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SUMMARY. A general method is proposed for the analysis of the lateral loading distribution 
in three-dimensional structures composed of any kind of bracings (frames, framed walls, shear-
walls, closed and/or open thin-walled cores and tubes), under the customary assumption of floor 
slabs being undeformable in their planes. This general formulation allows the analysis of high-rise 
structures by taking into account the torsional rigidity of the elements composing the building, 
without gross simplifications even in the case of very complex shapes and with the contemporary 
presence of different kinds of bracing. The method is aimed at gaining an insight into the force 
flow within the structure, in order to understand how the building response may be governed. 

1 INTRODUCTION 

From the structural viewpoint, tall building means a multi-storey construction in which the 
effects of horizontal actions and the need to limit the relative displacements take on primary 
importance [1,2]. A profound understanding of the force flow in these complex structural systems 
is often very difficult, and a huge commitment in terms of design, technology and economic 
resources is required. While in the design of low-rise structures the strength requirement is the 
dominant factor, with increasing height, the importance of the rigidity and stability requirements to 
be met to counter wind and earthquake actions grows until they become the prevailing design 
factors (note that the latest skyscrapers rise to over 400 m, the tallest of all being the Taipei 
Financial Center, 508 m high, while in Dubai they are currently constructing the “Burj Dubai” 
tower, to exceed 800 m). For this reason, the traditional solutions providing for load-bearing main 
and secondary parts tend to be forsaken in favour of a global approach, whereby the structure is 
conceived in a unitary fashion, i.e., as a single cantilever beam projecting out from the foundations. 
At any rate, the key issue in structural design continues to be the choice of an appropriate design 
model, that is able to reproduce faithfully the actual conditions of a structure. 

Over the last three decades, it seems that a large part of the engineering community has 
followed a path towards the use of Finite Element models also in the early stage of design, but in 
the last few years the discussion and debate on the advantages and disadvantages of abandoning 
the use of analytical models seems to set a reverse trend. These models cannot be renounced to 
fully understand the complex behaviour of high-rise structures. 

With the aim at acquiring insight into the effects of the stability element typologies and 
arrangements in tall buildings within a unified framework, and the capability of modelling 
complex structures and different typologies, in this paper we propose a three-dimensional 
formulation based on the work by Carpinteri [3]. The formulation is extended to encompass any 
combination of bracings, including bracings with open thin-walled cross-sections, which are 
analyzed in the framework of Timoshenko-Vlasov’s theory [4,5] of sectorial areas, and according 



to the approach by Capurso [6], as recently proposed by Carpinteri et al. [7]. Numerical examples, 
investigating the structural response of tall buildings characterized by bracings with different 
cross-sections and height, show the effectiveness and flexibility of the proposed approach. 

2 ANALYTICAL FORMULATION 

The general formulation of the problem of the external lateral loading distribution between the 
bracings of a three-dimensional civil structure, originally presented in [3], will be revisited in this 
section. The structure is idealized as consisting of M bracings interconnected through floors 
undeformable in their planes and the axial deformations of bracings are not considered. With these 
hypotheses, the floor movement can be expressed by three generalized coordinates: the two 
translations, ξ and η, in X- and Y-direction of the global coordinate system origin (Fig. 1) and the 
floor rotation, ϑ. If N is the number of stories, the external load will be represented by a 3N-vector 
F, whose elements are three elementary loads for each floor and, more exactly, two shear forces, 
px and py, and the torsion moment, mz. In the same way, the internal loading transmitted to the i-th 
element will be represented by a 3N-vector Fi and obtained from the preceding F through a 
premultiplication by a distribution matrix. Let pi be the 2N-vector representing the shear-loadings 
px and py, on the i-th element in the global coordinate system XY (Figs. 1 and 2), and mi the N-
vector representing the torsion moments, so that: 
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The internal loadings Fi transmitted to the i-th bracing and related to the global coordinate 

system XY are connected with the same loadings Fi
* related to the local coordinate system Xi

*Y i
*  

(the origin of this system is in the center of twist Ci and the Xi
*Y i

* axes are parallel to the central 
ones, see Figs. 1 and 2b): 
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Figure 1: Global and local coordinate systems. The Z-axis completes the right-handed global 
system XYZ and Zi* completes the right-handed local system Xi

* Yi
* Zi

*. 



 
     (a)           (b) 
Figure 2: Internal loadings Fi (transmitted to the i-th bracing) in the global coordinate system (a); 
degrees of freedom of the i-th bracing in the local coordinate system Xi

*Y i
* Zi

*, axonometry and 
top view (b). Note that the highest floor is indicated with 1 and the lowest with N. 

 
where the superscript * is used to indicate the loadings in the local coordinate system Xi

*Y i
*, Ni is 

the orthogonal matrix of transformation from the system XY to the system Xi
*Y i

*, ψi is the 
coordinate-vector of the origin of the local system Xi

*Y i
* in the global one XY, uz is the unit vector 

in the Z-direction (note that ψi x piuz is a scalar triple product). The orthogonal matrix Ni is 
represented as: 

 

 
cos sin

sin cosiN
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=  − ϕ ϕ 
, (4) 

 
where each element represents a diagonal N x N-matrix and ϕ is the angle between the X-axis and 
the Xi

*-axis (Fig. 1). 
Equations (2) and (3) may be represented in the matrix form: 
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where: 
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I is the identity matrix, 0 the null matrix and the N x 2N-matrix Ci

T is defined as 
  
 [ ]T

i i iC y x= − , (7) 

 
where each element is a diagonal N x N-matrix and (xi,yi) are the components of vector ψi.  

The displacements δi in the global coordinate system XY are then connected with the 
displacements δi

* in the local system Xi
*Y i

*: 
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i i iBδ = δ , (8) 

where: 
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The internal loadings Fi

* are connected with the displacements δi
* through the relation: 

 
 * * *

i i iF K= δ , (10) 

 
where Ki

* is the stiffness matrix in the local system. Recalling Eqs. (5) and (8), we get 
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i i i i iA F K B= δ . (11) 

 
Pre-multiplying both the members by the inverse Ai

–1: 
 

 ( )1
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it follows that the stiffness matrix in the global system for the i-th bracing is  
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The displacement 3N-vector δi of the i-th element is connected with the displacement 3N-vector δ 
of the rigid floors by the relation: 
 
 

i iTδ = δ , (15) 

 
where the transformation 3N x 3N-matrix Ti is: 
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and the 2N x N-matrix Ci is defined in Eq. (7). 
Equation (12) can be rewritten: 

 =i i i iF K T K= δ δ , (17) 

 
whereKi = KiTi is the stiffness of the i-th element with respect to the floor displacements. For the 
global equilibrium we have: 
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whereK is the global stiffness matrix of the rigid floors. Recalling Eqs. (17) and (19), we get: 
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and then: 
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Equation (21) solves the problem of the external loading distribution between the resistant 
elements of a building. It is formally analogous to the equation for the distribution of a force 
between different in-parallel resistant elements in a plane problem. In fact, the distribution matrix 
KiK−1 is the product of the partial stiffness matrix by the inverse of the total stiffness matrix, as 
well as in the plane problem the distribution factor is the product of the partial stiffness by the 
inverse of the total stiffness. The sum of the distribution matrices is equal to the unit matrix. 
Details on the condensation procedure for the computation of the stiffness matrices according to 
the de Saint Venant theory of beams with closed cross-section can be found in Humar and 
Kandhoker [8]. On the other hand, it can be observed that the above presented formulation is 
general and allows one to treat any kind of structural elements, such as frames, shear-walls and 
thin-walled sections either open or closed. To this aim, a procedure to compute the stiffness 
matrices for open thin-walled cross-section is proposed in the next section. 

3 STIFFNESS MATRIX OF OPEN THIN-WALLED BRACINGS 

The behaviour of open thin-walled cross-section is treated according to the Timoshenko-
Vlasov [4,5] torsion theory of beams with thin open cross-section, characterized by the presence of 
the warping stiffness. With reference to Figs. 1 and 2, let us consider a generic beam in its local 
system Xi

* Yi
* Zi

*; if the beam sections are undeformable in their planes, the section movements 
can be expressed by three displacements: the two translations ξi

* and ηi
* (in X- and Y-direction of 

the local coordinate system origin, see Fig. 2) and the floor rotation ϑi
*. Under the customary 

assumption that the external loads are concentrated transverse flexural loads and torsional 
moments only, so that the longitudinal force N at any value of z should be zero, according to the 
analytical approach by Capurso [6], it can be shown that the following relations, written in 
synthetic matrix form, hold: 
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if we introduce the following vectors: 
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and the matrix of inertia: 
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where Mx and My are the bending moments, B is the bimoment [4,5], Tx and Ty, are the shear forces, 
Mz is the torsional moment, E is the Young modulus and the apex ′ corresponds to derivation with 
respect to the axial coordinate z. Jxx, Jxy and Jyy are the (second order) moments of inertia, Jωω is 
the sectorial moment of inertia and Jxω and Jyω are the sectorial products of inertia. 

By further deriving Eq. (23) we get: 
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δi i iF EJ= . (26) 

 
Since the matrix of inertia J is symmetric and positive definite, except some anomalous cases 

detailed in [6], Eq. (26) can be inverted and the components of vector δi
*IV can be computed: 
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Considering Eq. (27) and integrating it with the appropriate boundary conditions: 
  
 δ 0= ,                       δ' 0= , (28) 
 
at the clamped base of the beam (z = L), and: 
 
 δ'' 0= ,                    δ''' 0= , (29) 
 
at the free-end (z = L), we obtain the relation between the displacements δ i

* and the loads F i
*, 

therefore the compliance matrix Ci of the i-th bracing: 
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where the matrixQ is a 3N x 3N-matrix of non-dimensional influence coefficients determined 
through the integration. Its structure is block diagonal, with three equal (full) submatrices Q: 
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In case of a bracing with constant cross-section, the computation of the terms of the upper 

triangular part of the N x N sub-matrix Q provides the generic term qij 
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The lower triangular part is obtained exploiting the symmetry of Q. In the case of bracings 

with variable cross-section, the computation can be performed by means of the Mohr’s theorem.  
By inverting the compliance matrix Ci we finally get the expression of the stiffness matrix in 

the local system Ki
* of the i-th bracing with open thin-walled cross-section: 
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4 NUMERICAL EXAMPLE 

Numerical examples chosen to show the flexibility and effectiveness of the proposed approach 
are presented in this section. The structure is an asymmetric 20-story tube-in-tube system with 
square plane layout. The asymmetry is chosen in order to investigate both the flexural and the 
torsional behaviour of the building when subjected to horizontal wind loads. As shown in Fig. 3, 
the internal core is closed, whereas the external tube is made by two bracings with ‘C’-shaped 
open cross-sections. The  Young’s modulus is E = 2.4×104 MPa, the Poisson ratio ν = 0.18. The 
story height is H = 4.0 m, corresponding to a total height L = 80 m. The member cross-section 
properties are given in Table 1. 

Concerning the loads, in this example we consider the actions of wind only. For the sake of 
simplicity, we assume constant wind pressure over the height of the structure. Due to the 
hypothesis of infinite rigidity of the floors in their plane, the wind actions can be applied as a 
system of concentrated horizontal loads passing through the barycentre of the pressure distribution.  

 

 
 

Figure 3: Floor plane of the example building. Tube-in-tube structure with asymmetric core. 
 



Table 1: Cross-section properties of the close thin-walled core and of the external open bracings. 
  Core ‘C’-shaped bracings 
Second moment Jxx [m

4] 25.09 88.00 
Second moment Jyy [m

4] 25.09 43.21 
Warping moment Jωω [m6] 0.00 171.54 
Torsional rigidity (à la de Saint Venant [m4]) 37.50 0.166 
Global coordinate xc of the shear centre [m] 0.00 13.27 
Global coordinate yc of the shear centre [m] –1.00 ±6.50 
Angle ω [rad] 0.00 0.00 

 
The intensity of wind actions is computed in a simplified way by considering the reference kinetic 
pressure provided by the Italian Technical Regulations [9], in which the wind actions are supposed 
to be static and directed according to the principal axes of the structure. Supposing that the 
building is located in Turin (Italy), and, for the sake of simplicity, not considering the exposition-, 
shape- and dynamic-coefficients [9], the obtained concentrated loads have the following values: 
F=13.67 kN. In the computations, the wind force is applied in the X-direction only. 

Results are summarized in Figs. 4 to 6. In Fig. 4(a) and (b) displacements in the X-direction 
and rotations at the floor levels are reported respectively; as can be seen, the flexural deformed 
shape does not display change of sign of the curvature, whereas rotations do. An inflection point is 
clearly visible at the level of floor 8 in Fig. 4(b). 

 

 
 (a)                                                       (b) 

Figure 4: Displacements of the floors in the global coordinate system. Translation in the X-
direction (a); and rotation (b). 

 
This fact is in tight connection with the diagrams of the torsion moment Mz, reported in Fig. 

5(a) and (b) for the internal core and the external ‘C’-shaped bracings, respectively. In both plots it 
can be clearly seen that the primary part MdSV of the torsional moment displays a maximum at the 
same height. Regarding the internal closed core, it obviously supports a larger part of the total 
moment and presents null warping moment Mω. On the other hand, the ‘C’-shaped cross-sections 
display smaller primary moment and larger warping moment Mω. The latter changes its sign from 



the top of the building (where it is positive) to the ground and shows a faster rate of increase below 
the floor 8. The primary moment is negligible with respect to the warping one in the external 
bracings. This is a consequence of the fact that the internal core is closed and can sustain large 
torsional loads, thus influencing the behaviour of the other bracings. All this can be confirmed if 
we look at the bimoment B in the external ‘C’-shaped bracings (plotted in Fig. 5(c)): we can see 
that the sign changes at the level of floor 8, being negative above it. As expected, the maximum 
value is at the ground floor, and the bimoment is null at the top of the building. 

 

 
                              (a)                                                (b)                                             (c) 

Figure 5: Torsion of the internal core (a); and torsion (b) and bimoment (c) of the external ‘C’-
shaped bracings along the building height. 

 
The interaction between bracings with different height has been investigated by assuming the 

internal core of the floor plane shown in Fig. 3, 20-storeys high and the ‘C’-shaped bracings 10-
storeys high. The most interesting result concerns the shear force distribution. Linear increasing 
functions from the top to the bottom of the building are obtained in case of bracings with equal 
height, as shown in Fig. 6a (note that the continuous line represent the sum of the contributions of 
the two external bracings). On the contrary, a strong discontinuity with a cuspidal point at the top 
level of the lowest bracing is predicted when different heights are considered (see Fig. 6b). Such a 
jump in the shear distribution is due to the assumption of floor slabs undeformable in their planes. 
It is worth noting that this result, also confirmed by finite element analyses, is in disagreement 
with those obtained in [10] for infinitely stiff floors. Finally, the ratio between the maximum value 
of the shear force and that acting at the ground level as a function of the difference in height 
among the considered bracings is plotted in Fig. 6c. As it can be seen, for difference in height 
greater than 25% the maximum shear force is not at the ground level, as usually expected. 

5 CONCLUSIONS 

The numerical algorithm for the lateral loading distribution between the elements of a three 
dimensional civil structure [3], extended in this paper by introducing thin-walled bracing elements 
with open cross-section, can be employed to predict the gross structural deformations of tall 
buildings with different structural typologies, i.e. composed of any kind of bracings (frames, 
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framed walls, shear-walls and closed and/or open thin-walled cores and tubes). The general 
formulation pesented in this paper offers, compared to a detailed FE simulation, ease of use and 
reduced effort in preparing the model, as well as in the result interpretation, with sufficient 
accuracy in the preliminary and conceptual design stage. In addition, such a global approach 
provides a clear picture of the key structural parameters governing the tall building behaviour. 

 

 
                             (a)                                               (b)                                               (c) 

Figure 6: Shear force distributions in case of bracings with equal height (a); and different height 
(b). Ratio between maximum and ground shear force by varying the difference in height among 

bracings (c). 
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