same analytical expression found for the velocity 

field, i.e. is linear in 1r - 2r , see equation ( 6 ). Therefore, ( )21 , rr
I

q

Iλ�  field is fully determined 

introducing only three plastic multipliers for each internal interface and for each linearization 

plane, corresponding e.g. to nodes 1, 4, 2.  

External power dissipated can be written as ( )wPP TTexP 10 λ+= , where 
0P  is the vector of 

permanent loads, λ  is the load multiplier for the structure examined, 
T

1P  is the vector of variable 

loads and w  is the vector of assembled centroid elements velocities. As the amplitude of the 

failure mechanism is arbitrary, a further normalization condition 11 =wPT  is usually introduced. 



Hence, the external power becomes linear in w  and λ . 

 

 

3.2 3-noded flat FRP elements (triangles) 

Three-noded triangular shell elements are utilized to model FRP strips, with nodes coordinates 

iP = ( ) 3,...,1,,, =izyx iii
 and node numbers disposed in counter clockwise. Let symbol Ω  

indicates the surface of a FRP element E , Figure 3. 

Analogously to wedge masonry elements, FRP triangles are supposed infinitely resistant and 

rigid. Therefore, plastic dissipation is allowed only at the interfaces between contiguous elements 

due to stresses acting on the fibers direction. Continuity of the velocity field is imposed at each 

interface between contiguous FRP triangular elements only along directions 
)(kr  and 

)(k
t  (see 

Figure 3) whereas a possible jump of velocities is supposed to occur along direction 
)(k

s . 

With reference to Figure 3, let two contiguous FRP elements M  and N  be considered. Their 

centroid velocities and rotation rates are [ ]TM
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and N  interface ( FRPI − ) is linear: therefore, it is necessary to evaluate jump of velocities only 

on the interface extremes A  and B  as difference between velocities of nodes 1-3 and 2-4 
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Figure 2: Masonry six-noded wedge element (left) and four-noded interface (right) between 

contiguous masonry elements (global and local frame of reference). 
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Figure 3: FRP triangular element (left) and A-B interface between two contiguous M-N triangular 

FRP elements (right) with corresponding local frame of reference (a possible jump of velocities 

along FRP direction may occur at A-B). 



respectively.  

As a rule, low compressive stresses induce buckling of the strips, due to the FRP negligible 

thickness. In order to take into account this effect (at least in an approximate way), different limit 

stresses are assumed in tension and compression, namely 
+

FRPf  (assumed equal to fddf  or 

ridfddf ,  in agreement with CNR-DT200 [7], see the following section for details) for tensile 

failure and 0≈−
FRPf  for compression buckling respectively. 

To be kinematically admissible, velocity jump at the interfaces must obey an associated flow 

rule: 

[ ] [ ]TFRPI
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iλ�  are plastic multiplier rates of point i  (interface 

I - FRP ) corresponding to 
+

FRPf  and 
−
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On the other hand, within each interface I- FRP  of length 
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 (thickness s ), the power 
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Where Aσ  and Bσ  represent stress action along 
)(k

s  on nodes A  and B . 

3.3  FRP/masonry interfaces (delamination) 

In the Italian norm, a simplified approach is proposed to evaluate the delamination 

phenomenon, suitably limiting force action on the FRP strip. In particular, the ffdd design tensile 

strength of FRP elements is: 

FRP
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if lb ≤  le. 

In equations ( 10 ) and ( 11 ), ffdd,rid is the reduced value of the design bond strength, ffdd the design 

bond strength, EFRP the FRP Young modulus, tFRP the FRP thickness, fd a safety factor (in what 

follows it is assumed equal to 1.20), gM is a partial safety factor for masonry assumed in the 

following equal to 1.0 in order to obtain characteristic values of bond strength, lb is the bond 

length of FRP elements and le is the optimal bond length of FRP corresponding to the minimal 

bond length able to carry the maximum anchorage force (fmtm indicates masonry average tensile 

strength). 

Finally, the term GFk in ( 10 ) represents the characteristic value of the specific fracture energy 

of the FRP strengthened masonry under a delamination test: 

]/[ 2

1 mmNinfffc mtmmkFd ⋅=Γ
 

( 12 ) 

where c1 is an experimentally determined coefficient, that typically may range between 

0.015÷0.030 and fmk is the characteristic value of masonry compressive strength. 



3.4 The Linear Programming (LP) problem 

A linear programming problem is obtained, after some elementary assemblage operations, 

where the objective function is the total internal power dissipated minus the power dissipated by 

external loads not dependent on the load multiplier, i.e.: 
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where: 

- U  is the vector of global unknowns and collects the vector of elements centroids velocities 

( w ) and rotations (Φ ) of both FRP and masonry elements and the vector of assembled interface 

plastic multiplier rates (
assI ,λ� ). 

assI ,λ�  collects plastic multiplier rates of masonry-masonry 

interfaces, FRP-FRP interfaces and masonry-FRP interfaces. 

- 
eqA  is the overall constraints matrix and collects normalization conditions, velocity 

boundary conditions and constraints for plastic flow in velocity discontinuities (on FRP, masonry 

and FRP-masonry interfaces). 

- 
assin

I

,P  is a row vector that collects contributions to the internal dissipation of masonry-

masonry, FRP-FRP and masonry-FRP interfaces. 

 

4 NUMERICAL EXAMPLES: 

The example here analyzed relies on a hemispherical dome with inner diameter equal to 2.2 m 

and thickness of 12 cm and experimentally tested by Foraboschi [9], see Figure 4.  

Common Italian bricks of dimensions 120x250x55 mm
3
 were used, with joints thickness 

approximately equal to 10 mm. Mechanical properties assumed for joints and bricks are typical of 

existing masonry in the Northern Italy and the reader is referred to [8][9] there for further details.  

 
λP

2.2 m

Loaded 
area

 
Figure 4: Hemispherical dome. Geometry, loading condition and FE discretization adopted for 

the numerical analyses. 
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Figure 5: Hemispherical dome. –a and -b: Comparison among collapse loads provided by 

experimentation, limit analysis and non-linear FE code in absence (-a) and presence (-b) of 

reinforcement. –c and -d: deformed shapes at collapse from limit analysis (-c: unreinforced case; -

d: with FRP). –e and -f: normalized plastic dissipation patch obtained from limit analysis (-e: 

unreinforced case; -f: with FRP). 

 

In Figure 4, the geometry and the loading condition are represented. The dome is loaded until 

failure by means of a concentrated vertical increasing load applied at the top of the structure. A 

steel plate with suitable dimensions is placed between the load and the external loaded surface in 

order to diffuse vertical stresses. In Figure 5-a and b, load-maximum displacement curves 

provided by the non-linear model implemented in the commercial code DIANA, experimental data 



and limit analysis collapse load are depicted in absence (-a) and presence (-b) of reinforcement. In 

Figure 5-b and -c, a comparison between deformed shapes near collapse obtained for the 

unreinforced and FRP reinforced structures is represented. The role played by the strips in 

changing the failure mechanism is rather evident. Internal plastic dissipation patch is finally 

represented in Figure 5-c and -d. As can be noted, internal dissipation is concentrated along a 

circular crown, with the formation of one annular bending hinge. Moreover, an adding amount 

appears along the meridians of the dome, essentially due to non-zero membrane annular actions. In 

fact, evident openings along meridians can be observed in the deformed shape. The 

circumferential FRP strips (see Figure 5-d) play the important role of preventing the formation of 

meridian cracks, which are partially precluded, with a consequent significant increase of the 

failure load in presence of fibers. Finally, it is interesting to notice from the deformed shape at 

collapse that, in presence of reinforcement, failure is more constrained to localize under the zone 

of application of the external load, with an evident out-of-plane sliding of the loaded area. 
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