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SUMMARY. A moving-boundary problem governs the dynamics ofa semi-infinite Bernoulli-Euler
beam laid on a bed of unilateral elastic springs, being the positions of the touch-down points, those
points which separate the detached beam parts from the laid ones, unknown. This problem is solved
numerically by means of a self-made finite element code and some numerical results are shown.
They point out the nonlinear and non-smooth effects of the touch-down points motion on the beam
motion.

1 INTRODUCTION
This communication anticipates the main results of the paper [1], which improves and extends

the study made in [2]. The nonlinear dynamics of a semi-infinite Bernoulli-Euler beam laid on a bed
of unilateral elastic springs and subjected to an harmonic oscillation at the finite boundary and to a
distributed downward load (see fig. 1 for a geometric scheme)is numerically investigated in [2] only
in the case of a single touch-down point (TDP) which separates a detached part of the beam from
the remaining semi-infinite laid part. We here study the dynamics when large oscillations imposed
at the boundary produce the detachment of beam parts which, like bubbles, propagate through the
beam. In the case of multiple TDPs, the resulting dynamics highlight much better the nonlinear and
non-smooth features of the system due to the tensionless behavior of the supporting springs.

The studied problem constitutes a model for a lot of practical applications. As an example, in
the field of civil engineering it schematizes pipes or foundations resting on soils, or, in the field of
micromechanics, threads partially detached from an elastic support.

The beam dynamics is governed by a free-boundary problem, since the positions of the TDPs,
which represent the boundaries between laid and detached parts of the beam, are unknown. In the
case of a semi-infinite beam, an approximated analytical solution is determined in [3] by means of
the asymptotic developments method, but only for motions characterized by a single TDP. If the an-
alytical solution, evaluated up to the second order, is compared with the numerical solution (see [2]),
good agreement is find between the analytical and numerical results only for small amplitudes of the
excitation. When the forcing amplitude is increased, the effects of the problem nonlinearity on the
motion became significant and the approximated analytical solutions result inaccurate. Moreover,
the beam oscillations produce the detachment and propagation of beam parts which are not taken into
account by the analytical solution. For a motion characterized by multiple TDPs, it is impossible to
find exact solutions and the problem can only be handled numerically. To this end, a self-made Fem
code has been developed. The discrete problem is reformulated in a finite domain by truncating the
semi-infinite beam and by introducing first-order non-reflecting conditions on the artificial boundary.
They are capable of perfectly filtering only a single prevailing harmonic progressive wave.

A systematic numerical investigation of the beam response is performed and the main effects
of the problem nonlinearity on the dynamics, such as resonating superharmonic waves and bending
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of the resonance peaks, are pointed out. Then, those motionscharacterized by more than one TDP
are investigated, highlighting the effects of the non-smoothness. Complex behaviors like interrupted
period doubling cascade and large period oscillations are observed.

Figure 1: The problem geometry.

2 PROBLEM STATEMENT
We consider the semi-infinite beam depicted in Fig. 1, laid ona bed of unilateral elastic springs,

loaded by a distributed downward force, and subjected to an harmonic vertical oscillation at the
finite boundary. We assume the Bernoulli-Euler beam theory,so that the problem is governed by the
dimensionless equations

v̈ + ζv̇ + v′′′′ + v = 1, if v ≥ 0,
v̈ + ζv̇ + v′′′′ = 1, if v < 0,

(1)

wherev = v(y, τ) is the transversal displacement, witch depends on the dimensionless positiony
and timeτ . A dot means a derivative with respect toτ and a prime a derivative with respect toy.
Since the springs bed reacts only in compression, the reactive force per unit lengthv in (1) appears
only whenv ≥ 0. The boundary conditions aty = 0 are

v(0, τ) = V0 + V cos(Ωτ), v′′(0, τ) = 0, (2)

whereV0 is a fixed displacement andV andΩ are the amplitude and frequency of the imposed
harmonic oscillation of periodT = 2π/Ω. The TDPsyi

c(τ), i = 1, ..., N , satisfy the equations
v(yi

c(τ), τ) = 0. The semi-infinite length of the beam is taken into account byrequiring that the
motion must be bounded asy goes to infinite, and that incoming waves with finite amplitude are not
allowed (radiation condition, see [4]). We refer to [1, 2] for the relations between the dimensionless
quantities here considered and the usual dimensional ones.

2.1 Analytical solutions
If we suppose a single TDPyc, approximated analytical solutions can be found by means ofthe

asymptotic developments method. In [1, 2, 3], the solutionspair(v(y, τ), yc(τ)) was found as power
series of the imposed oscillation amplitudeV (assumed as a smallness parameter). The following
second order solution was found

v(y, τ) = v0(y) + V 2v02(y) + V u1(y)e−iΩτ + V 2u2(y)e−i2Ωτ ,

y(τ) = y0 + V 2y02 −
2V

y0 +
√

2
u1(y0)e

−iΩτ + V 2y2e
−i2Ωτ ,

(3)

where the first two terms represent the static solution, the third term is the principal harmonic, the
linear part of the solution, and the fourth term, the superharmonic wave with frequency2Ω, repre-
sents the primary effects of the problem nonlinearity. We refer to [1] for the explicit expression of
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the wave-shape functionsu1 andu2. We expect that, if higher order terms are considered, superhar-
monic waves add in the solution, and, accordingly, the solution would assume the form

v(y, τ) = v̂0(y) +

∞
∑

j=1

ûj(y)e−ijΩτ . (4)

3 NUMERICAL MODEL
If the oscillation amplitudeV is large, then the motion is characterized by multiple TDPs.De-

tached parts of the beam propagate toward the right like travelling bubbles. In this case analytical
solutions are unavailable and thus approximated numericalsolutions are looked for.

To numerically handle the problem, a self-made code was developed. It combines the finite
element method (in space) and the incremental Newmark method (in time), and consider the TDPs
as movable extra nodes added to the mesh fixed nodes. Their unknown positions are determined by
means of an iterative procedure within each time step.

Moreover, since the semi-infinite beam cannot be discretized by means of a limited number
of finite elements, the problem is reformulated in a finite domain of lengthL by truncating the
semi-infinite beam and by introducing first order non-reflecting conditions on the artificial boundary.
These conditions are capable of totally absorbing only one outgoing harmonic progressive wave with
a given frequency.

3.1 First-order absorbing boundary conditions
Let y = L be a point quite distant from the finite boundaryy = 0, and such that it never detaches

from the springs bed. We suppose that it undergoes a periodicoscillation of period2π/hΩ, which is
approximate by the binomial expression

v(L, τ) = v̂0(L) + ûh(L)e−ihΩτ , (5)

where the first term is the static position and the second termis the oscillation due to the prevailing
harmonic among all the harmonic waves of the beam motion (4).To define a criterium of selection
of the predominant oscillation, let us analyze the wave-shape ûh for small values of the viscosity
(ζ << 1)1. The wave in the semi-infinite laid part of the beam, which thepoint y = L belongs to,
assumes the approximate spatial shape (see [1] for the details)

ûh(y) ≃ e−
√

2

2
αy

(

a1e
i
√

2

2
αy + a2e

−i
√

2

2
αy

)

, if hΩ < 1,

ûh(y) ≃ a1e
iαy + a2e

−αy, if hΩ > 1,
(6)

with α =
√

|(hΩ)2 − 1|. In the subcritical regime (hΩ < 1), the oscillation is the sum of two
travelling waves, an outgoing wave and an incoming one, withamplitude exponentially decreasing
in space. In the supercritical regime (hΩ > 1), the motion is given by a travelling outgoing harmonic
wave with constant amplitude and a standing wave with decreasing amplitude. It follows that at
y = L waves in the subcritical regime are negligible and the prevailing oscillation is due to the
lowest supercritical harmonic, i.e., theh-th harmonic, withh the smallest integer such thath < 1/Ω.
Based on this considerationh is chosen as follows

h = 1, if 0 ≤ Ω < 1/3 or Ω ≥ 1;
h = 2, if 1/2 ≤ Ω < 1; h = 3, if 1/3 ≤ Ω < 1/2,

(7)

1In this case the wave motion propagates through the beam without being significantly attenuated by the viscosity, and
absorbing conditions are useful. For large values ofζ, the motion is damped quickly through the beam and at a certain
distance from the finite boundary the beam can be supposed at rest. It follows that, in this case, absorption is not required.
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where only the first two superharmonics are considered, and those of order higher than two are
supposed to be negligible.

Now we can evaluate the rotationϕ = −v′, the shear forceT = −v′′′ and the bending moment
M = −v′′ from (5), and organize them in the following kinematical anddynamical vectors

u :=

[

v(L)
ϕ(L)

]

= C(hΩ)w + u0, f :=

[

T (L)
M(L)

]

= D(hΩ)w + f0, (8)

wherew =

[

a1

a2

]

ûh(L)e−ihΩτ , u0 andf0 are the kinematical and dynamical vectors in the static

configuration, andC andD are complex matrices (their component-wise representations are given
in [1]). Combining the equations (8), we obtain

f = H(u − u0) + f0, (9)

whereH = DC−1 is a complex matrix. If we approximate the static solution for y >> 1 by
v̂0(y) = 1, and we use the relations(u−u0) = iu̇/(hΩ), and(u−u0) = −ü/(hΩ)2, equation (9)
can be rewritten in the form

f = Lu +
1

hΩ
Mu̇ +

1

(hΩ)2
Nü + p, (10)

whereL, M andN are given positive-defined matrices which depend only onhΩ, andp is a(hΩ)-
dependent vector.

The condition (10) aty = L is implemented in the numerical code. Since it perfectly filters
only the prevailingh-th harmonic, it is said of order one. Not reported numericaltests show that the
absorbing condition (10) is efficient in the case of excitations which are harmonic, as the cosine dis-
placement imposed aty = 0. In the case of non harmonic excitations, the efficiency of the condition
(10) reduces. In this case, indeed, the dispersive propagation of waves through the beam is char-
acterized by a multi-frequency spectrum, and the condition(10) can filter only one frequency, and
partially reflects all the others. Higher order boundary conditions are required, capable of absorbing
a wide number of frequencies. These conditions have been developed for the wave equation in [5, 6]
and applied to a finite element model in [7], but we are not aware of analogous studies for the beam
equation.

4 NUMERICAL SIMULATIONS
Two sets of numerical simulations are performed, corresponding to two different values of the

amplitudeV of the imposed oscillation aty = 0. For the static displacementV0 = −15, the values
V = 0.5 andV = 2 are considered. In the first case, the beam oscillation is characterized by a single
TDP and the numerical results are very close to the linear first order solution ((3) truncated at the
first order). In the second case, the nonlinear effects become relevant on the beam dynamics and the
motion remarkably deviates from the first order analytical approximation. Moreover, multiple TDPs
enter the oscillation, and bubbles, beam detached parts, propagate through the beam, highlighting
the non-smooth character of the dynamics. The values of the other problem parameters assumed in
the numerical tests are: beam lengthL = 50, mesh sizeh = 0.5, time stepdt = T/30 (T = 2π/Ω),
and damping coefficientζ = 0.05.

A parametric analysis is performed by consideringΩ as the varying (controlling) parameter. In
Fig. 2, the bifurcation diagram of the oscillation of the first TDP yc is plotted as a function ofΩ,
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for V = 0.5, V = 2 and for the linear first-order case (dotted line). At each fixed value ofΩ, in
the bifurcation diagram we report the sequence of pointsyc(nT ), n = nt, nt + 1, nt + 2, ..., nf

(remind thatT = 2π/Ω), wherent andnf are positive integers such thatntT is the transient time
andnfT the final time of observation. We typically usent = 100 andnf = 400. In Fig. 3, the
amplification factorD versusΩ is drawn. The amplification factor is definedD = Yc/V , whereYc

is the maximum amplitude of the oscillationyc, and it is determined by computing the semi-distance
between the two extreme points of the oscillationyc.

In the caseV = 0.5 the closeness between the numerical and the first-order analytical curves
of Figs. 2 and 3 corroborates the efficiency of the numerical code, on one hand, and states that the
linear analytical solution provides a good approximation of the motion for small values ofV (such
asV = 0.5), on the other hand. We notice that atΩ ≃ 0.68, the TDP oscillation resonates (Fig. 3)
and exhibits a phase shift (Fig. 2).

In the caseV = 2, the bifurcation diagram of Fig. 2 and the amplification factor of Fig. 3
significantly deviate from the corresponding linear curves. For Ω > 0.95, the curves qualitatively
differ from the linear ones, because multiple TDPs enter themotion and new dynamical behaviors
are observed. They are described in the following.

W

cy : 1-th order analytical solution

multiple TDPs

0.6050.340

enlargement A

1

2

3

4

5

6

7

V=0.5

V=2

enlargement B

Figure 2: Bifurcation diagram of the first TDP oscillationyc.

Principal and subcritical resonances
Looking at Fig. 3 we note that a subharmonic resonance appears atΩ ≃ 0.34. Its frequency is half
the linear resonance frequency (Ω ≃ 0.68) and it is due to the amplification of the first superharmonic
wave, with frequency2Ω, which adds to the principal harmonic. The principal resonance curve
increases its bending toward the left as an effect of the softening of the system [8], and reduces its
maximum. Not-reported simulations show that for values ofV bigger than 2, an hysteretic behavior
takes place.

Let us analyze the oscillationyc around the principal resonance. ForΩ < 0.590 it is essentially
in counter phase with respect to the harmonic displacement applied aty = 0. A minimum value
of yc = yc(τ) corresponds to a maximum ofvo = v(0, τ), and, on the contrary, a maximum ofyc
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Figure 3: Amplification factorD versus Ω.

corresponds to a minimum ofvo. In the frequency range0.590 < Ω < 0.605 the oscillation phase
shifts of an angle of aboutπ, and forΩ > 0.605, yc andvo are in phase.
Multiple TDPs and motions of large period (0.966 < Ω < 1)
In a neighborhood ofΩ = 1 an enlargement of the bifurcation diagram is reported in Fig. 4.
For increasing values ofΩ up to Ω = 0.975, the motion is characterized by a single TDP, whose
oscillation is of periodT . In Fig. 5(a) the oscillationyc is plotted forΩ = 0.972, and its frequency
spectrum is depicted Fig. 5(d). Peaks of superharmonic oscillations are an effect of the problem
nonlinearity. This motion corresponds to the monotonically increasing bifurcation branch of Fig.
4. The branch slope increases up to become infinity at the point Ω = 0.975, which looks like a
saddle-node bifurcation point.

For Ω > 0.975 multiple TDPs enter the motion. The trajectories followed by the TDPs are
drawn in Fig. 5(b) forΩ = 0.978. The gray-filled closed curves represent the propagating detached
bubbles in the beam, highlighting the non-smooth characterof the system. They define the position
of the laid and detached parts of the beam at each time instant. In Fig. 5(c), as an example, the
beam configuration at the instantτ = τ̄ is depicted. It is characterized by a detached bubble, which
propagates toward the right of the beam, as suggested by the TDPs trajectories. The oscillationyc

for Ω = 0.978 (Fig. 5(b)) has period19T . The oscillation of periodT is modulated by a period
19T wave. A kind of beating phenomenon takes place, which, perhaps, is due to the closeness
between the forcing frequency and the critical frequencyΩ = 1. The frequency spectrum of such a
motion is represented in Fig. 5(e), where it is compared withthat forΩ = 0.972. A peak appears
at the frequencyΩ/19, corresponding to the modulating wave, and secondary peakscome up near
the principal and superharmonic peaks, placed at a distanceof Ω/19 between each other. The period
of the superposed wave reduces asΩ increases. Looking at the bifurcation diagram of Fig. 4, the
motion in the frequency range0.975 < Ω < 1 looks chaotic instead of periodic; however, in the
frequency spectra (Figs. 5(e)) the broad band typical of chaotic signal is not so evident, so we
conclude that it is a periodic oscillation with a small, minor, chaotic modulation.

The large period motion stops atΩ = 1. For Ω ≥ 1 the period ofyc becomes againT , but
multiple TDPs remain. AtΩ = 1 the transition from the large period motion to the periodT
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oscillation is very quick and is certainly influenced by the change in shape of the principal harmonic
wave of the beam motion, which passes from the subcritical tothe supercritical regime.

For decreasing values ofΩ, the transition from a large period oscillation with multiple TDPs to
a periodT oscillation with a single TDP occurs atΩ = 0.966 (Fig. 4), and an hysteretic behavior is
observed.
Multiple TDPs and period doubling (1.15 < Ω < 1.45)
In the frequency range1.15 < Ω < 1.45, an enlargement of the bifurcation diagram and of the
amplification coefficient curve is plotted in Fig. 6. Here, a (non smooth) period doubling bifurcation
is observed in the oscillation ofyc, a phenomenon which is related to the appearance, evolution, and
vanishing of bubbles. Motions of period one, two and four arefound, and their frequency ranges are
indicated in Fig. 6(a).

ForΩ < 1.195, the motion has periodT . The TDPs trajectories are represented in Fig. 7(a), for
Ω = 1.19. The bubbles maintain their shape at each period. Since neighboring bubbles overlap in
time, there are time intervals characterized by five TDPs, and two detached bubbles.

A period2T oscillation starts at the bifurcation pointΩ = 1.195. The transition from period one
to period two is related to the following bubbles evolution:at Ω = 1.195 they begin to assume two
different shapes which alternate in time, and, for increasing Ω, they take the forms shown in Fig.
7(b)-(c) forΩ = 1.21 andΩ = 1.23. Within a period2T , one bubble is attached to the trajectory
yc and the other one is separated from it and reduces in size. AtΩ = 1.21, the amplitude of the
oscillationyc attains a maximum (see Fig. 6(b)), and the bubbles propagateup to the pointy ≃ 23,
the most distant point reached by the TDPs.

At Ω = 1.245 the oscillationyc becomes of period4T and the bifurcation branches double into
two pairs. For increasing values ofΩ the bubbles evolve as in Fig. 7(d)-(e). Within a period, firsta
bubble detached from theyc trajectory (Fig. 7(d)), then a small fourth bubble appears (Fig. 7(e)). If
Ω further increases, the bubbles attached toyc separate from it, and, within a period, the four bubbles
modify in order that the odd and the even bubbles assume two different shapes. The two pairs of
bifurcation branches joint together into two curves atΩ = 1.295 and the motion ofyc return to be
again of period2T .

The frequency spectra of the oscillationyc are plotted in Fig. 7(f)-(g)-(h) forΩ = 1.15, Ω = 1.23
andΩ = 1.26, corresponding to motions of periodT , 2T and4T , respectively. The subharmonic
wave of frequencyΩ/2 is prevailing in Fig. 7 (g) and (h), but a subharmonic of frequencyΩ/4
appears in Fig. 7(h), according to the fact that here the period is4T .

For1.295 < Ω < 1.415 the motion ofyc has period2T . WhenΩ increases, the bubbles modify
so that they become one equal to the other. AtΩ = 1.415 they take the same shape and the motion
of yc becomes of periodT .

5 CONCLUSIONS
The analysis of the system dynamics in the case of multiple TDPs highlights the non-smooth

nature of the system. In particular, we note how the born and propagation of detached bubbles have
strong effects in the supercritical regions. Multiple TDPshave been recognized to be at the root
of both (i) large periodic, chaotically modulated, oscillations, and (ii) period doubling phenomena,
which, contrarily to what usually occurs, do not evolve in a period doubling cascade.

Several developments can be sought and are worthy of furtherstudies. In our opinion, however,
the most important is that concerned with the development ofa higher order non-reflecting boundary
conditions, which will improve the adopted numerical scheme.
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