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SUMMARY. The paper describes a procedure for the reliability analysis of frame structures with 
respect to the buckling limit state under the assumption that the structural parameters and 
imperfections are uncertain and modeled as random variables. The procedure relies on a Response 
Surface Method adopting simple ratio of polynomials without cross-terms as performance function. 
Such a relationship approximates analytically the dependence between the buckling load and the 
basic variables furnishing a limit state function which is very close to the exact one when a proper 
experimental design is adopted. In this way a Monte Carlo Simulation applied to the response 
surface leads to a good approximation with low computational effort. Some numerical examples 
show the accuracy and effectiveness of the method, for different values of probability failure. 

1 INTRODUCTION 

The sensitivity of buckling load to structural parameters and imperfections has long been 
investigated in structural design, assessing that probabilistic considerations are unavoidable when 
stability problems are of concern. In this context, the reliability theory [1] is a powerful tool for the 
rational treatment of uncertainties and for the evaluation of structural safety with respect to the 
buckling limit state. Many investigations on the role of uncertainties on structural stability have 
addressed the effects of random initial geometric imperfections [2-4], whereas only a few studies 
considered the effects of uncertain material properties on the buckling load [5-7]. Perturbation 
methods or crude Monte Carlo simulations are usually employed to estimate probabilistic 
information on the uncertain buckling load. However, perturbation-based methods furnish 
unsatisfactory approximation of the Probability Density Function (PDF) of the buckling load, in 
particular a lack of accuracy is encountered at the tails of the distribution, whereas crude Monte 
Carlo simulations are computationally expensive for evaluation of small probabilities of failure. 
Consequently, both methods give good approximations for the mean value and the coefficient of 
variation of the random buckling load, but they are not very effective for a reliability analysis. 

Aim of the Probabilistic Buckling Analysis (PBA) is the evaluation of the Conditional 
Probability of Buckling (CPB), that is the probability of buckling of the structural system for 
assigned value of the acting loads, and it is equivalent to the Cumulative Distribution Function of 
the random buckling load [8]. The focus of the PBA is mainly to very small failure probabilities, 
which are the most crucial for this kind of analysis, in view of real world engineering applications. 

In this paper the PBA is solved within the classical framework of the structural reliability 



analysis. The evaluation of the failure probability with respect to the buckling ultimate limit state 
of frame structures is of concern. The reliability analysis has been performed by a Response 
Surface Method (RSM), which adopts as a performance function a Ratio of Polynomials Surface 
(RPS), previously proposed for linear and non-linear [9, 10] static analysis of structures with 
uncertain parameters. The RPS has been successfully applied also in the analysis of dynamical 
systems [11] and for the evaluation of the explicit inverse of stiffness matrices [12]. 

Recently it has been shown that the RPS is effective also in the context of the PBA of perfect 
structures [13-15]. In fact it furnishes a good fit of the actual implicit limit state function by 
performing a saturated design (where the number of experimental designs coincides with the 
number of unknown coefficients). The proposed RPS with 2 1n   unknown coefficients, n  being 
the number of basic variables, performs better than a classical quadratic polynomial without cross-
terms, which requires the same number of experiments. The favorable property may be explained 
by the capability of the proposed ratio of polynomials to fit the analytical structure of the actual 
implicit buckling limit state, as in detail described in [15]. 

However, practical engineering structures have inevitable small structural imperfections which 
are inherent in their manufacturing. Generally these imperfections have only a mild effect on the 
structural response, however there are certain cases in which the structural response is strongly 
modified. This is the case of the so called imperfection-sensitive structures, namely thin shells, but 
also some types of rings, frames and arches. In these kind of structures, the randomness of the 
elastic parameters and of the imperfections may bear different behaviors of the structural systems, 
and the distinction between symmetric stable, symmetric unstable and asymmetric post-buckling 
response is lost. As a consequence, also the buckling load may be strongly affected by the 
uncertainties of the structural parameters and of the imperfections. It is known that in this kind of 
structural systems the buckling load, for assigned realization of the basic random variables, cannot 
be evaluated as an eigenvalue problem, but a full nonlinear analysis must be performed. However, 
it is possible to see that the RPS and the proposed experimental plan described in [15] for perfect 
structures fits well also the limit state equation relative to imperfection-sensitive structures, as it 
will be described in the following in this paper and validated by the presented numerical 
experimentations.  

The proposed Limit State Function (LSF) can be employed for PBA in conjunction with First 
and Second Order Reliability Method (FORM and SORM) or Monte Carlo Simulation (MCS) to 
estimate failure probability. In the first case, the RPS is employed for detecting the design points 
(FORM) and for evaluating the curvature of the limit state at these points (SORM). If, as usual, 
one is mainly interested in the evaluation of the very small probabilities, several design points can 
be detected. Numerical experiments have shown that the estimated design points are quite close to 
the exact ones. The probability of failure is evaluated by standard FORM/SORM if a single design 
point is present otherwise it may be necessary to apply a Multi-Point FORM/SORM [16]. The 
union of the events, each related to a design point, generally allows to determine good 
approximations of the failure probability also in the critical range of very small probabilities.  

When MCS is applied, one exploits the approximate performance function to get experiments 
with extremely low computational cost. The accuracy of the results depends on how well the 
approximate response surface fits the exact implicit one on the neighborhood of the design points. 
Since the analytical structure of the limit state surface of the RPS is close to the target one, if used 
with the MCS it gives quite accurate results also if the principal point of the RPS does not coincide 
with the global design point. Consequently, it does not require the coordinate transformation 
toward the standard normal space and experiments can be conducted in the original space. So 
operating, correlation distortions related to probabilistic transformations are not introduced. 



The paper is organized as follows. At first, the PBA is presented in the framework of structural 
reliability analysis, then the RPS together with the proposed experimental plan is described. 
Finally, some simple numerical examples show the accuracy and the effectiveness of the proposed 
procedure. 

2 PROBABILISTIC BUCKLING ANALYSIS 
The problem of stability of a discrete or discretized elastic structural system is of concern. The 

potential energy is defined as [17] U W   , where U  is the elastic strain energy and W  is the 
work of loads. The loading may in general be considered to change as a function of a control 
parameter  . Let 1 2, , , nq q q    be small variations of the n  generalized displacements from 
the equilibrium state assumed to occur at constant  . Assume that   is a smooth function, 
developing a Taylor series expansion around the equilibrium state 2       , where 
 , 2   are the first and the second variation of the potential energy, that is 
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The conditions of equilibrium are 0  for any iq , or 0iq    for each i. According 
to the Lagrange-Dirichel theorem, the equilibrium state is stable for those values of   for which 

2 0   , for any iq , jq . In compact matrix form it can be written as 1
2 0T  q K q  for any 

 q 0 , where K  is the tangent stiffness matrix, defined as 2
ij i jK q q    ,and that must be 

positive definite. At the limit of stability, the second variation ceases to be positive definite, which 
implies   0Det K . 

Each element ijK  of the stiffness matrix, without loss of generality, can be defined as a sum of 

individual stiffnesses , 1, 2, ,ik  i N  , that is  1 qr
ij qK k  , where qr  is an exponent related 

to the stiffness qk , giving a positive or negative contribute to the stiffness ijK . Let us keep the 
fundamental hypotheses of the classical buckling analysis, but assume that the N  stiffnesses ik , 
are uncertain. Let us consider now the N  fluctuations 1 2, , , N    (collected in an N  vector 

α ) of the uncertain stiffnesses with respect to their mean value ik , that is  1i i ik k   ; i  are 
random variables with zero mean, while their standard deviation give the coefficient of variation 
of the random parameters ik . Let us assume that M  random imperfection parameters 

1 2, , , M    are present and collected in an M  vector ζ . The set of the N M  basic variables 
is then given as  ,α ζ . The critical load  ,  α ζ  is the derived random variable,   is the 
load parameter. The aim of the PBA is the evaluation of the Conditional Probability of Buckling 
(CPB),  fP  , that is the probability that buckling occurs for assigned value   of the acting 
loads 

 
    ,fP Prob     α ζ  (1) 

 
In the structural reliability theory, the probability of failure with respect to a given limit state 
 , ; 0G  α ζ  is given as 
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where  ,fαζ α ζ  is the joint pdf of the basic variables ,α ζ  and the last equality has been obtained 
using the definition of conditional probability. If we define the random quantity 

 , ; 0q=Prob G   α ζ ζ  then the probability of failure can be estimated as the sample mean of 
q  
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where sN  is the number of samples of the imperfection parameters. In the last equality of eq.(3) it 
is underlined that the k  th sample kq  is the failure probability of the structural system when the 
basic variables are only the random structural parameters, while the imperfections are fixed. For 
this reason, in the following, it will be analyzed in detail the evaluation of the conditional 
probability for assigned values of   and ζ ,    , ;fP Prob     ζ α ζ , given as 
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where  fα α  denotes the joint probability density function of α , and    ; , ;G    α ζ α ζ . 
The evaluation of the multidimensional integral appearing in Eq.(4) over the failure set is a 
cumbersome task, for this reason several approximation methods have been developed. As 
described in the introduction, a particular type of Response Surface Method (RSM) has been here 
adopted, and it will be presented in detail in section 3. 

3 RESPONSE SURFACE METHOD BASED ON RATIO OF POLYNOMIALS 

The basic idea of the RSM is to replace the original implicit limit state function  ; ,G α ζ  by a 

simple and approximate explicit function  Ĝ α , named Response Surface (RS), whose values can 
be easily computed [18, 19]. Once that the surrogate model is built, it is no longer necessary to run 
demanding usually non-linear analyses. The failure probability in Eq.(4) is strictly related to the 
limit state equation  ; , 0G  α ζ  which defines the bounds of the integration. Therefore it is 

necessary that the RS  Ĝ α  approximates this boundary quite well, in fact a small deviation of 

 Ĝ α  from the target limit state function  ; ,G α ζ  in this region can lead to significant 
estimation errors. To obtain a well approximated response surface it is most important to obtain 
sampling points very close to or exactly on the limit state surface  ; , 0G  α ζ . Therefore, a 
really effective response surface should fit as better as possible the limit state surface 
 ; , 0G  α ζ , and have the same sign of the limit state function  ; ,G α ζ .  



3.1 The Response Surface based on Ratio of Polynomials 
The proposed Response Surface is based on Ratio of Polynomials (RPS) and it is defined as 
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where  0

ˆa G 0 , ia  and ib , 1, 2, ,i N   are the 2 1N   coefficients of the RPS to be 
determined. The RPS has many desirable properties, in fact several numerical applications have 
shown that it is not very sensitive to the choice of the central point, and it guarantees good 
accuracy and stability. It is worth noting that the coefficients to be determined are functions of the 
parameters   and ζ , that is  0 0 ,a a  ζ ,  ,i ia a  ζ ,  ,i ib b  ζ ; moreover, geometrical 
consideration imply 0ia  , 0ib  , i ia b , for further details see [15]. Using Eq.(5), it is seen 
that the RPS gives an N -order polynomial approximation of the limit state equation, that is 

 ˆ 0G α  can be expressed as 
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The second summation in the above equation is extended to all the combinations such that 

1 Nk k s   , with s  ranging from zero to the degree N  of the polynomial and 1 2, , , Nk k k  
which can assume only the values “0” and “1”, while the coefficients  0ˆ ,c  ζ  and  

1
ˆ ,

Nk kc  ζ  

depend upon the specific buckling problem; the number totn  of the coefficients increases with the 
number of uncertain parameters N . For clarity’s sake, let us consider the case 3N  , Eq.(6) gives 
 
  1 2 3 0 100 1 010 2 001 3 110 1 2 101 1 3 011 2 3 111 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , + 0G c c c c c c c c                       (7) 

 
where the ˆtotn  approximated coefficients depend upon the 2 1N   parameters of the RPS, that is 

 
1 2 1 2 0ˆ ˆ , ,

N Nk k k k k k i ic c a a b  .  

3.2 Choice and determination of the support points of the RPS 
It has been previously underlined that in order the RPS to give an accurate solution of the PBA the 
following issues should be of concern: i) a good fit of the exact limit state function must be 
assured, as a consequence the 2 1N   support points of the RPS required for a saturated design 
have to be located around the limit state; ii) the exact and approximate performance functions must 
have the same sign. 
The tasks are accomplished detecting for each uncertain parameter i  two values ( )

i
  and ( )

i
  

such that the actual performance function  ; ,G α ζ  at the points     {0 0}T
i i
 α   , 

   {0 0}T
i i
 α    will have the signs  ( ) ; , 0,iG  α ζ   ( ) ; , 0iG  α ζ  and the 

distance ( ) ( )
i i i       should be as small as possible. The points  

i
α  and  

i
α  play the role of 



the first 2N  support points and can be located by numerical techniques devoted to find the zero of 
a function of a single variable  ( ) 0,0, , , ,0; ,i ig G   ζ  . Let say that the function has to be 

evaluated at iN  points in order to detect the zero and locate points  
i
α  and  

i
α . A crucial point 

for obtaining a good approximation of the CPB is given from the choice of the remaining support 
point, here called “principal point” of the experimental plan. The best choice is obviously 
represented by the design point. 

The RPS allows an efficient and quick evaluation of the design point. In fact, as a first step a 
tentative principal point (0)α  is chosen, and a first RPS is built. The last support point (0)α  has to 
be at the limit state so that  (0) ; , 0G  α ζ , and for example it can been chosen equidistant from 

all the axes, namely (0) (0) (0) , α χ where    0 1 {1 1 1}TNχ  . The last support point is 

obtained as the zero of  (0) (0)G  χ , function of the variable (0) .  

Once that the 2 1N   support points (0)α ,  
i
α  and  

i
α  have been determined the 2 1N   

coefficients 0 , ,i ia a b  of the RPS at the first iteration are obtained as the only solution of the 
following non-linear system 
 
               0ˆ ˆ ˆ0, ; , , ; ,i i i iG    G G    G G      α α α ζ α α ζ  (8) 

 
which satisfies the constraint 0, 0i ia b  . The RPS at the first iteration gives already a good 
approximation of the actual performance function so that first iteration design point *(0)α  
determined on the RPS will be very close to the target one *α  and very close to the exact limit 
state. The first iteration design *(0)α  is obtained by a classical FORM method applied to the RPS, 
which does not require the numerical gradient evaluation, because the first derivatives of the RPS 
are known in closed form. The RPS may be further improved by a second iteration where the 
principal point is set along the radial direction pointing to *(0)α , obtaining so (1)α . The new 
coefficients 0 , ,i ia a b  are given by the feasible solution of the nonlinear system in Eq.(8) with the 

first equation substituted by  (1)ˆ 0G α . Numerical investigations have shown that the second 

iteration design *(1)α  converges almost exactly toward the exact MPP *α  in the space of the basic 
variables, guaranteeing in this way a very good approximation of the target CPB. The accuracy of 
the RPS is not very sensitive to the choice of the principal point (as long as it stays on the limit 
state). This is why good results are also obtained at the first iteration. 

3.3 Buckling Reliability approaches applied to the RPS  
In this section the classical structural reliability analysis techniques are exploited in conjunction to 
the proposed RPS. At first the support points  

i
α  and  

i
α  are determined by sampling the true 

performance function 
  ; ,G α ζ . 

Then, a tentative principal point (0)α  is assumed and the first iteration RPS  ( 0 )

Ĝα α  is obtained 

along with its design point *(0)α . Eventually a second iteration is performed which furnishes a 
more accurate RPS  (1)

Ĝα α , around the limit state region, and the design point *(1)α .  



The FORM approximation for the failure probability is given by   ,
ˆ

f FORMP    , where 

ˆ ˆ  y  is the reliability index. For improving FORM solution, it is possible to use SORM. Note 
that also the second-order numerical derivatives are not required, because they are known in 
closed form. Anyway, the RPS shows its effectiveness especially when applied together with 
MCS, due to low computational effort related to samples evaluation by its explicit expression.  

4 NUMERICAL APPLICATIONS 
In this section two numerical applications are presented in order to show the effectiveness of the 
proposed procedure. In the first one a perfect beam with two random springs is considered, and the 
buckling bifurcation is analyzed. The second application refers to a discrete Roorda’s frame, 
where asymmetric bifurcation is exhibited. 

4.1 Perfect beam with two random springs 
Let us consider an articulated beam with two random springs subjected to a compressive load P  
(Figure 1a). The two springs are modeled by the random variables  1 1 11k k    and 

 2 2 21k k   , where 1k  and 2k  represent their mean values, while 1  and 2  are the 
fluctuations, assumed to have a normal distribution with mean value 

1 2
0     and standard 

deviation 
1 2

0.20    . For this kind of problem, the second-order theory can be used giving 

rise to 2 2 2 21 1
2 1 1 2 2 1 1 22 2 2( ) ( )PLk k           . Taking account of 2

ij i jK q q     , the 
elements of the tangent stiffness matrix are 11 1 2K k k    , 12 2K k  , 22 2K k   , where it 
has assumed 1P  , 1L  . It is seen that the elements of K  linearly depend upon 1 2, ,k k   and 
then also upon 1 2, ,   . The limit state equation is then 

1 2 1 2 1 22 3 1 0              2 . In the following analyses the CPB  fP   is 

evaluated assuming 1 2 1k k  , i.e. with reference to a nominal structure ( 1 2 0   ) having a 

buckling load (3 5) 2E    . In a first reliability analysis it has been chosen the load factor 

1 0.5 E     and the basic variables are assumed uncorrelated. The “exact” failure probability 
32.39 10fP    is obtained by a crude MCS with 1’000’000 samples. The target reliability index 

1 2.8599  , evaluated by the HL-RF algorithm is related to the design point 
*
0 { 0.571 0.034}T  α . FORM gives 32.118 10fP    with a relative error of 11.45% . The 

first iteration RPS is represented in Fig.1b. Note that, although the exact and approximate limit 
state functions  G   and    (0 )ˆ ˆG G αα α , respectively, are quite different, the exact and 

approximate limit state,   0G   and  ˆ 0G α , practically coincide, thick lines of Fig.1b. In 
this simple case with 2N  , the limit state surface is accurately reproduced by a first iteration 
RPS so that a second iteration is not needed. 
This issue is confirmed by the MCS applied to the first iteration RPS, adopting the same sampling 
points utilized to evaluate the target failure probability, which gives 32.386 10fP    with a 
relative error of 0.29% . In Fig.1b the exact and approximate limit state are plotted in the original 
space of the basic variables. In the figure the design point and the principal point are evidenced. It 



is worth underlining that the RPS describes an explicit relationship between the performance 
function and the basic variables, which does not depend upon degree of correlation of the 
uncertain parameters, their coefficient of variation, or the underlying probability distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (a) Perfect beam with two random springs, (b) : Exact and approximate limit state 
function for 0.5 E   
 

Let us now assume that 1  and 2  are correlated, with correlation coefficient  . In the 
original space, the limit state functions for the two cases (uncorrelated and correlated) will be the 
same and only the design point will change. On the other hand, in the standard normal space both 
the limit state and the design point depend upon the correlation coefficient. As already stated, in 
the range of the very small probabilities ( 4 510 10  ) multiple design points may be present which 
contribute to the overall failure probability. The effectiveness of the RPS is not affected by the 
value of the failure probability neither by the presence of multiple design points. In fact for, 

2 0.30 E     and 0  , the “exact” failure probability obtained by a crude MCS with 710  
samples is 58.851 10fP   . The target reliability index (with reference to the global design point) 

is 1 3.7794  , and the design point has coordinates * { 0.756 0.0130}T  α . The FORM gives 
57.860 10fP    with a relative error of 11.20% . The error increases with respect to the case 

1 0.5 E     because the contribution of the local design point on the failure probability, which 
is missed by FORM, is not negligible. The MCS applied on the first iteration RPS gives a failure 
probability of 58.94 10fP    with a relative error of 0.99% .  

4.2 L-shaped Rigid-bar frame (Roorda’s frame) 
Let us consider an L-shaped frame modeled with two random springs joining two rigid segments, 
such that the column is subjected to a compressive load P  (Figure 2a). The two springs are 
modeled by the random variables  1 1 11k k    and  2 2 21k k   , where 1k  and 2k  represent 
their mean values, while 1  and 2  are the fluctuations, assumed to have a normal distribution 
with mean value 

1 2
0     and standard deviation 

1 2
0.20    . It is known that this kind 

of frame exhibits asymmetric bifurcation, which implies that it may be imperfection-sensitive, and 
then it is necessary to consider the fourth-order approximation of the potential energy 
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Lk k P           . The equilibrium condition reads as 0iq   , 

which implies  1 2, ; ,k k    ,   being a nonlinear function of 1 2, , ,k k   . The stiffness 

matrix becomes  2
1 2 26 2K k k k          where it has been assumed 1P  , 1H  , 1L  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 2: (a) L-shaped frame with two random springs, (b) Exact and approximate limit state for 

0.50 , 0.05E     , 
 
In the following analyses the CPB  fP   is evaluated assuming 1 2 1k k  , i.e. with reference to 
a nominal structure ( 1 2 0   ) having a buckling load 5E   . In a sample reliability 
analysis it has been chosen the load factor 1 0.5 E    , 0.05    and the basic variables are 
assumed uncorrelated. The “exact” failure probability 22.78 10fP    is obtained by a crude MCS 
with 100’000 samples. The target reliability index 1 1.9877  , is related to the design point 

*
0 { 0.372 0.139}T  α . FORM gives 22.34 10fP    with a relative error of 15.91% . In Fig. 

2b is shown that the approximated limit state surface fits quite well the target limit state surface. 
The accuracy of the approximation is also validated by the MCS applied to the RPS, which gives 

22.72 10fP    with a relative error of 2.23% . For design purposes, the proposed method should 
be applied for different values of the load parameter   and the imperfection parameter  . It is 
noted that the computational effort is not excessive, since that only a reduced number of full 
nonlinear analyses are required.  

5 CONCLUSIONS 
A novel Response Surface method suitable for the evaluation of the Probabilistic Buckling 
Analysis has been presented. It is used as a reproduction of the target limit state function, indeed 
the MCS applied to the RS gives very good approximation of the exact failure probability. Further 
numerical experimentation has to be developed, in order to assess the effectiveness and robustness 
of the proposed procedure as applied to more complicated structures. 
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