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SUMMARY. In the framework of classical Plasticity, even when limit multipliers and collapse 
mechanisms associated to different loads independently acting on a solid or structure are known, 
no much can be inferred on the limit multiplier of the combined loading. With the aim of some 
new theorems developed to this purpose, a few examples are presented and discussed. 

1 INTRODUCTION 
An important aspect of structural analysis, especially for ultimate safety assessment or design, 

consists in evaluating the maximum load that a structure can sustain. This is at the heart of many 
structural codes and the earthquake which has recently shaken the central regions of Italy, 
wrecking homes and causing a considerable death toll, is just the most recent example of the 
utmost importance of a reliable evaluation of the collapse load in many structural engineering 
problems.  

An attempt to find a sort of superposition principle has been recently done by Puzrin and 
Randholph [1] with reference to particular yield criteria and in the framework of upper bound limit 
analysis. They investigated the implications of combining two arbitrary kinematically admissible 
velocity fields and showed that, under certain conditions, a sort of superposition can be applied 
and produces the upper bound limiting value for the surface traction of the combined mechanism. 
Nonetheless the applicability of their results is limited by the strict assumptions at the base of the 
treatment. 

Frame structures under the action of dead loads and seismic forces, soil-foundation interaction 
problems, tunnels under a variety of loads, deepwater pipelines subject to bending and pressure, 
constitute a few selected examples for which some sort of superposition rule would result 
extremely useful. In all these cases bounding techniques can be extremely helpful. From a purely 
engineering standpoint, lower bounds to the limit carrying capacity generally result more relevant 
than upper bounds, since in many practical applications safety factors are needed. However, upper 
bounds may be employed to estimate the inaccuracy with respect to the actual limit  multiplier.  

This said, on the sole basis of the tools of the classical theory of limit analysis and making 
resort to a set of inequalities, the present paper exploits a new set of theorems for bounding limit 
multipliers for combined loads [2] to present and discuss a few examples showing their practical 
value. 

 



2 LIMIT MULTIPLIER BOUNDS FOR COMBINED LOADS 
As stated before, in the present work some new theorems which can yield relevant bounds on 

the overall limit multiplier in case of combined loading (Figure 1) will be employed. 
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 Figure 1: An elastic-plastic body subject to simple and combined loading. 

 
On the basis of the findings in [2], it is possible to summarise all the procedures to bound the 

limit multiplier in case of combined loads, showing their practical value. The presentation is 
restricted, for the sake of clarity, to the case of two different loadings but it can be directly 
extended to the case of n loadings. ranging from a minimum knowledge about the critical state of 
the particular loading to a reasonable guess of the kinematics of the problem under combined loads, 
more and more refined bounds for the overall limit multiplier can be derived, as summarised in 
Table 1. 
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Table 1:  Safety and overload multipliers for the combined loading,. Without loss of 

generality, it is assumed: 1 2λ λ≤ . 
 



3 EXAMPLES 
Two examples showing the actual value of the new theorems in engineering problems are 

presented and discussed in this section. The examples are chosen in order to present quantitative 
estimates of the actual carrying capacity of common structural problems. 

3.1 Frame structure under the action of combined horizontal and vertical point loads. 
With reference to the Figure 2, the frame structure can be subject to two different loading 

conditions, that is a horizontal force  , a vertical force   and a combined loading given by both the 
previous forces exerted on the structure at the same time. 
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Figure 2:  Frame structure under the action of vertical, horizontal and combined point loads 

conditions (top) and relative critical mechanisms (bottom). 
 

The positions of possible plastic hinges can be immediately located and, therefore, all the 
collapse mechanisms are known (Massonet and  Save, 1980). Thus, the following limit multipliers 
are obtained 
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where pl

YM Wσ=  is the plastic moment, Yσ  is the yield stress and  is the plastic 
section modulus of the cross section, which is assumed the same for all the elements. Theorem 2 
gives the following lower bound, 

plW

Lλ , for the combined loading limit multiplier, λ+ , 
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The inequality (2) can be trivially verified since 4 3tan 0, [0, / 2[β β π+ > ∀ ∈ . 
Making reference to the collapse mechanisms illustrated in Figure 2, it is also immediate to 

recognise that the mutual dissipation is positive, 



 

 0 0 0 00, tan 0
2V V H H
LH u H L V u Vϑ ϑ× = × > × = × >β  (3) 

 
where Vu  and Hu  denote the velocity fields at the critical states associated with the vertical 

and horizontal point loads, respectively, and ϑ  is the corresponding angular velocity. As a 
consequence, the upper bound , Uλ , for the combined limit multiplier, λ+ , is  
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3.2 Limit carrying capacity of an elliptical cross section subject to combined bending. 
Figure 3 shows the elliptical cross section of a cylinder subject to combined bending 

. a  and b  are the main semi-diameters along the principal axes 0 0
1 2[ , ]TM M=M a≥ 1 2{ , }x x .   
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Figure 3:  Elliptical cross section of a beam subject to biaxial bending. 

 
By assuming that, within the cross section, the evolution of the normal stress from the purely 

elastic to the fully plastic state yields a bi-rectangular distribution of the yield stress Yσ , with a 



discontinuity around the neutral axis 
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the plastic bending can be easily computed by taking into account the static moments of the 

regions delimited by the neutral axis [3]. Indeed, after some algebraic calculations, it is easy to 
obtain 
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Thus, the corresponding plastic multipliers are defined as follows 
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A lower bound, Lλ  , for the limit multiplier of the combined loading, λ+ , can be obtained by 

writing the inequality 
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Then, substitution of equation (8) into equation (9) gives 
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which is trivially satisfied if the physically manifest hypotheses  and 0

1 0M > tan 0ϕ >  are 
assumed to hold true. 

The mutual dissipation written in terms of generalized stresses (bending moments 0
iM ) and 

generalised plastic strains (rate of plastic curvatures jχ ) , gives 
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Thus, the most accurate upper bound Uλ  is given by 
 

 1

1 2

2

, 0 tan
min{ , }

, tan
U

a
b
a
b

λ ϕ
λ λ λ λ

λ ϕ
+

⎧ < <⎪⎪≤ = = ⎨
⎪ >
⎪⎩

 (12) 



4 CONCLUSIONS 
The work has presented examples of application of some new theorems which yield relevant 
bounds on the overall limit multiplier in case of combined loads. The results can be regarded as a 
sort of rule of superposition of the load multipliers in classical limit analysis. The findings have 
been shown to be useful in cases of combined loading.  
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