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SUMMARY. In some recent works, it has been shown that theImplicit CorotationalMethod (or
simply ICM ) is a powerful and consolidated approach for recovering nonlinear models starting from
the corresponding linear ones both in the cases of continuum and discrete problems (see [1, 2, 3]).
The method is based on the polar decomposition theorem and the corotational description of motion,
which is directly applied at the continuum level. By referring to the linear stress solution as Biot
tensor in corotational frame and using a mixed variational formulation, we obtain an automated way
of using the information gained by the linear model in the nonlinear context. Since linearized model
are always available it is easy to obtain, by this way, the corresponding nonlinear models in a form
convenient for numerical implementations. A similar picture holds when the approach is directly
applied to the finite element discretization. In this case, starting from a linear finite element, the
methods give the corresponding nonlinear, frame indifferent, finite element interpolation. As good
and accurate is the linear finite element as good will be the corresponding nonlinear one.

On the other hand, in the last years high-performance plate finite elements, based on hybrid stress
formulation and which exhibit a good behavior in the linear/elastic context, have been developed (see
[4, 5, 6] and references therein) showing that they are in general simple, stable, locking–free. On
the contrary, the developments of so good finite elements for the geometrically nonlinear case is in
general more difficult.

The idea of the present work is then to reuse these finite elements in a nonlinear context using
the ICM . For this purpose, the format of the element has been rearranged to be suitable forICM
implementation and a specialized corotational algebra for the plate model has been developed [7].

The implementations are carried out in both contexts of path–following and asymptotic ap-
proaches, extending the FE codesKASP and RASP already available and aimed at asymptotic
and path–following analysis, respectively, of slender panels assemblages (see [8] and related refer-
ences).

1 Implicit Corotational Method: FE implementation
The FE implementation of the nonlinear model recovered using theICM can be performed

through different kinds of interpolation strategies [3].
Once the continuum model is obtained, both Corotational (CR) or Total Lagrangian (TL) inter-

polations could be easily used in a standard fashion to produce a discrete model suitable for use in
asymptotic and path–following solution strategies [9].

ICM allows the recovery of the mixed strain energyΦ, split in internal workW and comple-
mentary energyΦc of the nonlinear model, exploiting the kinematical relationship%[d̄] in terms of
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kinematical parameters̄d in the CR frame:

Φ[t, d̄] = W − Φc , W =
∫

s

{
tT %[d̄]

}
ds , Φc =

1

2

∫
s

{
tT Ht

}
ds (1)

t being the stress parameters of the model,H the compliance operator ands being a suitable one or
two dimensional abscissa. Using the geometrical relationships

d̄ = g[d] (2)

between kinematical parametersd̄ in CR frame and the corresponding ones in global fixed framed,
the strain energy (1) can be expressed in terms ofd:

Φ[t,d] =
∫

s

{
tT %[d]− 1

2
tT Ht

}
ds (3)

Assuming an interpolation of generalized stress field defined by

t = Dt[s]te

the discrete formΦce of the complementary energyΦc becomes

Φce[te] =
1

2
tT
e Hete , He :=

∫
s

{DT
t [s]HDt[s]}ds

Dt[s] being the operator collecting the interpolation functions andte the vector collecting the ele-
ment stress parameters. The discrete formWe of internal workW can be obtained in a different way
depending on the motion description used, CR or TL.

1.1 Corotational interpolation
In this case the interpolation is performed on kinematical parametersd̄ in the CR frame:

d̄ = Dd[s]d̄e (4)

Dd[s] being the operator collecting the interpolation functions andd̄e the kinematical CR parameters
of the element. Substituting the interpolation (4) into (2) and performing integration we obtain the
following discrete internal work

We[te,%] = tT
e %e[d̄e] , %e[d̄e] :=

∫
s

{DT
t [s]% [Dd[s]d̄e]}ds

The interpolation is completed exploiting the geometrical transformation law

d̄e = ge[de] (5)

between discrete kinematical parametersd̄e in the CR frame and the corresponding ones in the
global fixed framede. The aim of CR description is then to transfer the nonlinearity of the problem
from the kinematical relationship to the geometrical transformation contained in eq. (5). As the
frame indifference requirements is guaranteed ’a priori’ in terms of the rotation defining the CR
frame, by the geometric laws eq.(5), the interpolation matrixDd[s] could be the same used for
the corresponding linear FE interpolation of the model. Furthermore as in this context the finite
element kinematical descriptor̄de is also small, the discrete strain measure%[d̄e] can be expanded
using Taylor expansion (see [7] for further details), without any loss in accuracy. Usually linear or
quadratic expansions are used in this respect while the improvement in of accuracy is demanded for
a refinement of the finite element mesh that is to a local better evaluation ofQ. Note that:
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- whenDd[s] is assumed to be the same as the linear finite element model and%e[d̄e] is lin-
earized in terms of̄de we obtain the ”standard” form of the CR formulation [13] that allows
us to obtain, in an easy way, a nonlinear finite element starting from the corresponding linear
one;

- the evaluation of the CR frame could be not constant on the element and, for example, evalu-
ated in a series of Gauss points for a better elimination of the mean rigid body motion. This
requires the integral in eq. (1) and the geometric law (2) to be split.

1.2 Total Lagrangian interpolation
In this strategy we interpolate the global kinematical parametersd

d = Dd[s]de

Dd[s] andde being the operator containing the interpolation functions andde the vector collecting
the finite element kinematical parameters. The internal work (3) then becomes:

We[te,%e] = tT
e %e[de] , %e[de] :=

∫
s

{DT
t [s]% [Dd[s]de]}ds

In particular, it is well known (see [14] and references therein) that to obtain a frame indifferent
model the finite element interpolation also needs to be frame indifferent, so the choice of the inter-
polation functions contained inDd[s] is in general important.

2 ThestandardCorotational formulation
As stated in the above discussion, thestandardCR approach as proposed by Rankin [13] is fully

placed into the ICM.
The CR description of motion has its origins in the polar decomposition theorem (see [11]).

According to this theorem, the total deformation of a continuous body can be decomposed into a
rigid body motion and a local deformation. In FE implementation, this decomposition can be per-
formed using a local CR frame that rotates and translates with each element. The advantage is that
the nonlinearity of the problem is transferred to the coordinate change between the fixed and coro-
tational systems, and the local displacements can be assumed small enough, in the CR frame, to
allow strains to be obtained through linear or a simplified nonlinear strain–displacement relation-
ships, without introducing significant errors. In fact, the strain energy thus obtained proves to be
objective with respect to rigid body motions of the element, exactly, and the residual error coming
from the simplified local description of the element can always be made small enough by a mesh re-
finement. The main advantage of this approach is that we can reuse standard finite element libraries
[13] thereby avoiding the need for objective interpolations [14] as occurs in other descriptions of the
body motion. The nonlinearity of the problem is essentially transferred to the relationship between
global and local components of the nodal displacements, which is governed by a simple kinematics
and does not present particular difficulties, apart from that due to the presence of nodal rotational
variables. The CR approach has been widely used as a basic tool for describing the configuration
changes within incremental–iterative path–following analysis. In this context, it requires the evalu-
ation of the first two variations of the strain energy. Only the first variation, used for checking the
equilibrium, actually needs to be evaluated exactly. Even a rough estimate for the second one is
generally sufficient, because it is only employed for defining a suitable iteration matrix to be used
within a Newton–like solution process [13]. The overall picture changes when using the asymptotic
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approach. All quantities which define the configuration state are obtained through a direct extrapo-
lation, thereby reducing or completely eliminating, the need for an updating process. Nonetheless,
an accurate evaluation for the first four variations of strain energy is needed.

2.1 Corotational algebra: Strain energy in the CR frame
Consider the motion described by the point displacementu[X] and rotationϕ[X] vector fields,

X being the position of the point in the reference configuration with respect to the fixed frame.
Using simple geometric considerations and omitting the dependence onX, for an easy notation, the
deformational local part ofu[X] can be described by the expressions

ū = QT [α](X + u− c)−X (6)

whereQ[α] is the matrix rotation defining CR frame,α being the axial rotation vector associate to
Q through Rodrigues parametrization [12],c is the translation of the CR frame and̄u collects the
components of the deformational displacement. Similarly, the rotation vector of the local part of
point rotationR[ϕ], ϕ being the axial rotation associate toR through Rodrigues formula, expressed
by

ϕ̄ = log(R̄) with R̄ = QT R (7)

defining withlog[·] the extraction of the axial vector from a matrix rotation.
The point strain will be a function of the deformational displacement and rotationd̄ = {ū, ϕ̄}:

% = %[d̄]

Assuming that̄d andϕ̄ are small, the constitutive laws can be taken as linear. It is then possible to
express the finite element strain energy, in mixed form, as (see (1))

Φ[u] =
∫

s

{
tT %[d̄]− 1

2
tT Ht

}
ds (8)

Exploiting the element interpolation laws (see (4)), (8) can be rewritten, in discrete form, as:

Φe[u] := tT
e %e[d̄e]−

1

2
tT
e Hete

te being the vector of the element stress parameters and% the associated vector of the strains, as
a function of the displacement element vectord̄e collecting deformational displacementsd̄k and
rotationsϕ̄k of all k–th finite element nodes (or a relevant linear combination of them). FinallyHe

is the Clapeyron compliance matrix provided by the complementary energy equivalence

1

2
tT
e Hete =

1

2

∫
s

tT Ht ds , ∀te, t[te]

Exploiting the smallness of deformational displacements, we assume that% can have, at most, the
following linear expression in terms of̄de:

%[d̄e] = Dd̄e

The discrete expression of the strain energy (8) becomes

Φ[u] = tT
e Dd̄e −

1

2
tT
e Hete (9)
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Lettingαe be the CR rotation vector associated to the average rigid rotation of the element and

Qe ≡ Q[αe]

the CR formulation is based on two fundamental steps:

a) the definition of kinematical relationships (6) and (7) that express a purelygeometric nonlinear
relation

d̄e = ge[αe,de] (10)

between the element displacement vector in the CR (d̄e) and fixed frames (de).

b) a local modelingof the mechanical behavior of the structures, which is an implicitly defined
expression of the strain energy of the element in terms of local CR finite element parameters,
which is written in the simplified form (9), because of the assumption of small local displace-
ments.

Note that the geometrical nonlinearities are essentially contained in eq. (10), while the local mod-
eling only implies standard finite element procedures and, if using expression (9), corresponds to a
linear FE modeling. The corotational approach then leads to an efficient way of reusing standard FE
technology in a nonlinear context.

2.2 Strain energy in the fixed frame
The CR rotation vectorαe will be a function of the current displacement vectorde:

αe = αe[de] (11)

The explicit expression of this function will depend on the particular element which is used and is
based on the best compromise between algebraic simplicity and accuracy, the latter being essentially
related to the smallness of the deformational part of the motion. By substituting eq. (11) into (10),
we can express̄de as a function ofde alone:

d̄e = ge[de]

The combination of eqs. (9) and (10) allows the element energy to be expressed in terms of the
element vector

ue = {te, de}

which collects all parameters defining the element configuration in a single vector and can be related
to the global vectoru, expressing the overall configuration of the assemblage, through the known
relation

ue = Aeu

where matrixAe implicitly contains the link constraints between elements. This allows the energy
to be expressed as an algebraic nonlinear function ofu:

Φ[u] =
∑

e

Φe[u] (12)

Once obtained the algebraic expression of the strain energy (12), the scalar and vectorial quan-
tities needing for the asymptotic and path–following analyses can be performed following the alge-
braic scheme proposed into [7].
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3 Energy variations: second variations using linear local modeling
We will denote withui (i = 1 . . . 4) a generic variation of the configuration fieldu, with ui

the corresponding global configuration vector in the FE discrimination and withuie = Aeui the
finite element configuration vector collecting both displacement and stress element vectors:uie =
{tie,die}T . With the same notationu0 andu0e are the global and element reference configuration
vectors.

Second energy can be expressed as

Φ
′′

e u1u2 = tT
1e%1e[d2e] + tT

2e%1e[d2e]− tT
1eHet2e + tT

0e%2e[d1e,d2e] (13a)

where%1e and%2e are defined by

%1e[dje] = Dg1e[dje] %2e[d1e,d2e] = Dg2e[d1e,d2e] j = 1, 2 (13b)

Introducing the matricesL1 andG[te] through the following equivalences

L1dje = g1e[dje] , dT
1eG[t0e]d2e = tT

0e%2e[d1e,d2e] (14)

eq. (13) can be rearranged in a more convenient compact form:

Φ
′′

e u1u2 = uT
1eHeu2e , He =

[
−K−1

c DL1

LT
1 DT G[t0e]

]
(15)

The mixed tangent matrix of the elementHe can be directly used, through a standard assemblage
process, to obtain the overall Hessian matrixH:

Φ
′′
u1u2 = uT

1 Hu2 , H :=
∑

e

AT
e HeAe (16)

3.1 Third variations using linear modeling
The element contribution to the scalar expressions is easily evaluated using the general formula

Φ
′′′

e u1u2u3 = tT
1e%2e[d2e,d3e]+ tT

2e%2e[d3e,d1e]+ tT
3e%2e[d1e,d2e]+ tT

0e%3e[d1e,d2e,d3e] (17)

where%2e[·, ·] is defined by (13b) and%3e[· · · ] is obtained by

%3e[d1e,d2e,d3e] = Dg3e[d1e,d2e,d3e]

When the vectorial expression is needed, makingu3 = δu, eq. (17) can be rearranged in the form

Φ′′′
e u1u2δu := δuT

e se =
[
δte

δde

]T [
set

sed

]
whereset := %2e[d1e,d2e] andsed is defined by the equivalence

δdT
e sed = δdT

e (G[t1e]d2e + G[t2e]d1e) + tT
0e%3e[d1e,d2e, δde]

The overall vectors is then obtained by a standard assemblage

s[u1,u2] =
∑

e

AT
e se[u1e,u2e]
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3.2 Fourth variations using linear local modeling
The following general formula for the element contributions can be used.

Φ
′′′′

e u1u2u3u4 = tT
1e%3e[d2e,d3e,d4e] + tT

2e%3e[d3e,d4e,d1e]

+ tT
3e%3e[d4e,d1e,d2e] + tT

4e%3e[d1e,d2e,d3e]

+ tT
0e%4e[d1e,d2e,d3e,d4e]

where function%4e[·] is obtained by

%4e[d1e,d2e,d3e,d4e] = Dg4e[d1e,d2e,d3e,d4e].

4 Finite element in CR frame for the analysis of plate assemblages
The nonlinear analysis of plate frames have been carried out reusing the mixed finite elements

which exhibit a good behavior in the linear/elastic context. The following compromise have been
made. For the membrane behaviour a 4-node finite elements is adopted (see [6, 10] and references
therein). The element assumes bilinear shape function for the in–plane displacements on the element
domain and quadratic shape function along the edges, then additional in plane rotation are used as
kinematical parameters. The stress interpolation is controlled by nine stress parameters. The bending
behaviour is modeled trough a 4-node element (see [4, 5] and references therein), based on the hybrid
stress formulation. The element, in linear context, is designed to be simple, stable, free of locking
and to pass all the patch tests. The standard displacement interpolation is enhanced by linking the
transverse displacement to the nodal rotations and an appropriate stress approximation is rationally
derived. In particular, the assumed stress approximation is equilibrated within each element, co-
ordinate invariant and ruled by the minimum number of parameters. This element is isostatic and is
based on nine stress parameters.

5 Numerical results
Some numerical benchmarks are here proposed to check the accuracy of the proposed approach.

5.1 Euler beam and Roorda frame
The first test are the Euler beam and Roorda frame. The geometry of the tests can be found into

the paper [1]. The buckling valuesλb are compared for different mesh (see tables (1,2)).

mesh regular irregular
1× 10 9.9483 10.0449
2× 20 9.8881 9.9123
4× 40 9.8730 9.8789
8× 80 9.8690 9.8705

Ref. sol. 9.8694

Table 1:λb, Euler beam

5.2 C-shaped beam under axial force
The geometry of the test can be found into the paper [15]. The flexural–torsional behaviour

is outlined. The buckling valuesλb are reported and compared also with commercial codes (see
table(3) and figures (1,2)).
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elements regular irregular
1× 10 14.009 14.164
2× 20 13.912 13.956
4× 40 13.894 13.903

Ref. sol. 13.886

Table 2:λb, Roorda frame

mesh 1st mode 2nd mode
coarse 0.871 11.01
fine 0.874 11.38

Abaqus 0.876 11.87
Kasp 0.874 11.96

Table 3:λb, C–shaped beam

6 Concluding remarks
A FE implementation ofICM in the context of plate assemblages have been presented. A general

tool for evaluating energy variations aimed at path–following and asymptotic analyses has been
developed. The implementation use extensively corotational algebra and then the decoupling of
pure deformational and geometrically part of the motion. High–performance mixed elements have
been used for the analysis [4, 6]. This choice is a good compromise of element simplicity and
accuracy. However the developed tool is quite general and allows to change in–plane and out–plane
finite elements with few modifications. Note that the implementations are carried out extending
the FE codesKASP andRASP already available [8] and aimed to asymptotic and path–following
analysis respectively of slender panels assemblages. Finally, the results show the reliability and the
accuracy of the proposed approach.
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Figure 1: C-shaped beam under axial force.1th
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Figure 2: C-shaped beam under axial force.2th

buckling mode
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