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SUMMARY. We present a general method for the static analysis of a monodimensional pre-
stressed continuum under external loads, using the virtual work principle.

In the classic continuum mechanics ([1],[2]) internal virtual work is the product of a stress,
which is linear in the displacement, and a virtual strain, which is linear in the virtual displacement.
A similar term is added when the continuum is prestressed. This term comes from a second order
congruence and it is the product of a constant prestress and a virtual strain which is linear both in
the displacement and in the virtual displacement. A typical second order strain is the elongation
ε caused, in a cable, by transversal dispalcement u ([3]). The relation between stress and strain is
ε = 1

2u
′2.

Boundary forces caused by prestress are defined through integration by parts in the expression of
the principle of virtual work.

If we consider higher order terms in the expression of σ, we obtain nonlinear equations between
load and displacement. In case of small prestress, some terms in these nonlinear equations can be
neglected.

Two examples of this general approach are exposed: the classical compressed Eulero-Bernoulli
beam, and a model of cable with transversal, axial and torsional loads and displacements.

1 INTRODUCTION
The static analysis of monodimensional continuums is one of the main branch of mechanics. It

provides practical tools for studying the behaviour of tridimensional objects where one dimension is
more important than the other two, such as beams or cables.

The approach used in this article is variational. The proposed method is completely generalized,
and contemplates these steps:

• Definition of a reference configuration, to which we refer our analysis. This allows us not to
confuse the initial configuration with the deformed one, and to adopt only one model of the
structure.

• Definition of the kinematic variables displacements and strains, and a second order relation,
called congruence, between them. Even if we do not contemplate finite displacements, this
second order relation may describe postcritical behaviour of unstable structures.

• Definition of parameters (constitutive law and prestress)

• Application of virtual work principle to obtain addictional relations, such as the equilibrium,
between applied forces, displacements, stress and strain.
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Even if the structure is stable, non linear analysis can be done to obtain a more precise model.
This non linear analysis, under certain conditions, may be simplified by neglecting some terms in
the resulting equations.

2 MATHEMATICAL VARIABLES
We define a monodimensional continuum as an interval [0;L] ⊂ R. A point in this interval is

denoted by the variable s ∈ [0;L].
In this interval we define the following functions:

• The generalized displacement vector d

• The generalized applied force vector f , of same dimension of d

• The generalized strain vector ε

• The generalized stress vector σ, of same dimension of ε.

We also define the vectors boundary force φ and boundary displacement δ, both defined in
{0;L}. Exact definition will be given later.

3 CONGRUENCE
The congruence is a relation between displacement and strain. We suppose that the strain is the

sum of two terms.
The first term is linear in the displacement d and its derivates until a finite order, and it’s written

as ∑
j,k

Cijk
∂j−1

∂sj−1
dk (1)

The second term is quadratic:∑
j,k,p,q

1
2
Sijkpq

(
∂j−1

∂sj−1
dk

)(
∂p−1

∂sp−1
dq

)
(2)

We can suppose that S is symmetric in {jk}, {pq}, so that Sijkpq = Sipqjk. If they are
different we can replace them with their arithmetic mean.

Defining the operator

∂ =


1

∂/∂s
∂2/∂s2

...
∂n/∂sn

 (3)

we can write, using Einstein convention,

εi = Cijk ∂jdk +
1
2
Sijkpq(∂jdk)(∂pdq) (4)

or, more simply,
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ε = C ∂d +
1
2
S ∂d ∂d (5)

Indicating with an underscore a virtual quantity, we write the expression of the virtual strain

ε = C ∂d +
1
2
S ∂d∂d +

1
2
S ∂d∂d = C ∂d + S ∂d∂d (6)

We have used the assumption that S is symmetric to obtain the last equation.
Tensors C and S can depend on s: for example, if the continuum represents a curved line in

space, they may depend on the geometrical curvature and torsion of the line.

4 CONSTITUTIVE LAW
The constitutive law is a relation between stress and strain. We suppose this relation linear in ε.

σ = σπ + H(s)ε (7)

In the last equation H is a square positive symmetric matrix, while σπ is a state of stress with
ε = 0. If there is equilibrium with f = d = 0 and φ = 0, σπ is called selfstress. We always suppose
that σπ is a selfstress.

5 VIRTUAL WORK PRINCIPLE
If f(s) and g(s) are functions [0;L] → R, we have (omitting the differential ds for simplicity,

and denoting with an apex the operator d/ds) the integration by parts rule:

−
∫ L

0

f ′ g + |f g|L0 =
∫ L

0

f g′ (8)

A generalization of this rule to derivate of n-th order is

(−1)n
∫ L

0

f (n) g +

∣∣∣∣∣
n−1∑
i=0

(−1)if (i) g(n−1−i)

∣∣∣∣∣
L

0

=
∫ L

0

f g(n) (9)

The practical aim of this rule, here, is to ’move’ the differential operator from g to f . In doing
this we must add boundary terms.

The virtual work principle states that a configuration is in equilibrium if and only if the virtual
external work is equal to the virtual internal work, for all admissible virtual displacements. This
means we have ∫ L

0

(fπ + f) · d + |(φπ + φ) · δ|L0 =
∫ L

0

σ · ε ∀d (10)

In the last equation the external and the boundary forces has been expressed as a sum of initial
prestress forces (with the apex π) and other forces. Prestress forces are present also in the reference
configuration, when f = d = 0.

Substituting eqn (5), (6) and (7) in (10) we obtain

∫ L

0

(fπ + f) · d + |(φπ + φ) · δ|L0 =
∫ L

0

(σπ + HC∂d +
1
2
HS ∂d∂d) · (C∂d + S ∂d∂d)

(11)
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By putting f = d = 0 and φ = 0:∫ L

0

fπ · d + |φπ · δ|L0 =
∫ L

0

σπ · C∂d (12)

Defining the matrix

W[d]jk = σi(C + S ∂d)ijk − (σπC )jk
= (σπ + HC∂d + 1

2HS ∂d∂d)i(C + S ∂d)ijk − (σπC )jk
(13)

and substituting eqn(12) and (13) in (11) we have:∫ L

0

f · d + |φ · δ|L0 =
∫ L

0

W∂d (14)

Rule (9) applied to the second member of the last yelds∫ L

0

W∂d =
∫ L

0

(∂∗W) · d + |(Z ∂̂∗W) · (∂̂d)|L0 (15)

where the operator ∂̂ is obtained from ∂ removing the higher order differential operator. ∂∗ and
∂̂∗ are obtained respectively from ∂ and ∂̂ changing the sign of odd order operators:

∂̂ =


1
∂
∂s
...

∂(n−1)

∂s(n−1)

 ; ∂∗ =


1
− ∂
∂s
...

(−1)n ∂n

∂sn

 ; ∂̂∗ =


1
− ∂
∂s
...

(−1)n−1 ∂(n−1)

∂s(n−1)

 (16)

The tensor Z = Zijk is a third order n× (n+ 1)× n tensor defined as{
Zijk = 1 if ∂

∂s ∂̂i∂̂k = ∂j ( i.e. i+ k = j )
Zijk = 0 elsewhere

(17)

Since eqn (14) holds for all d, we obtain the equilibrium

fi = ∂∗jWji (18)

Boundary terms, as expressed in (15), are a matrix of forces

Fij = Zihk∂̂
∗
kWhj (19)

and a matrix of displacements

Dij = ∂̂idj (20)

We can define vectors φ and δ by linking columns of F and D respectively, to obtain boundary
terms as vectors.

Usually C and S have only a few non-null terms, so we can neglect boundary forces wich are
always equal to 0. We can also multiply these vectors by observing that if the product of the two
matrices QφQδ is the identity matrix and if

4



{
φ̃ = QT

φφ

δ̃ = Qδδ
(21)

then φ̃ · δ̃ = φ · δ.

6 ANALYSIS OF THE CONTINUUM
6.1 Selfstressability

Integration by parts of eqn (12) gives the selfstressability condition

fπk = ∂∗j (σ
π
i Cijk) (22)

and the boundary selfstress terms

Fπij = Zihk∂̂
∗
k(σ

π
l Clhj) (23)

6.2 Mechanisms
If a displacement dm is such that

C∂dm = 0 (24)

then dm is called mechanism. If we have also S ∂dm ∂dm 6= 0 then dm is an infinitesimal
mechanism. This definition is analogous to the definition of (infinitesimal) mechanism for a pin-
jointed assembly [4].

The set of all mechanisms dm is a linear subspace of all displacements d.

6.3 Linear analysis
In the expression of W of eqn (13) we can neglect nonlinear terms in ∂d. From the equilibrium

(18) we can write the differential linear equation:

f = ∂∗((HC∂d)C + σπS ∂d) (25)

Expliciting indexes:

fk = ∂∗j ((Hii′Ci′j′k′∂j′dk′)Cijk + σπi Sij′k′jk∂j′dk′) (26)

Force f is the sum of two terms. The first classical term is linear in H, the second is indipendent
from H and linear in the selfstress σπ . Both terms are linear in d.

If d = dm is an infinitesimal mechanism, it cannot be stiffened by the classical term, but it
can be stiffened by selfstress. It is important to notice that, while the classical stiffness is always
positive, prestress stiffness may be negative and may cause instability, expecially in the subspace of
mechanisms.

Constitutive matrix H depends on the Young modulus of the material, which is bigger than the
yield tension and selfstress. This means that, usually, the selfstress stiffness is smaller than the
classic one. This statement, however, depends on the actual configuration of the continuum, and
also on L.
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6.4 Nonlinear analysis
Similar analisys can be done considering all five terms in the expression of W:

W = HC∂d C (A)
+ σπ S ∂d (B)
+ HC∂d S ∂d (C)
+ 1

2HS ∂d∂d C (D)
+ 1

2HS ∂d∂d S ∂d (E)

(27)

Terms (C-D) are quadratic in the displacement, while term (E) is cubic. Quadratic terms, as we
are going to explain, can sometimes be neglected. The basic idea is to do a linear analysis for small
non-mechanisms, and nonlinear only for the subspace of mechanisms.

If |H−1σπ| � 1, it will also be, for a general f � 1, d ' dm. We will however suppose d� 1.
Constraining the displacement with the condition d = dm, we obtain

W∂dm = σπ S ∂dm ∂dm (B)
+ 1

2HS ∂dm∂dm S ∂dm ∂dm (E) (28)

This constrain is used only to calculate the displacement in the space of mechanisms. Also, we
suppose that dm from eqn(28) is not 0. Integration by parts leads to{

f = ∂∗(W[dm] + σλC )
C∂dm = 0 (29)

The stress σλ is a reactive stress, which arises from the constrain d = dm. It has the significance
of a Lagrange multiplier.

Once calculated dm (if calculable) as an approximation of d in the subspace of mechanisms, we
replace eqn(27) with

W[d̃] = HC∂(d̃ + dm) C (A)
+ σπ S ∂(d̃ + dm) (B)
+ HC∂(d̃ + dm) S ∂(d̃ + dm) (C)
+ 1

2HS ∂(d̃ + dm)∂(d̃ + dm) C (D)
+ 1

2HS ∂(d̃ + dm)∂(d̃ + dm) S ∂(d̃ + dm) (E)

(30)

We can approximate last equation considering only linear terms in d̃. Thus we can find d '
dm + d̃ by the equilibrium (18). By doing this we can neglect the part of d̃ which is a mechanism,
since dm 6= 0 is already a good approximation of d in the space of mechanisms.

6.5 Change of variable
Sometimes is convenient to refer our model to a continuum with unit length. To do so, we have

to replace all integrals
∫ L
0

with integrals
∫ 1

0
. The differential ds is replaced by Ldx, where x = s/L.

We also have to replace the operator ∂ with L∂x, where L is a diagonal matrix with Lii = L1−i,
and ∂x = [1; ∂/∂x; . . . ; ∂n/∂xn]T . Similar substitutions are made on ∂̂, ∂∗, and ∂̂∗

7 EXAMPLES
For further references on examples (7.1) see [2]. Further references for the behaviour of a sus-

pended cable (7.2) can be found, for example, in [5] and [6]. A precise model of a cable, expecially
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under torsional sollecitations, is being developed for an accurate determination of the universal grav-
itational constant, as well as for other precise measurements [7].

7.1 Bernoulli compressed beam
In this classic examples we consider a continuum in which there is only one kind of displacement,

the transversal displacement u.

d = [u] (31)

The dual force of u is the transversal load q.
Strain is a vector of size two. Its components are the elongation ε1 = e and the classic curvature

ε2 = χ. Dual variables are normal force N = Nπ + EAe and bending moment M = EJχ (we
suppose that there is no prebending).

ε =
[
e
χ

]
=
[

1/2 u′2

u′′

]
(32)

The elongation term is a second order strain. It’s physical meaning can be understood by observ-
ing Fig.1.

Figure 1: Second order elongation

The elongation of the element is (
√

ds2 + du2 − ds)/ds ' (1/2)u′2. Thus we can set:

C231 = 1
S12121 = 1
C = 0 ; S = 0 elsewhere

(33)

Size of tensors C and S are respectively 2× 3× 1 and 2× (3× 1)2.
Using eqn (25) and supposing H constant, we obtain the linear equation

EJuIV −Nπu′′ = q (34)

If prestress is low, the beam has a behaviour similar to the classic beam. However, if, for example,
q = 0 and −Nπ > (π/L)2EJ we have to consider higher order terms of W to make a nonlinear
postbuckling analysis, since the structure is unstable.
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Classic boundary force are momentM and shear−M ′. Prestress causes an addictional boundary
force Nπu′ which does work for u (thus is a shear). Physical interpretation is in Fig.2

Figure 2: Prestress shear

7.2 Nonlinear behaviour of a cable
In the symplified mathematical model of a planar cable presented here there are three displace-

ment: transversal displacement (u), parallel to the axis displacement (v), and rotation (φ) of the
section of the cable along its axis. Dual forces are respectively q, p, and c.

We suppose the section circular and constant. Strains are the elongation of the cable e = v′ +
1
2u
′2 + 1

2
J0
A φ
′2 (J0, for a circular section, is the polar and torsional inertia) and the twist θ = φ′.

The normal force is N = Nπ + k(v′ + 1
2u
′2 + 1

2
J0
A φ
′2), where k = EA is the axial stiffness,

which we suppose constant. Supposing Tπ = 0, the torsion is expressed by T = GJ0φ
′ = gθ. We

set as boundary conditions u(0) = u(L) = 0, v(0) = v(L) = 0 and φ(0) = φ(L) = 0. See Fig.3.

Figure 3: Load and displacement of a cable

The justification of the term 1
2
J0
A φ
′2 is in [8]. See also Fig.4.

The elongation of a fiber at distance r from the center is 1
2φ
′2r2. Integrating in the section of the

cable, we obtain the average elongation due to twist as 1
2
J0
A φ
′2.
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Figure 4: Nonlinear elongation due to torsion

Hence we have:

d = [u; v;φ]T

ε = [e; θ]T

σ = [N ;T ]T

f = [q; p; c]T ;

(35)

Tensors C and S , of size 2× 2× 3 and 2× (2× 3)2, have non-null terms

C122 = C223 = S12121 = 1 ; S12323 = J0/A (36)

Mechanisms are all transversal displacements dm = [u; 0; 0]. Orthogonal space is the set of all
displacements dK = [0; v;φ].

Defining j = J0/A, the expression W∂d is

W∂d = (Nπu′ + kv′u′ + 1
2ku

′3 + 1
2kjφ

′2u′) u′

+ (kv′ + 1
2ku

′2 + 1
2kjφ

′2) v′

+ (gφ′ +Nπjφ′ + kjv′φ′ + 1
2kju

′2φ′ + 1
2kj

2φ′3) φ′
(37)

Integrating by parts the expression of virtual work principle we obtain q = −(Nπu′ + kv′u′ + 1
2ku

′3 + 1
2kjφ

′2u′)′

p = −(kv′ + 1
2ku

′2 + 1
2kjφ

′2)′

c = −(gφ′ +Nπjφ′ + kjv′φ′ + 1
2kju

′2φ′ + 1
2kj

2φ′3)′
(38)

This non linear system is coupled in u,v and φ. While calculating u from eqn (38-a), we can
neglect terms with v and φ. In eqn(38-b,c) we can neglect non linear terms in v and φ: q = −(Nπu′ + 1

2ku
′3)′

p = −(kv′ + 1
2ku

′2)′

c = −(gφ′ +Nπjφ′ + 1
2kju

′2φ′)′
(39)

The first equation is non linear in u, while second and third equation, once known u, is linear in
v and φ.

Notice that prestress Nπ , if positive, gives linear stiffness to transversal displacement, and also
increases linear torsional stiffness.
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8 CONCLUSIONS
A general third order analytical theory for the static and kinematic analysis of a prestressed

monodimensional continuum has been proposed. Further work will concern a similar description of
its dynamical behaviour.

The layout of the differential equations which describe the continuum are completely determined
when tensors C and S are defined. Qualitative and quantitative behavior is determined by parame-
ters H and σπ .

A tensor concerning inertial terms will be defined for dynamical analysis, and a parameter to
describe the viscous damping.

The mathematical enviroment proposed has been developed in the optic of an easy numerical
implementation.
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