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SUMMARY. A general method is proposed for the asalyof the lateral loading distribution
in three-dimensional structures composed of ang kihbracings (frames, framed walls, shear-
walls, closed and/or open thin-walled cores anas$ybunder the customary assumption of floor
slabs being undeformable in their planes. This gdriermulation allows the analysis of high-rise
structures by taking into account the torsionaldity of the elements composing the building,
without gross simplifications even in the case efyvcomplex shapes and with the contemporary
presence of different kinds of bracing. The metilodimed at gaining an insight into the force
flow within the structure, in order to understarmiMthe building response may be governed.

1 INTRODUCTION

From the structural viewpoint, tall building meaasnulti-storey construction in which the
effects of horizontal actions and the need to lithe relative displacements take on primary
importance [1,2]. A profound understanding of thecé flow in these complex structural systems
is often very difficult, and a huge commitment grms of design, technology and economic
resources is required. While in the design of lise-rstructures the strength requirement is the
dominant factor, with increasing height, the impade of the rigidity and stability requirements to
be met to counter wind and earthquake actions gnantié they become the prevailing design
factors (note that the latest skyscrapers risever d00 m, the tallest of all being the Taipei
Financial Center, 508 m high, while in Dubai theg aurrently constructing the “Burj Dubai”
tower, to exceed 800 m). For this reason, thetioadil solutions providing for load-bearing main
and secondary parts tend to be forsaken in favbar global approach, whereby the structure is
conceived in a unitary fashion, i.e., as a singletitever beam projecting out from the foundations.
At any rate, the key issue in structural designtiooes to be the choice of an appropriate design
model, that is able to reproduce faithfully theuaticonditions of a structure.

Over the last three decades, it seems that a lsageof the engineering community has
followed a path towards the use of Finite Elementlais also in the early stage of design, but in
the last few years the discussion and debate oadlantages and disadvantages of abandoning
the use of analytical models seems to set a reverad. These models cannot be renounced to
fully understand the complex behaviour of high-ssmictures.

With the aim at acquiring insight into the effea the stability element typologies and
arrangements in tall buildings within a unified rfrawork, and the capability of modelling
complex structures and different typologies, instiiaper we propose a three-dimensional
formulation based on the work by Carpinteri [3].eTiormulation is extended to encompass any
combination of bracings, including bracings witheapthin-walled cross-sections, which are
analyzed in the framework of Timoshenko-Vlasov'sdty [4,5] of sectorial areas, and according



to the approach by Capurso [6], as recently prappbigeCarpinterit al. [7]. Numerical examples,
investigating the structural response of tall binigg characterized by bracings with different
cross-sections and height, show the effectivenagdlexibility of the proposed approach.

2 ANALYTICAL FORMULATION

The general formulation of the problem of the exéddateral loading distribution between the
bracings of a three-dimensional civil structuregiorlly presented in [3], will be revisited in ¢hi
section. The structure is idealized as consistihgMobracings interconnected through floors
undeformable in their planes and the axial defoionatof bracings are not considered. With these
hypotheses, the floor movement can be expressethriey generalized coordinates: the two
translations¢ and, in X- and Y-direction of the global coordinatesm origin (Fig. 1) and the
floor rotation, . If N is the number of stories, the external load wéllrbpresented by a3avector
F, whose elements are three elementary loads fdr #@ar and, more exactly, two shear forces,
px andpy, and the torsion moment,. In the same way, the internal loading transmittethei-th
element will be represented by &l-8ector F; and obtained from the precedifgthrough a
premultiplication by a distribution matrix. Let be the R-vector representing the shear-loadings
px andpy, on thei-th element in the global coordinate system XY ¢Fify and 2), andy the N-
vector representing the torsion moments, so that:

Fi :{pi} (1)
m

The internal loading$; transmitted to the-th bracing and related to the global coordinate
system XY are connected with the same loadmRgselated to the local coordinate systemYX
(the origin of this system is in the center of @ and the XY, axes are parallel to the central
ones, see Figs. 1 and 2b):

P =Np> )
m’=m -y, xp o, C)

Figure 1: Global and local coordinate systems. Z4a&is completes the right-handed global
system XYZ and Z completes the right-handed local system¥ Z".
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Figure 2: Internal loadings; (transmitted to theth bracing) in the global coordinate system (a);
degrees of freedom of thi¢h bracing in the local coordinate systemYX Z", axonometry and
top view (b). Note that the highest floor is indedwith 1 and the lowest witk.

where the superscript * is used to indicate thelitogs in the local coordinate system¥, N; is

the orthogonal matrix of transformation from thesteyn XY to the system %, ¢ is the
coordinate-vector of the origin of the local syst&n¥;” in the global one XYu, is the unit vector
in the Z-direction (note tha#s x piu, is a scalar triple product). The orthogonal mafxixis

represented as:

Ni{co_sb sirq)}, @)
-sing co%

where each element represents a diaghinaN-matrix andg is the angle between the X-axis and
the X -axis (Fig. 1).
Equations (2) and (3) may be represented in thebnfatm:

F = AF, )
where:
N O

A:[Cﬁ I] ©

| is the identity matrix, O the null matrix and tNex 2N-matrix C;" is defined as
C=[-v x], (7)
where each element is a diagoNat N-matrix and ;,y;) are the components of vecigr

The displacements) in the global coordinate system XY are then cotewowith the
displacements)” in the local system XY :
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where:

F =K§, (10)
whereK;" is the stiffness matrix in the local system. RénglEqgs. (5) and (8), we get
AF =K/BJ, - (11)
Pre-multiplying both the members by the invesé&
F=(A"KB)3, (12)

it follows that the stiffness matrix in the glotsgistem for thé-th bracing is

Ki = AﬁlKiDBI ’ (13)
where:
(u]
ko=|Ki 0| (14)
' 0 K,

The displacementNbvector g of thei-th element is connected with the displaceméhv8ctor &
of the rigid floors by the relation:

3 =Td., (15)

Ti=[| C'] (16)

and the Rl x N-matrix C; is defined in Eq. (7).
Equation (12) can be rewritten:

F = Ki-riazfia’ 17)

where K; = K{T; is the stiffness of thieth element with respect to the floor displacemehts the
global equilibrium we have:
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YF=YKs. (18)

F=K3. (19)

where K is the global stiffness matrix of the rigid flooRecalling Egs. (17) and (19), we get:

o= K_lFi = R_lF (20)
and then:

F=KK F. (21)

Equation (21) solves the problem of the externadiog distribution between the resistant
elements of a building. It is formally analogousth@ equation for the distribution of a force
between different in-parallel resistant elementa jplane problem. In fact, the distribution matrix
“K{ K™ is the product of the partial stiffness matrixthg inverse of the total stiffness matrix, as
well as in the plane problem the distribution fadsthe product of the partial stiffness by the
inverse of the total stiffness. The sum of theritistion matrices is equal to the unit matrix.
Details on the condensation procedure for the céatiom of the stiffness matrices according to
the de Saint Venant theory of beams with closedssection can be found in Humar and
Kandhoker [8]. On the other hand, it can be obsknbat the above presented formulation is
general and allows one to treat any kind of stmadtalements, such as frames, shear-walls and
thin-walled sections either open or closed. To #iim, a procedure to compute the stiffness
matrices for open thin-walled cross-section is pegal in the next section.

3 STIFFNESS MATRIX OF OPEN THIN-WALLED BRACINGS

The behaviour of open thin-walled cross-sectiortréated according to the Timoshenko-
Vlasov [4,5] torsion theory of beams with thin op#nss-section, characterized by the presence of
the warping stiffness. With reference to Figs. @l @nlet us consider a generic beam in its local
system X Y; Z: if the beam sections are undeformable in theings, the section movements
can be expressed by three displacements: the amelationss ands;” (in X- and Y-direction of
the local coordinate system origin, see Fig. 2) #rel floor rotationd . Under the customary
assumption that the external loads are concentratmtsverse flexural loads and torsional
moments only, so that the longitudinal foldeat any value of should be zero, according to the
analytical approach by Capurso [6], it can be shdhat the following relations, written in
synthetic matrix form, hold:

M’ =-EJ3" (22)
T =-EJ&" (23)
if we introduce the following vectors:
ET |\/li*,y Ti*,x
6:: rf| ! |\/li = Mi,x 'Tl = Ti,y (24)
9 B M/



and the matrix of inertia:

JW JXY JV‘A’
J=1dy Jo Ju (25)
Jyw X0 (A%}

whereM, andM, are the bending momengs the bimoment [4,5]T, andT,, are the shear forces,
M, is the torsional momenE is the Young modulus and the apecorresponds to derivation with
respect to the axial coordinatel,, J,, andJ,, are the (second order) moments of inetjg, is
the sectorial moment of inertia adg, andJ,,, are the sectorial products of inertia.
By further deriving Eq. (23) we get:
|:i* = EJis*i'V . (26)

Since the matrix of inertid is symmetric and positive definite, except somena@ous cases
detailed in [6], Eq. (26) can be inverted and thmponents of vectod " can be computed:

wvzémﬂﬁ. (27)

Considering Eq. (27) and integrating it with thgagpriate boundary conditions:

§=0, §'=0, (28)
at the clamped base of the beam (), and:

8"=0, 8"=0, (29)

at the free-endz(= L), we obtain the relation between the displaceméntsind the load§ |,
therefore the compliance mati@ of thei-th bracing:

5 =130 =C R, (20)

where the matrixQ is a 3\ x 3N-matrix of non-dimensional influence coefficientetermined
through the integration. Its structure is blockgtinal, with three equal (full) submatric®s

Q
0
0

0 O
Q= Q 0. (31)
0

O

In case of a bracing with constant cross-sectiba, domputation of the terms of the upper
triangular part of thé&l x N sub-matrixQ provides the generic terq)
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The lower triangular part is obtained exploiting ttymmetry ofQ. In the case of bracings
with variable cross-section, the computation capdxormed by means of the Mohr’s theorem.

By inverting the compliance matrig; we finally get the expression of the stiffness niman
the local syster;” of thei-th bracing with open thin-walled cross-section:

Ki* = (CI )_1 = E_ilj . (33)

4 NUMERICAL EXAMPLE

Numerical examples chosen to show the flexibilitg &ffectiveness of the proposed approach
are presented in this section. The structure img@mmetric 20-story tube-in-tube system with
square plane layout. The asymmetry is chosen ierawl investigate both the flexural and the
torsional behaviour of the building when subjedtedhorizontal wind loads. As shown in Fig. 3,
the internal core is closed, whereas the exteudz is made by two bracings with ‘C’-shaped
open cross-sections. The Young’s modulug is 2.4x10 MPa, the Poisson ratip = 0.18. The
story height isH = 4.0 m, corresponding to a total height 80 m. The member cross-section
properties are given in Table 1.

Concerning the loads, in this example we consideractions of wind only. For the sake of
simplicity, we assume constant wind pressure ower height of the structure. Due to the
hypothesis of infinite rigidity of the floors in ¢fr plane, the wind actions can be applied as a
system of concentrated horizontal loads passirautitr the barycentre of the pressure distribution.
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Figure 3: Floor plane of the example building. THfp¢ube structure with asymmetric core.



Table 1: Cross-section properties of the closewahed core and of the external open bracings.

Core ‘C’-shaped bracings
Second moment,, [m?] 25.09 88.00
Second momendy, [m*] 25.09 43.21
Warping momeng,,, [mf] 0.00 171.54
Torsional rigidity (& la de Saint Venant{n 37.50 0.166
Global coordinate of the shear centre [m] 0.00 13.27
Global coordinatg,. of the shear centre [m] -1.00 +6.50
Angle w[rad| 0.00 0.00

The intensity of wind actions is computed in a difigdd way by considering the reference kinetic

pressure provided by the Italian Technical Regofeti[9], in which the wind actions are supposed
to be static and directed according to the priricgppees of the structure. Supposing that the
building is located in Turin (Italy), and, for tisake of simplicity, not considering the exposition-

shape- and dynamic-coefficients [9], the obtainedcentrated loads have the following values:
F=13.67 kN. In the computations, the wind forceppléed in the X-direction only.

Results are summarized in Figs. 4 to 6. In Fig) 4fa (b) displacements in the X-direction
and rotations at the floor levels are reported @eBpely; as can be seen, the flexural deformed
shape does not display change of sign of the cumgatvhereas rotations do. An inflection point is
clearly visible at the level of floor 8 in Fig. 4(b
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Figure 4: Displacements of the floors in the glat@drdinate system. Translation in the X-
direction (a); and rotation (b).

This fact is in tight connection with the diagraofsthe torsion momen¥i,, reported in Fig.
5(a) and (b) for the internal core and the extei@athaped bracings, respectively. In both plots i
can be clearly seen that the primary pagt, of the torsional moment displays a maximum at the
same height. Regarding the internal closed corebviously supports a larger part of the total
moment and presents null warping momiglyt On the other hand, the ‘C’-shaped cross-sections
display smaller primary moment and larger warpirgmantM,,, The latter changes its sign from



the top of the building (where it is positive) teetground and shows a faster rate of increase below
the floor 8. The primary moment is negligible withspect to the warping one in the external
bracings. This is a consequence of the fact thatinternal core is closed and can sustain large
torsional loads, thus influencing the behaviouthaf other bracings. All this can be confirmed if
we look at the bimomerB in the external ‘C’-shaped bracings (plotted ig.F(c)): we can see
that the sign changes at the level of floor 8, beirgative above it. As expected, the maximum
value is at the ground floor, and the bimomentil at the top of the building.
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Figure 5: Torsion of the internal core (a); anditmn (b) and bimoment (c) of the external ‘C’-
shaped bracings along the building height.

The interaction between bracings with differentgh¢ihas been investigated by assuming the
internal core of the floor plane shown in Fig. B;2oreys high and the ‘C’-shaped bracings 10-
storeys high. The most interesting result concénasshear force distribution. Linear increasing
functions from the top to the bottom of the builgliare obtained in case of bracings with equal
height, as shown in Fig. 6a (note that the contisume represent the sum of the contributions of
the two external bracings). On the contrary, angfrdiscontinuity with a cuspidal point at the top
level of the lowest bracing is predicted when d#fe heights are considered (see Fig. 6b). Such a
jump in the shear distribution is due to the asdionpf floor slabs undeformable in their planes.
It is worth noting that this result, also confirmbg finite element analyses, is in disagreement
with those obtained in [10] for infinitely stiffdbrs. Finally, the ratio between the maximum value
of the shear force and that acting at the groundllas a function of the difference in height
among the considered bracings is plotted in Fig.A&cit can be seen, for difference in height
greater than 25% the maximum shear force is nibteagiround level, as usually expected.

5 CONCLUSIONS

The numerical algorithm for the lateral loadingtdisition between the elements of a three
dimensional civil structure [3], extended in thisper by introducing thin-walled bracing elements
with open cross-section, can be employed to prettiiet gross structural deformations of tall
buildings with different structural typologies, .i.,eomposed of any kind of bracings (frames,



framed walls, shear-walls and closed and/or opémviialled cores and tubes). The general
formulation pesented in this paper offers, compdoed detailed FE simulation, ease of use and
reduced effort in preparing the model, as well msthie result interpretation, with sufficient
accuracy in the preliminary and conceptual desigwes In addition, such a global approach
provides a clear picture of the key structural paters governing the tall building behaviour.
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Figure 6: Shear force distributions in case of imgEwith equal height (a); and different height

(b). Ratio between maximum and ground shear foyoeabying the difference in height among
bracings (c).
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