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SUMMARY. A geometrically nonlinear formulation to analyse structures in the hypotheses of large
displacements and rotations and small strains is presented. In this formulation, applied to low-
order elements and based on the total Lagrangian kinematics, the use of the rotation matrices is
bypassed. A selective based definition of the strain tensor, used in order to avoid shear-locking
problems, is effected by the linear definition of deformations because it is element reference system
independent. In addition, complex manipulations required to obtain conservative descriptions and
well-posed transformation matrices are avoided. Numerical tests have been carried out to evaluate
the validity of the developed technique both in the statical and in the dynamical context.

1 INTRODUCTION
In the geometrically nonlinear structural mechanics context, a considerable work has been de-

veloping on the formulation of models, for two or three-dimensional elastic structures, in the case of
small strains in the large displacements regime. Large-scale calculations required by these formula-
tions have encouraged the adoption of simpler and faster elements and of more efficient treatements
of the finite rotations. Tipically, definitions of lower-order quadrilateral or hexahedral isoparametric
elements are the most adapted provided that we overcome the connected locking problems in the
cases of thin structures.

In this context, classically a corotational approach is used. The motion of the continuous medium
is decomposed into a rigid body motion followed by a pure deformation. For this reason, the finite
element is studied in the linear case where the drawback, due to the locking phenomena, clearly
appears. Afterward, the nonlinear motion is obtained by joining the linear kinematic with a rigid
body motion that is recovered by use of orthogonal transformation matrices. The evolution of the
corotational approach can be traced by referring to the significant works of Belytschko and Hsieh
[1], Rankin and Nour-Omid [2] and Pacoste [3].

In a potential energy based approach, initial responses to the locking problem have led to the
selective integration techniques. They are based on a split of the strain energy into individual parts
on which different integration rules in the evaluation of corresponding contributions in the stiffness
matrix are applied (Zienkiewicz et al. [4]). A good response to instability problems, due to the prob-
able presence of energy zero modes, has been the reduced integration method with hourglass control
introduced by Kosloff and Frazier [5], then developed with better computational performances by
Flanagan and Belytschko [6].

These techniques, however, have to be supported by an adapted, robust and economical defini-
tion of the rotated local reference system. The choice of this reference system, anyhow, affects the
features obtained for the studied element in the linear assumptions. Basically, moreover, the coro-
tational approach suffers from the singularities in the transformation matrices for several angles and
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requires complex manipulations to overcome nonconservative descriptions due to the noncommuta-
tivity of rotations.

In this paper we present a small strains - finite displacements description by a potential energy
based finite element formulation where the use of rotation matrices is avoided. The described tech-
nique preserves the possibility to study the finite element in the linear field and retains the analysis
robust and economical.

Generically, to draw out from the complete nonlinear strain tensor only the contributes due to the
deformations is a problematic process. Closed forms of the deformative expressions are difficultly
definible also in the case of extraction of the linear contributes. In effect, the Lagrangian finite strain
tensor implicitly considers at the same time both the nonlinearities due to the rigid and deformative
motions. In our context, the actual configuration of the element results rigidly translated and rotated
and deformed according to the selected linear modes. The aim is to found, for each deformative
mode, a characteristic measure that is an invariant to the rotations. In such a way the linear defor-
mation modes become reciprocally independent and then they can be summed up in the strain tensor
definition. The invariant measures have been computed, then, by requiring for each of them the
following two features: not zero for the examined deformative mode and equal to zero for the other
modes in the initial configuration; independent of the rigid kinematics value.

2 LINEAR KINEMATICAL BASIS IN THE 4-NODE AND 8-NODE ELEMENTS
In regard to the two-dimensional element we refer to the bilinear rectangular2hξ, 2hη 4-node

element centered in the originO = (0, 0) of the(ξ, η) reference system (see Figure 1). The strains
obtained from this interpolation can be expressed into a basis of the three rigid and of five deforma-
tive motions. These latter are shown in Figure 2.

Figure 1: Two-dimensional 4-node element: definition.

Similarly, for the three-dimensional element we refer now to the trilinear2hξ, 2hη, 2hζ 8-node
element still centered in the originO = (0, 0, 0) of the (ξ, η, ζ) reference system (see Figure 3).
The consequently strains are referred to the basis of the six rigid and eighteen deformative motions.
Representations of these modes are shown in the Figures 4-8.

3 DEFORMATIVE INVARIANTS DEFINITIONS
3.1 Regular geometries

We consider a generic configuration of the element. This configuration, therefore, results rigidly
translated, rotated and deformed according to the modes described in the previous section. Now,
for each deformative mode, we identify a measure with the following two features: not zero for the
examined mode and equal to zero for the other modes in the initial configuration; independent of
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Figure 2: Four-node element: representations of the linear deformative modes.

Figure 3: Three-dimensional 8-node element: definition.

Figure 4: Eight-node element: representations of the expansion modes.

Figure 5: Eight-node element: representations of the shearing modes.

the rigid kinematics value. Then, such a measure univocally describes the deformation associated
with the mode itself in the generic configuration. So, these definitions make the deformative modes
reciprocally independent and then, they can be summed up in the strain tensor definitions.

The measures just described, denoted in the following as deformative invariants, represent here
relative distances between points of the generic configuration and they are in function of the unknown
elemental parameters. As distances we refer to the Euclidean measureD(pi, pj) between the points
pi, pj of the element in the generic configuration:

D(pi, pj) =
√[

ξp
i + up

i − ξp
j − up

j

]2 +
[
ηp

i + vp
i − ηp

j − vp
j

]2 +
[
ζp
i + wp

i − ζp
j − wp

j

]2
. (1)
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Figure 6: Eight-node element: representations of the hourglass modes.

Figure 7: Eight-node element: representations of the torsional modes.

Figure 8: Eight-node element: representations of the non-physical modes.

In (1) ξp
i , ηp

i andζp
i are, respectively, the initialξ, η andζ coordinates of the pointpi while up

i , vp
i

andwp
i are the respective displacements.

As an example, we refer to the two-dimensionalξ extensional mode. We describe how to define
the related characteristic measure and that it represents an invariant in respect to the deformation
fields. We consider (refer to the Figure 1) the distanceD(p13, p24) between the middle pointsm13

andm24 of the segmentsn1-n3 andn2-n4 connecting theni nodes of the element. We note that this
distance is an invariant, in the first order approximation, in respect to the remainingη extensional,
shearing,ξ andη hourglass modes as shown in Figures 9(a), 9(b), 9(c) and 9(d), respectively. As
we can verify, the examinedD(m13, m24) distance changes only if the actual configuration of the
element involves also theξ extensional deformation (see Figure 9(e)).

Then, a possible choice for the invariantIEξ related to the deformative parameterEξ is:

IEξ = D(m13, m24) − 2hξ. (2)

This invariant, therefore, represents the difference between the actualD(m13, m24) and the initial
2hξ distances. Of course, this difference is equal to theξ expansion of the element. So, the following
relation is valid:

IEξ = 2Eξhξ . (3)
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Figure 9: Two-dimensional 4-node element: examination of theIEξ invariant.

In the following we define the invariants by basing our measures only on nodal distances. In
Table 1 for the two-dimensional case and in Tables 2-6 for the three-dimensional case, the used
definitions of the invariants and their dependence on the related deformative parameters are given .

IEξ = (D(n1, n2) + D(n3, n4))/2 − 2hξ Eξ = IEξ/2hξ

IEη = (D(n1, n3) + D(n2, n4))/2 − 2hη Eη = IEη/2hη

ISξη = D(n1, n4) −D(n2, n3) Sξη = ISξη

√
(hξ)2 + (hη)2/8hηhξ

IHξ = D(n1, n2) − D(n3, n4) Hξ = IHξ/4hξhη

IHη = D(n1, n3) − D(n2, n4) Hη = IHη/4hηhξ

Table 1: Deformations of the 4-node element: invariants and parameters expressions.

IEξ = (D(n1, n2) + D(n3, n4) + D(n5, n6) + D(n7, n8))/4 − 2hξ Eξ = IEξ/2hξ

IEη = (D(n1, n3) + D(n2, n4) + D(n5, n7) + D(n6, n8))/4 − 2hη Eη = IEη/2hη

IEζ = (D(n1, n5) + D(n2, n6) + D(n3, n7) + D(n4, n8))/4 − 2hζ Eζ = IEζ/2hζ

Table 2: Extensions of the 8-node element: invariants and parameters expressions.

ISξη = D(n1, n4) + D(n5, n8) − D(n2, n3) − D(n6, n7) Sξη = ISξη

√
(hξ)2 + (hη)2/16hξhη

ISηζ = D(n2, n8) + D(n1, n7) −D(n4, n6) −D(n3, n5) Sηζ = ISηζ

√
(hη)2 + (hζ)2/16hηhζ

ISζξ = D(n1, n6) + D(n3, n8) −D(n2, n5) −D(n4, n7) Sζξ = ISζξ

√
(hξ)2 + (hζ)2/16hξhζ

Table 3: Shearings of the 8-node element: invariants and parameters expressions.

3.2 Distorted geometries
For generic quadrilateral and hexahedral elements, we refer to the same measures of the invari-

ants given in the previously section. This assumption, however, is consistent if the invariant defini-
tion requirements are satisfied. So, in respect to the invariants individuation of the previous section
carried out by inspection of the modes, it is possible to proceed in such a way that the requirements
are satisfied in a constructive manner, that is adopting a related general inverse procedure.
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IHξη = D(n3, n4) + D(n7, n8) − D(n1, n2) −D(n5, n6) Hξη = IHξη/8hξhη

IHηζ = D(n5, n7) + D(n6, n8) − D(n1, n3) − D(n2, n4) Hηζ = IHηζ/8hηhζ

IHζξ = D(n2, n6) + D(n4, n8) − D(n1, n5) − D(n3, n7) Hζξ = IHζξ/8hξhζ

IHηξ = D(n2, n4) + D(n6, n8) − D(n1, n3) −D(n5, n7) Hηξ = IHηξ/8hξhη

IHζη = D(n3, n7) + D(n4, n8) − D(n1, n5) − D(n2, n6) Hζη = IHζη/8hηhζ

IHξζ = D(n5, n6) + D(n7, n8) − D(n1, n2) − D(n3, n4) Hξζ = IHξζ/8hξhζ

Table 4: Hourglass of the 8-node element: invariants and parameters expressions.

ITζ = D(n2, n3) + D(n5, n8) − D(n1, n4) −D(n6, n7) Tζ = ITζ

√
(hξ)2 + (hη)2)/16hξhηhζ

ITη = D(n2, n5) + D(n3, n8) −D(n1, n6) − D(n4, n7) Tη = ITη

√
(hξ)2 + (hζ)2/16hξhηhζ

ITξ = D(n2, n8) + D(n3, n5) −D(n1, n7) − D(n4, n6) Tξ = ITξ

√
(hη)2 + (hζ)2/16hξhηhζ

Table 5: Torsions of the 8-node element: invariants and parameters expressions.

INξ = D(n1, n2) + D(n7, n8) − D(n3, n4) − D(n5, n6) Nξ = INξ/8hξhηhζ

INη = D(n1, n3) + D(n6, n8) −D(n2, n4) − D(n5, n7) Nη = INη/8hξhηhζ

INζ = D(n1, n5) + D(n4, n8) −D(n2, n6) −D(n3, n7) Nζ = INζ/8hξhηhζ

Table 6: Non-physical deformations of the 8-node element: invariants and parameters expressions.

In fact, the expressions of the invariants can be defined a priori as a function of the nodal dis-
placements. To compute these unknown displacements, we define a linear algebraic system for each
invariant. The equations of the linear system are obtained by imposing zero values for all invariant
expressions except the value of the considered one. In this way, by also constraining the rigid mo-
tions of the element, the kinematics related to the invariant mode is complitely determined by the
computed nodal displacements. In this sense, the approch proves to be systematic and it acquires
generality in the isoparametric element field.

4 GEOMETRICALLY NONLINEAR STATICAL AND DYNAMICAL ANALYSIS
The energetic quantities involved in the statical analysis are theV (u) internal potential and the

L(u) external work to which we have to add the kinetic energyT (u̇) in the dynamical case.
We focus, now, on the description of the strain tensor in internal potential. We refer to the linear

approximation of the tensor components, being, as above-mentioned, the geometrical nonlinearity
taken in to account by the definition of the deformative invariants. The tensor, then, is expressed as
a linear function of the deformative parameters:





εξξ = εξξ(Eξ, Eη, Hξ, Hη)
εξη = εξη(Sξη)
εηη = εηη(Eξ, Eη, Hξ, Hη)

(4)
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for the two-dimensional case, while




εξξ = εξξ(Eξ, Eη, Eζ, Hξη, Hηζ, Hζξ, Hηξ, Hζη, Hξζ, Nξ, Nη, Nζ)
εξη = εξη(Sξη, Sηζ , Sζξ, Tξ, Tη, Tζ)
εξζ = εξζ(Sξη , Sηζ , Sζξ, Tξ, Tη, Tζ)
εηη = εηη(Eξ, Eη, Eζ, Hξη, Hηζ, Hζξ, Hηξ, Hζη, Hξζ, Nξ, Nη, Nζ)
εηζ = εηζ(Sξη , Sηζ , Sζξ, Tξ, Tη, Tζ)
εζζ = εζζ(Eξ, Eη, Eζ, Hξη, Hηζ, Hζξ, Hηξ, Hζη, Hξζ , Nξ, Nη, Nζ)

(5)

for the three-dimensional case. Locking effects are overcome by a selective choice of the modes in
the (4) and (5) expressions. This selective reduction of the strain components, as said before, can be
carried out by a simple zeroing of the undesired deformative parameters. In particular, in (4) and (5)
we have omitted the shearing and torsional terms in the normal strain components while extension,
hourglass and non-physical modes have been cancelled in the shear strain components.

The potentialV , then, results defined by the deformative parameters that are in function of the
unknown nodal displacements. As we said, by chain rule we can compute the element internal forces
vector and stiffness matrix. The computational cost required by the storage and evalutation of this
vectorial quantities results small. In effect, we observe that this is about equal to one-third of the
computational cost required by the formulation with classical nonlinear deformations tensor.

The energetic quantities definition allows the formulation of the internal and the external forces
to define the statical equilibrium equation and also of the inertial force to define the semidiscrete
formulation of the equations of the motion.

A predictor-corrector scheme as described in [7]-[8] for the equilibrium path individualization is
used in the statical analysis. It is characterized by a predictor step obtained by an asymptotic extrapo-
lation and by a corrector scheme Newton’s method based with minimization of the distance between
approximate and equilibrium points as a constraint equation. For the time-integration scheme of the
initial value problem we use the Newmark average acceleration method.

5 NUMERICAL EXAMPLES
A set of examples is examined to illustrate the features of the presented formulation. In particular,

the tests analyze plane and spatial kinematics by modelling the body with the described two and
three-dimensional elements.

5.1 Deep circular arch under vertical load
Equilibrium states for the deep circular arch were computed by the two-dimensional finite ele-

ment formulation. Several authors, Simo and Vu-Quoc [9], Cardona and Huespe [10], have analyzed
the equilibrium paths for such a structure by using one-dimensional finite element in the geometri-
cally nonlinear regime. A32 equally-spaced element mesh for the whole arch is employed.

We note that, to compare the results, simple support boundary condition requires a proper treat-
ment because quadrilateral two-dimensional elements are used. In particular, here Lagrangian mul-
tipliers are adopted to impose zero values for the displacements at the central point of the elemental
edge and for the related nodal internal forces.
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Young’s modulusE = 6 × 106

Poisson’s ratioν = 0.
Normal area squared with edge equal to

√
2.

Mass densityρ = 0.0025
Load historyλ = 25t

The λ − wc vertical load parameter - deflection of the apex curve was computed for both the
statical and dynamical analysis. The analyses are stopped when the valueλ = 1000 is traversing.
For the statical case, the graphed primary path shows a good agreement with the results reported in
the cited literature. For the dynamical case, the modejump at the first limit point can be observed
in the same figure. Deformed configurations of the structure at the marked equilibrium points are
depicted in Figure 10 both for the statical and the dinamical case.

Figure 10: Deep arch: statical and dynamical deformative configurations at marked solution points.

5.2 Nonlinear cylindrical shell
A cylindrical shell of constant thickness and deformed by an applied compressive load is anal-

ysed. In this example, studied in Eriksson [11] by two-dimensional thin shell elements we consider
vanishing radial and tangential displacements on both ends. A8× 8 mesh for the symmetric quarter
of the shell was considered. Then,v = 0 for the nodes along the symmetric circumferential edge
andu = 0 for the nodes along the symmetric longitudinal edge. As before, proper treatment of the
central points of the elemental edge at boundaries is carried out. Load parameterλ - central point
deflectionwc behaviour for both the statical and dynamical solutions when the algorithm is stopped
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for the achievedλ = 800 value are showed.

Young’s modulusE = 63103
Poisson’s ratioν = 0.3

RadiusR = 2540
Thicknessh = 6.35
Mass densityρ = 1

Load historyλ = 0.1t

For the statical analysis, deformations in the pre and post-critical phase are displayed in Figure
11. Post modejumping deformations are also shown in Figure 12 for the related dynamical model.

Figure 11: Cylindrical shell: statical deformative configurations at marked solution points.

Figure 12: Cylindrical shell: dynamical deformative configurations at marked solution points.
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6 CONCLUSIONS
A technique to analyse the motion of structures in the case of large displacements and rotations

and small strains has been presented. The described formulation is applied to low-order elements
and it does not use rotation measures. In order to avoid shear-locking phenomena, a selective based
definition of the strain tensor is carried out. This selection is carried out on the linear definition of
deformation components being element reference system independent.

In particular, the proposed approach is based on definitions of only relative lenghts and the finite
element construction can be carried out completely in the linear field. In such a way, the analysis
is robust because the singularities of rotation matrices are not introduced and we can select the
deformative modes that contribute to the expressions of the strain tensor components. In addition,
being the mechanical description implicitly conservative, we can note that the analysis is economical
because it does not require complex manipulations to overcome the noncommutativity of rotations.

The numerical tests, finally, have shown that low computational time and storage demand are
required.
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