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SUMMARY. In the present paper, the TFA homogenization procedure is extended to the case of 
nonuniform eigenstrain in the inclusions, in order to deduce the overall response of regular 
masonry arrangements to be used for the multiscale analysis of masonry walls.  

1 INTRODUCTION 
The masonry is a composite material obtained assembling blocks of different nature and shape 

connected by mortar beds. The global mechanical response of the composite material can be 
obtained adopting homogenization procedures, that study a representative volume element (RVE) 
determining the behavior of the homogenized equivalent material. In order to develop a structural 
study, in which the nonlinear response of the masonry material is derived from a micromechanical 
analysis, a micro-macro approach, in other words a multiscale model, has to be performed. The 
development and the use of multiscale procedures is a complex task as it is necessary to solve the 
micromechanical problem and to adopt the obtained results in order to perform the structural 
analysis. 

In the case of masonry material with a periodic microstructure, it is possible to consider a unit 
repetitive cell (UC) in order to study the constitutive behavior of the composite [1], [2]. Simplified 
micromechanical approaches, derived for the particular microstructural geometry of masonry 
material, have been developed, among the others, in References [3]-[6]. A multiscale procedure 
was presented by Luciano and Sacco [7], assuming that fractures can develop only in the mortar 
material.  

Indeed, a major problem in the multiscale analysis is the development of an effective, i.e. 
simple and accurate, homogenization procedure. The Transformation Field Analysis (TFA) is an 
interesting approach for solving the nonlinear micro-mechanical homogenization problem. It was 
initially proposed by Dvorak [8] and, then, applied to plasticity and visco-plasticity problems by 
Fish and Shek [9]. According to TFA approach, the inelastic strain, is assumed to be uniform in 
each individual phase of the composite. Chaboche et al. [10] improved the TFA for deriving the 
nonlinear behavior of damaging composites, subdividing each phase into sub-domains, at the 
expense of increasing the complexity of the model. Michel and Suquet [11] presented a 
nonuniform TFA procedure for determining the overall behavior of nonlinear composite materials. 
Recently, Sacco [12] and Addessi et al. [13] presented a nonlinear homogenization procedure for 
the Cauchy and Cosserat masonry models based on TFA, making use of the superposition of the 
effects and of the finite element method. 

In the present paper, the TFA homogenization procedure is extended to the case of nonuniform 
eigenstrains in the inclusions, in order to deduce the overall response of regular masonry 
arrangements to be used for the multiscale analysis of masonry walls. Each phase of the unit cell, 
i.e. mortar and brick, is decomposed in subsets. Special constitutive laws, based on damage and 
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plasticity models, are adopted for the mortar. Nonlinear behavior is considered even for some 
subsets of the blocks; in fact, nonlinear damage and plasticity effects are introduced in the subsets 
of the block aligned to the head mortar joints. 

The TFA is extended to the nontrivial case of bilinear distribution of the eigenstrain in the 
subsets. The nonlinear governing equations are deduced and a numerical procedure is proposed. 
Numerical examples of homogenization are carried out, comparing the nonlinear mechanical 
response of the masonry obtained performing the proposed homogenization technique with the 
results recovered by evolutive nonlinear finite element analyses. The numerical results 
demonstrate that the proposed enhancement of the classical TFA leads to very satisfactory results. 

2 NONLINEAR HOMOGENIZATION FOR PERIODIC MASONRY 
The masonry is considered as a composite, i.e. heterogeneous, material composed by bricks and 

mortar organized in a very regular geometry at the microscale level. In fact, the bricks are 
connected by horizontal and vertical joints of mortar, generating a periodic microstructure. Hence, 
the regular masonry material is a periodic composite material. 

 
Figure 1: Unit cell for repetitive masonry. 

 
A special, but very common, masonry texture is studied in the following. The considered Unit 

Cell (UC) completely defining the masonry material arrangement is illustrated in Figure 1. The 
chosen UC is characterized by a rectangular shape with dimensions 2a1 and 2a2, parallel to the 
coordinate axes x1 and x2, as shown in Figure 1. It accounts for all the geometric and constitutive 
information of the masonry components; the mortar thickness is denoted by s and the brick sizes 
by b and h. 

2.1 Mortar 

A very special constitutive law, based on the interface mechanical model proposed by Sacco 
[12], is considered for the mortar. The constitutive law accounts for the coupling of the damage 
and friction phenomena occurring in the mortar joints during the strain history [6]. 

A local coordinate system is introduced: H denotes the horizontal axis and V is the vertical 
direction. The Representative Mortar Element RME, defining the constitutive behavior at a typical 
point of the mortar, is introduced. A micromechanical analysis of the RME allows to define the 
damage variable D  as the ratio between the damaged and the total representative area. 
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Denoting with the superscripts u and d the quantities referred to the undamaged and damaged 
part of the RME, respectively, and adopting the Voigt notation, the stress vector 

{ }TM M M M
H Vσ σ τ=σ  is obtained by the relationship: 

 ( )1M u dD D= − +σ σ σ  (1) 
where:  

 ( ) with

0
0

0 0

M M
HH HV

u M M d M M p M M M
VH VV

M

C C
C C

G

⎡ ⎤
⎢ ⎥= = − − = ⎢ ⎥
⎢ ⎥⎣ ⎦

σ C ε σ C ε c ε C  (2) 

being { }TM M M M
H Vε ε γ=ε the strain vector and MC  the elasticity matrix of the mortar. The 

inelastic strain vectors c  and pε  are defined in the damaged part of the RME and account for the 
unilateral effect and to the possible friction sliding, respectively. In particular, it is assumed: 

 { }T

H Vh h hε ε γ=c % % %  (3) 

where ( ) ( ){ }max ,H Vh h hε ε=% ; ( )h ε•  is the Heaviside function, which assumes the following 

values: ( ) 0h ε• =  if 0ε• ≤  and ( ) 1h ε• =  if 0ε• > , where •  stands for H  or V .  

The inelastic strain pε  is characterized by the first two components equal to zero, and by the 
third component accounting for the sliding: { }0 0p pγ=ε . The evolution of the inelastic slip 

strain component pγ  is governed by the classical Coulomb yield functions. 
About the evolution of the damage parameter D, a model which accounts for the coupling of 

mode I and mode II of fracture is considered and described in detail in reference [14]. 
Taking into account the constitutive equations (2), formula (1) becomes: 

 ( )M M= −σ C ε π  (4) 

where the total inelastic strain ( )pD= +π c ε  is introduced. 

2.2 Brick 

The linear elastic constitutive law is considered for the brick. In fact, denoting by BC  the 
elastic matrix of the masonry brick, the stress-strain relationship is written in the form: 
 B B B=σ C ε  (5) 

where  { }1 2 12

TB B B Bσ σ τ=σ  { }1 2 12

TB B B Bσ σ τ=σ  and { }1 2 12

TB B B Bε ε γ=ε  are the stress and 
the total strain vectors in the brick, respectively. 

2.3 Nonlinear homogenization technique 

In the heterogeneous masonry unit cell, a set of n  sub-domains iΩ , where inelastic effects 
occurs, is identified. In particular, the sub-domains are introduced in the mortar joints and in a part 

of the brick. Denoting by 
1

n
i

i=

Ω = Ω% U  and by Ω  the whole UC, the elastic part of the UC is 

denoted as eΩ , such that eΩ = Ω ∪ Ω% . The UC is subjected to: 
- the average strain e  on the whole masonry unit cell, 
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- the inelastic strain iπ  in each sub-domain iΩ  ( 1,..,i n= ). 
The strain vector is given by: 

 1 2 1 2( , ) ( , )x x x x= +ε ε ε%  (6) 
where ε  is the average strain of the cell and 1 2( , )x xε%  is the periodic part of the strain, with null 
average in Ω . 

Average strain e  
Let the solution of the micromechanical problem, characterized by the prescribed value of the 

overall strain e , be determined. The strain field can be written in the following representation 
form:  
 ( ) ( )1 2 1 2, ,x x x x=e R e  (7) 

where ( )1 2,x xR  is the localization matrix, able to recover the local strain at any point of the 
composite when the average strain e  is prescribed.  

The average stress in the whole unit cell Ω  is obtained as: 

 1 i

i e

BdV dV
V

Ω
Ω

Ω Ω

⎡ ⎤
= + =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫eσ C e C e Ce  (8) 

where C  represents the overall elastic constitutive matrix, 
i MΩ =C C  or 

i BΩ =C C  when iΩ  is a 
sub-domain of the mortar or of the brick, respectively, and 

j

V Ω  and 
e

V Ω  are the volumes of jΩ  
and eΩ . 

Inelastic strain iπ  
The inelastic strain in the typical sub-domain iΩ  is represented in the form: 

 0 1 1 2 2 1 2 3 0 1 2 3ˆ ˆ ˆ ˆi i i i i i i i ix x x x= + + + = + + +π π π π π π π π π  (9) 
When an inelastic strain contribution ˆ i

kπ , with 1,...,i n=  and 0,1, 2,3k = , is prescribed in iΩ , 
under the condition of null average strain in the whole UC, the solution is determined in form: 
 ( ) ( )1 2 1 2, , (no sum)i i i

k k kx x x x=q Q π  (10) 

with ( )1 2,i
k x xQ  representing the localization matrix associated to the presence of the inelastic 

strain contribution ˆ i
kπ  in iΩ . It can be remarked that the field ( )1 2,i

k x xq  is periodic in Ω , so that 

its average in the UC is null, i.e. 0i
k =q . The elastic strains in jΩ  and eΩ , due to ˆ i

kπ  in iΩ , are 
obtained as: 
 ( ), , , ,j j e ei i i i i i

k k ij k k k k kδΩ Ω Ω Ω= − =η Q I π η Q π  (11) 

being , ji
k

ΩQ  and , ei
k

ΩQ  the restrictions of the field i
kQ  to iΩ  and eΩ  and 0 =I I , 1 1x=I I , 

2 2x=I I  and 3 1 2x x=I I .  

Note that , ji
k

Ωη  is the elastic strain in the sub-domain jΩ  due to the presence of the inelastic 
strain contributions ˆ i

kπ , acting in the sub-domain iΩ . 
It can be remarked that the strain field ( )1 2,i

k x xq  is characterized by non zero average stress: 

 ( ), ,

1

1i j j e
k

j e

n
i B i i i i
k ij k k k k k

j
dV dV

V
δΩ Ω Ω

Ω
= Ω Ω

⎡ ⎤
= − + =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫ ∫πσ C Q I C Q π S π  (12) 
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2.4 Overall behavior of UC 

Superposing the effects generated by the application of the average strain e  on the whole 
masonry UC and the inelastic strain contributions ˆ i

kπ  in each sub-domain iΩ  ( 1,..,i n= ), it is 
possible to evaluate the overall behavior of the UC. In fact, the overall average strain acting on the 
UC, is obtained as: 
 = + =ε e q e  (13) 

Analogously, the overall average stress σ  is obtained as the sum of the average stress 
associated to e  and to ˆ i

kπ : 

 ( )
3 3

1 0 1 0

i
k

n n
i i
k k

j k j k= = = =

= + = + = −∑∑ ∑∑πeσ σ σ Ce S π C ε p  (14) 

where  

 
3

1

1 0

n
i i
k k

j k

−

= =

= −∑∑p C S π  (15) 

represents the overall inelastic strain. 
In order to evaluate the nonlinear behavior of the typical sub-domain, according to the model 

described in the previous section, it is necessary to evaluate the strain and the stress in suitable 
number of points of each sub-domain. It can be remarked that, as the inelastic strain is bilinear and 
it is obtained as sum of four contributions, the required number of points is equal at least to four. 

Thus, chosen a typical point ( )1 2,P PP x x=  belonging to the sub-domain jΩ  or eΩ , the total 

and the elastic strains, 
jΩε  and 

jΩη  as well as 
eΩε  and 

eΩη , are evaluated as: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )

3
,

1 2 1 2 1 2
1 0

3
,

1 2 1 2 1 2 1 2
1 0

, , ,

, , , ,

j j j

j j j

n
P P P P i P P i

k k
i k

n
P P P P i P P P P i

k ij k k
i k

x x x x x x

x x x x x x x xδ

Ω Ω Ω

= =

Ω Ω Ω

= =

= +

= + −

∑∑

∑∑

ε R e Q π

η R e Q I π
 (16) 

 ( ) ( ) ( ) ( )
3

,
1 2 1 2 1 2 1 2

1 0
, , , ,

e e e e
n

P P P P P P i P P i
k k

i k
x x x x x x x xΩ Ω Ω Ω

= =

= = + ∑∑ε η R e Q π  (17) 

As a consequence, the stresses at the typical point ( )1 2,P PP x x=  of jΩ  or eΩ  result: 

 ( ) ( )1 2 1 2, ,
j j jP P P Px x x xΩ Ω Ω=σ C η  (18) 

 ( ) ( )1 2 1 2, ,
e eP P B P Px x x xΩ Ω=σ C η  (19) 

It can be noted that in some cases the inelastic strain iπ  in some sub-domain iΩ  ( 1,..,i n= ) 
can be considered reasonably constant so that two types of sub-domains can be distinguished: a set 
of sub-domain iΩ%  with 1,.., ci n= , where iπ  is constant, i.e. 0

i i=π π  and 1 2 3
i i i= = =π π π 0  and a 

set of sub-domain ˆ iΩ  with 1,.., li n= , where iπ  is bilinear, given by formula (9). 

3 NUMERICAL RESULTS 
Some numerical applications are carried out, in order to validate the proposed model and the 

developed nonlinear homogenization procedure. In the following five inclusion are considered in 
the unit cell, as represented in figure 1. 
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Two different masonries characterized by the same type of texture but different material and 
geometrical data, are considered. In particular, isotropic response of the blocks and mortar is 
assumed. The geometry and the material properties adopted for the computations are the 
following: 

Masonry M1 
• material 

for the block the elastic modulus and the Poisson ratio are set 16700 MPa BE = , 
0.15Bν = , the first cracking strains are , 0.0001N oε =  and , 0.0004NT oγ = , the stress peak 

values are , 1.67 MPaN oσ =  and , 2,90MPaNT oτ = , the fracture energies are 
20.00144 N/mmcIG =  and 20.0058 N/mmcIIG =  and the friction parameter is =0.5μ ; for 

the mortar it is set 798 MPaME = , 0.11Mν = , , 0.0003N oε =  and , 0.001NT oγ = , 

, 0.24MPaN oσ =  and , 0.36MPaNT oτ = , 20.00018 N/mmcIG =  and 
20.00126 N/mmcIIG =  and =0.75μ , if not differently specified; 

• geometry 
  210 mmb = ,   52 mmh = and  10 mms = ; 

Masonry M2 
• material 

for the block the elastic modulus and the Poisson ratio are set 18000 MPa BE = , 
0.15Bν = , the first cracking strains are , 0.0001N oε =  and , 0.0004NT oγ = , the stress 

peak values are , 1.80 MPaN oσ =  and , 3,13MPaNT oτ = , the fracture energies are 
20.00125 N/mmcIG =  and 20.0125 N/mmcIIG =  and the friction parameter is =0.5μ ; for 

the mortar it is set 1000 MPaME = , 0.15Mν = , , 0.0005N oε =  and , 0.001NT oγ = , 

, 0.50MPaN oσ =  and , 0.4348MPaNT oτ = , 20.00125 N/mmcIG =  and 
20.00217 N/mmcIIG =  and =0.5μ , if not differently specified; 

• geometry 
  240 mmb = ,   120 mmh =  and  10 mms = . 

Computations are developed for walls characterized by unit thickness. 
The validation of the nonlinear numerical homogenization is performed comparing the results 

obtained by the proposed procedure with the ones determined by micromechanical Finite Element 
Analyses (FEA). In particular, a 2D 4-node finite element is formulated considering the different 
constitutive laws for bricks, head joints and bed joints and it has been implemented in the code 
FEAP. In particular, the damage-plastic constitutive law described in subsection 2.1 is considered 
for mortar joints and for the block layer aligned with the mortar head joints, while the linear 
elastic relationship is assumed for elastic parts of the blocks. In order to avoid strain and damage 
localization in the mortar joints, a nonlocal integral model is adopted, defining the nonlocal 
equivalent strain measures as: 

 
( )

( )
*

*

Y dA
Y

dA

ψ

ψ
•Ω

•

Ω

−
=

−
∫
∫

x y

x y
 (20) 

where the subscript symbol •  stands for H , V  or γ , y  is a typical point where nonlinear 
constitutive law is assumed and ψ  is the standard Gaussian weight function, namely: 
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2

2expψ
ρ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x y
 (21) 

with ρ  = 15 mm. The above nonlocal equivalent strain measures are then used to evaluate the 
strain ratios that govern the damage evolution. 

As concerning the proposed numerical homogenization procedure, the adoption of a 
regularization technique should be not required because of the assumed distribution of the 
inelastic strain in each mortar joint.  

The unit cell of masonry material is subjected to a constant compressive vertical strain and, 
then, to a tensile loading-unloading horizontal strain history, according to the following table: 

 
 T = 0 s t = 1 s t = 2 s t = 2 s 

22ε  0.0 p p p 

11ε  0.0 0.0 0.003 -0.0005 
 
In particular, three different values of the compressive average strain are considered: 

22 0.0pε = = , 22 0.0004pε = = −  and 22 0.0008pε = = −  in order to evaluate the influence of the 
compressive strain on the overall behavior of the masonry.  
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Figure 2: Mechanical response of the unit cell M1 

subjected by the first loading history. 

 

Figure 3: Mechanical response of the unit cell M2 
subjected by the first loading history. 

 
  
In Figures 2 and 3, the mechanical response of the masonry unit cell subjected to the first type 

of loading history characterized by the material M1 and M2 is reported, respectively. In particular, 
the plots of the average normal stress 11σ  in the unit cell versus the total average strain 11ε  are 
reported for the different values of the average compressive strains. In the Figures the results 
obtained by the proposed nonlinear homogenization TFA and the micromechanical analyses FEA 
are reported and compared.  

It can be noted that initially, when the unit cell is subjected to the compressive strain 11ε , a 
negative average normal stress 11σ  arises, because of the Poisson effect; then, the behavior of the 
composite material is characterized by a linear response until the vertical mortar joint starts to 
damage. Then, also the horizontal joints start to damage. When the mortar joints are completely 
damaged a friction slip occurs. The unloading path is elastic, characterized by a stiffness reduced 
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with respect to the initial one, because of the complete damage of the mortar joints. The reverse 
loading is characterized by the progressive reduction of the friction slip strain; when the vertical 
joint is closed, the unilateral effect occurs and the initial elastic stiffness of the unit cell is 
recovered 

It can be pointed out that the results obtained by the nonuniform TFA and by the FEA are in 
very good accordance for all the three values of the average compressive strains. 
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Figure 4: Mechanical response of the unit cell M1: 
comparison between TFA analyses. 

 

Figure 5: Mechanical response of the unit cell M2: 
comparison between TFA analyses. 

 
In Figures 4 and 5 the mechanical response of the masonry unit cell for 22 0.0004pε = = −  is 

reported comparing the results obtained considering uniform TFA, i.e. assuming constant 
eigenstrains in all the 5 subsets jΩ  with j=1..5 or nonuniform TFA characterized by constant 
eigenstrains in the subsets jΩ  with j=1,2,3,5 and by bilinear eigenstrain in the subset 4Ω  with 

4π given by formula (9), for the material M1 and M2, respectively. It can be pointed out that for 
the material M2 the results obtained by the two analyses are quite in a good accordance, the 
uniform TFA becomes less accurate only in the unloading phase. For the material M1 
characterized by a small dimension of the block, the results obtained by the uniform TFA are less 
accurate as in this case the nonlinear behavior of inclusion 4Ω  more significantly influences the 
overall response of the unit cell respect to material M2.  

4 CONCLUSIONS 
A nonuniform TFA technique has been proposed. The unit cell, representative of the periodic 

composite material, is regarded as the union of subsets, some of which present a nonlinear 
behavior. The nonlinearities in these subsets are accounted for by means of eigenstrain. The main 
and nontrivial novelty of the paper consists in assuming that the eigenstrain the each subset is not 
constant but it has a bilinear shape.  

Numerical results, developed for different masonry UCs, show the effectiveness of the 
proposed technique. In fact, the uniform TFA results less accurate when the dimensions of the 
block are smaller so the nonlinear behavior of the head-bed mortar intersection more significantly 
influences the overall mechanical response of the UC. The numerical results shows that the results 
obtained by the nonuniform TFA are in good accordance with the once obtained by 
micromechanical finite element analyses.  
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