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SUMMARY. A moving-boundary problem governs the dynamicaaemi-infinite Bernoulli-Euler
beam laid on a bed of unilateral elastic springs, being thsitipas of the touch-down points, those
points which separate the detached beam parts from theria] anknown. This problem is solved
numerically by means of a self-made finite element code antesaumerical results are shown.
They point out the nonlinear and non-smooth effects of thieliedown points motion on the beam
motion.

1 INTRODUCTION

This communication anticipates the main results of the pfidewhich improves and extends
the study made in [2]. The nonlinear dynamics of a semi-itdiBiernoulli-Euler beam laid on a bed
of unilateral elastic springs and subjected to an harmosidlation at the finite boundary and to a
distributed downward load (see fig. 1 for a geometric scheésma)merically investigated in [2] only
in the case of a single touch-down point (TDP) which separatdetached part of the beam from
the remaining semi-infinite laid part. We here study the dyica when large oscillations imposed
at the boundary produce the detachment of beam parts wikehhubbles, propagate through the
beam. In the case of multiple TDPs, the resulting dynamighlight much better the nonlinear and
non-smooth features of the system due to the tensionleswvioelof the supporting springs.

The studied problem constitutes a model for a lot of pracagplications. As an example, in
the field of civil engineering it schematizes pipes or fouiates resting on soils, or, in the field of
micromechanics, threads partially detached from an elaapport.

The beam dynamics is governed by a free-boundary probleme she positions of the TDPs,
which represent the boundaries between laid and detachiedgiahe beam, are unknown. In the
case of a semi-infinite beam, an approximated analyticatisol is determined in [3] by means of
the asymptotic developments method, but only for motiomsatterized by a single TDP. If the an-
alytical solution, evaluated up to the second order, is amegbwith the numerical solution (see [2]),
good agreement is find between the analytical and numedsalts only for small amplitudes of the
excitation. When the forcing amplitude is increased, theatéf of the problem nonlinearity on the
motion became significant and the approximated analytmatisns result inaccurate. Moreover,
the beam oscillations produce the detachment and propagztbeam parts which are not taken into
account by the analytical solution. For a motion charazgéeriby multiple TDPs, it is impossible to
find exact solutions and the problem can only be handled noaligr To this end, a self-made Fem
code has been developed. The discrete problem is reformdulat finite domain by truncating the
semi-infinite beam and by introducing first-order non-reffecconditions on the artificial boundary.
They are capable of perfectly filtering only a single praagilharmonic progressive wave.

A systematic numerical investigation of the beam resposgeeiformed and the main effects
of the problem nonlinearity on the dynamics, such as regapatiperharmonic waves and bending



of the resonance peaks, are pointed out. Then, those mati@macterized by more than one TDP
are investigated, highlighting the effects of the non-sthness. Complex behaviors like interrupted
period doubling cascade and large period oscillations laserved.
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Figure 1: The problem geometry.

2 PROBLEM STATEMENT
We consider the semi-infinite beam depicted in Fig. 1, laiddred of unilateral elastic springs,
loaded by a distributed downward force, and subjected toaaménic vertical oscillation at the
finite boundary. We assume the Bernoulli-Euler beam thesoryhat the problem is governed by the
dimensionless equations
v+ Co+0"+v=1, ifv>0, (1)
v+ (o +0" =1, if v <0,
wherev = v(y, 7) is the transversal displacement, witch depends on the dimreless positiory
and timer. A dot means a derivative with respectit@nd a prime a derivative with respectgo
Since the springs bed reacts only in compression, the vedctice per unit lengthr in (1) appears
only whenv > 0. The boundary conditions gt= 0 are

v(0,7) = Vo + Veos(Qr), 2"(0,7) =0, 2

whereVj is a fixed displacement and and ) are the amplitude and frequency of the imposed
harmonic oscillation of period” = 27/Q. The TDPsyi(r), i = 1,..., N, satisfy the equations
v(yi(r),7) = 0. The semi-infinite length of the beam is taken into accountemuiring that the
motion must be bounded ggyoes to infinite, and that incoming waves with finite ampléwate not
allowed (radiation condition, see [4]). We refer to [1, 2f the relations between the dimensionless
quantities here considered and the usual dimensional ones.

2.1 Analytical solutions
If we suppose a single TDf., approximated analytical solutions can be found by meatiseof
asymptotic developments method. In [1, 2, 3], the solutfmis(v(y, 7), y.(7)) was found as power
series of the imposed oscillation amplitufe(assumed as a smallness parameter). The following
second order solution was found
v(y, ) = v0(y) + VZ002(y) + Vui(y)e ™7 + V2uy(y)e™ 297,

—iQT —12QT1 (3)
y(1) = yo + Vy02 — uy (yo)e ™S 4 Vi2ype 297
Yo + V2

where the first two terms represent the static solution, tilrd term is the principal harmonic, the
linear part of the solution, and the fourth term, the supenoaic wave with frequencg(?, repre-
sents the primary effects of the problem nonlinearity. Werre [1] for the explicit expression of



the wave-shape functions andus. We expect that, if higher order terms are considered, saper
monic waves add in the solution, and, accordingly, the smuwould assume the form

vy, 7) = Boly) + Y d(y)e 77 (4)
j=1

3 NUMERICAL MODEL

If the oscillation amplitudé/ is large, then the motion is characterized by multiple TDPs-
tached parts of the beam propagate toward the right likelfiag bubbles. In this case analytical
solutions are unavailable and thus approximated numesatations are looked for.

To numerically handle the problem, a self-made code waslale®d. It combines the finite
element method (in space) and the incremental Newmark rdéthaime), and consider the TDPs
as movable extra nodes added to the mesh fixed nodes. Theiownlkpositions are determined by
means of an iterative procedure within each time step.

Moreover, since the semi-infinite beam cannot be discretime means of a limited number
of finite elements, the problem is reformulated in a finite domof length L by truncating the
semi-infinite beam and by introducing first order non-reflegtonditions on the artificial boundary.
These conditions are capable of totally absorbing only aneang harmonic progressive wave with
a given frequency.

3.1 First-order absorbing boundary conditions

Lety = L be a point quite distant from the finite boundagry- 0, and such that it never detaches
from the springs bed. We suppose that it undergoes a penadiltation of perio®x /h£2, which is
approximate by the binomial expression

v(L, ) = to(L) + dp,(L)e” M7, (5)

where the first term is the static position and the second igthre oscillation due to the prevailing
harmonic among all the harmonic waves of the beam motionT@efine a criterium of selection
of the predominant oscillation, let us analyze the wavepstig for small values of the viscosity
(¢ << 1)L. The wave in the semi-infinite laid part of the beam, whichgb@ty = L belongs to,
assumes the approximate spatial shape (see [1] for thésjetai

N 2 i 2 2 .
n(y) ~ ez oy (aleZ 70U 4 gge 22‘”’) , i A < 1,

in(y) = a1e’®¥ + age™ Y, if hQ) > 1,

(6)

with o = /|(h€2)? — 1|. In the subcritical regimeh{? < 1), the oscillation is the sum of two
travelling waves, an outgoing wave and an incoming one, waitiplitude exponentially decreasing
in space. In the supercritical regimie{ > 1), the motion is given by a travelling outgoing harmonic
wave with constant amplitude and a standing wave with deargamplitude. It follows that at
y = L waves in the subcritical regime are negligible and the pliegaoscillation is due to the
lowest supercritical harmonic, i.e., theth harmonic, withk the smallest integer such thatk< 1/4).
Based on this consideratidnis chosen as follows

h=1,f0<Q<1/3 or Q>1; %

h=2,if1/2<Q<1; h=3if1/3<Q<1/2,

1In this case the wave motion propagates through the beamutitieng significantly attenuated by the viscosity, and
absorbing conditions are useful. For large valueg ofhe motion is damped quickly through the beam and at a certain
distance from the finite boundary the beam can be supposedtattrfollows that, in this case, absorption is not rectire



where only the first two superharmonics are considered, lansetof order higher than two are
supposed to be negligible.

Now we can evaluate the rotatign= —v’, the shear forc& = —v""” and the bending moment
M = —v" from (5), and organize them in the following kinematical alyshamical vectors

T(L)

w { v(L) } = C(hQ)w +uy, f:= { M(L)

L) ]:Dmmw+m (8)

ai

wherew = 05, (L)e~"7 ugy andf, are the kinematical and dynamical vectors in the static

configuration, andC andD are complex matrices (their component-wise represensaoe given
in [1]). Combining the equations (8), we obtain

f= H(U7UO) +fo, (9)

whereH = DC™! is a complex matrix. If we approximate the static solution fo>> 1 by
9o(y) = 1, and we use the relatioria — ug) = iu/(h2), and(u — ug) = —i1/(hQ2)?, equation (9)
can be rewritten in the form

1 1
f=L —Mu + ———=Nii 10
Ut ggMi+ GesNi+p, (10)

whereL, M andN are given positive-defined matrices which depend onlyi@nandp is a (h)-
dependent vector.

The condition (10) ay = L is implemented in the numerical code. Since it perfectlyfdt
only the prevailingh-th harmonic, it is said of order one. Not reported numetrtesis show that the
absorbing condition (10) is efficient in the case of exadasi which are harmonic, as the cosine dis-
placement imposed gt= 0. In the case of non harmonic excitations, the efficiency efdbndition
(10) reduces. In this case, indeed, the dispersive projpagat waves through the beam is char-
acterized by a multi-frequency spectrum, and the condifi®) can filter only one frequency, and
partially reflects all the others. Higher order boundaryditions are required, capable of absorbing
a wide number of frequencies. These conditions have beexapmd for the wave equation in [5, 6]
and applied to a finite element model in [7], but we are not awdranalogous studies for the beam
equation.

4 NUMERICAL SIMULATIONS

Two sets of numerical simulations are performed, corregdimanto two different values of the
amplitudeV of the imposed oscillation at = 0. For the static displacemeh} = —15, the values
V = 0.5 andV = 2 are considered. In the first case, the beam oscillation iectexized by a single
TDP and the numerical results are very close to the linedrdider solution ((3) truncated at the
first order). In the second case, the nonlinear effects becetavant on the beam dynamics and the
motion remarkably deviates from the first order analytiggdraximation. Moreover, multiple TDPs
enter the oscillation, and bubbles, beam detached padpagate through the beam, highlighting
the non-smooth character of the dynamics. The values ofttiex problem parameters assumed in
the numerical tests are: beam lendth- 50, mesh sizé, = 0.5, time stepit = 7/30 (T = 27/9Q),
and damping coefficiert = 0.05.

A parametric analysis is performed by considerih@s the varying (controlling) parameter. In
Fig. 2, the bifurcation diagram of the oscillation of the tfifDP y.. is plotted as a function af,



for V.= 0.5, V = 2 and for the linear first-order case (dotted line). At eachdixelue of(2, in

the bifurcation diagram we report the sequence of pagyateT), n = ny,ne + 1,ny + 2,...,ny
(remind thatl" = 27/(2), wheren, andn are positive integers such thatT is the transient time
andn T the final time of observation. We typically usg = 100 andn; = 400. In Fig. 3, the
amplification factorD versus(? is drawn. The amplification factor is definédl= Y./V, whereY,

is the maximum amplitude of the oscillatigp, and it is determined by computing the semi-distance
between the two extreme points of the oscillatipn

In the casd/ = 0.5 the closeness between the numerical and the first-ordeytmahlcurves
of Figs. 2 and 3 corroborates the efficiency of the numeriodke¢ on one hand, and states that the
linear analytical solution provides a good approximatifithe motion for small values df (such
asV = 0.5), on the other hand. We notice thattat~ 0.68, the TDP oscillation resonates (Fig. 3)
and exhibits a phase shift (Fig. 2).

In the casel’ = 2, the bifurcation diagram of Fig. 2 and the amplification faodf Fig. 3
significantly deviate from the corresponding linear curvéer 2 > 0.95, the curves qualitatively
differ from the linear ones, because multiple TDPs entemtiotion and new dynamical behaviors
are observed. They are described in the following.
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Figure 2: Bifurcation diagram of the first TDP oscillatign

Principal and subcritical resonances
Looking at Fig. 3 we note that a subharmonic resonance app¢@r~ 0.34. Its frequency is half
the linear resonance frequenéy £ 0.68) and itis due to the amplification of the first superharmonic
wave, with frequency(?, which adds to the principal harmonic. The principal resmeacurve
increases its bending toward the left as an effect of theesfy of the system [8], and reduces its
maximum. Not-reported simulations show that for value¥ dfigger than 2, an hysteretic behavior
takes place.

Let us analyze the oscillatiop. around the principal resonance. For< 0.590 it is essentially
in counter phase with respect to the harmonic displacenmpiteal aty = 0. A minimum value
of y. = y.(r) corresponds to a maximum of = v(0, ), and, on the contrary, a maximum @af
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Figure 3: Amplification factoiD versus €.

corresponds to a minimum of,. In the frequency rang@ 590 < 2 < 0.605 the oscillation phase
shifts of an angle of about, and forQ2 > 0.605, y. andv, are in phase.

Multiple TDPs and motions of large period (0.966 < Q2 < 1)

In a neighborhood of2 = 1 an enlargement of the bifurcation diagram is reported in Fg
For increasing values @ up to2 = 0.975, the motion is characterized by a single TDP, whose
oscillation is of periodr". In Fig. 5(a) the oscillatiom.. is plotted forQ2 = 0.972, and its frequency
spectrum is depicted Fig. 5(d). Peaks of superharmonidlatsmns are an effect of the problem
nonlinearity. This motion corresponds to the monotonjcaitreasing bifurcation branch of Fig.
4. The branch slope increases up to become infinity at the pbis 0.975, which looks like a
saddle-node bifurcation point.

For Q > 0.975 multiple TDPs enter the motion. The trajectories followgdthe TDPs are
drawn in Fig. 5(b) fo2 = 0.978. The gray-filled closed curves represent the propagatitarted
bubbles in the beam, highlighting the non-smooth charaitdre system. They define the position
of the laid and detached parts of the beam at each time inskaritig. 5(c), as an example, the
beam configuration at the instant= 7 is depicted. It is characterized by a detached bubble, which
propagates toward the right of the beam, as suggested bylXRs frajectories. The oscillatiap.
for Q = 0.978 (Fig. 5(b)) has period97. The oscillation of period’ is modulated by a period
197 wave. A kind of beating phenomenon takes place, which, psthiz due to the closeness
between the forcing frequency and the critical frequeficy 1. The frequency spectrum of such a
motion is represented in Fig. 5(e), where it is compared gt for2 = 0.972. A peak appears
at the frequency2/19, corresponding to the modulating wave, and secondary peake up near
the principal and superharmonic peaks, placed at a dist#r{¢£19 between each other. The period
of the superposed wave reducestesicreases. Looking at the bifurcation diagram of Fig. 4, the
motion in the frequency rang&975 < Q < 1 looks chaotic instead of periodic; however, in the
frequency spectra (Figs. 5(e)) the broad band typical obtbhaignal is not so evident, so we
conclude that it is a periodic oscillation with a small, minchaotic modulation.

The large period motion stops &t = 1. ForQ > 1 the period ofy. becomes agaiff’, but
multiple TDPs remain. Af) = 1 the transition from the large period motion to the peribd



oscillation is very quick and is certainly influenced by timaoge in shape of the principal harmonic
wave of the beam motion, which passes from the subcriticdigsupercritical regime.

For decreasing values 6f, the transition from a large period oscillation with mulé@ DPs to
a periodT’ oscillation with a single TDP occurs & = 0.966 (Fig. 4), and an hysteretic behavior is
observed.

Multiple TDPs and period doubling (1.15 < Q < 1.45)

In the frequency rangé.15 < < 1.45, an enlargement of the bifurcation diagram and of the
amplification coefficient curve is plotted in Fig. 6. Herenait smooth) period doubling bifurcation
is observed in the oscillation g@f., a phenomenon which is related to the appearance, evalatich
vanishing of bubbles. Motions of period one, two and fourfatend, and their frequency ranges are
indicated in Fig. 6(a).

For ) < 1.195, the motion has period. The TDPs trajectories are represented in Fig. 7(a), for
Q = 1.19. The bubbles maintain their shape at each period. Sincéloeiing bubbles overlap in
time, there are time intervals characterized by five TDPd tawo detached bubbles.

A period 2T oscillation starts at the bifurcation poifit= 1.195. The transition from period one
to period two is related to the following bubbles evolutien) = 1.195 they begin to assume two
different shapes which alternate in time, and, for incregsl, they take the forms shown in Fig.
7(b)-(c) forQ2 = 1.21 andQ2 = 1.23. Within a period27’, one bubble is attached to the trajectory
y. and the other one is separated from it and reduces in siz€) At1.21, the amplitude of the
oscillationy, attains a maximum (see Fig. 6(b)), and the bubbles propagete the pointy ~ 23,
the most distant point reached by the TDPs.

At © = 1.245 the oscillationy. becomes of periodT and the bifurcation branches double into
two pairs. For increasing values Qfthe bubbles evolve as in Fig. 7(d)-(e). Within a period, frst
bubble detached from the trajectory (Fig. 7(d)), then a small fourth bubble appe&ig.(7(e)). If
Q further increases, the bubbles attachegl.teeparate from it, and, within a period, the four bubbles
modify in order that the odd and the even bubbles assume tff@eatit shapes. The two pairs of
bifurcation branches joint together into two curve$lat 1.295 and the motion of). return to be
again of perio®T'.

The frequency spectra of the oscillatignare plotted in Fig. 7(f)-(g)-(h) fof? = 1.15, 2 = 1.23
and) = 1.26, corresponding to motions of peridd 27" and4T, respectively. The subharmonic
wave of frequency2/2 is prevailing in Fig. 7 (g) and (h), but a subharmonic of fremey /4
appears in Fig. 7(h), according to the fact that here theodesidT'.

For1.295 < Q < 1.415 the motion ofy. has perio®7". When(2 increases, the bubbles modify
so that they become one equal to the otherQAt 1.415 they take the same shape and the motion
of y. becomes of period'.

5 CONCLUSIONS

The analysis of the system dynamics in the case of multipl®d Bighlights the non-smooth
nature of the system. In particular, we note how the born aodgmation of detached bubbles have
strong effects in the supercritical regions. Multiple TDHs/e been recognized to be at the root
of both (i) large periodic, chaotically modulated, ostibbas, and (ii) period doubling phenomena,
which, contrarily to what usually occurs, do not evolve inegipd doubling cascade.

Several developments can be sought and are worthy of fustbdies. In our opinion, however,
the most important is that concerned with the developmeatidgher order non-reflecting boundary
conditions, which will improve the adopted numerical sclkem
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Figure 4: Bifurcation diagram in the frequency rarigeb < 2 < 1.01.
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