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SUMMARY. We study the possibility of axially periodic toroidal twist-like bifurcations for an 
isotropic compressible elastic tube subject to an annular shear fundamental deformation. We 
propose a procedure for the determination of the critical load corresponding to such bifurcations. 

1 INTRODUCTION 
In [1] we investigated the possibility for an isotropic elastic solid to support bifurcating periodic 

displacements induced by shear stress which are reminiscent of the planar Couette sinusoidal 
instability pattern observed in the flow of viscous fluids (cf. [2]). Specifically, we studied the 
planar case of an infinitely long block of generalized Blatz-Ko material confined between, and 
attached to, parallel plates which are subject to a relative shear displacement. Our bifurcation 
analysis allowed us to determine a critical value of the applied shearing strain which corresponds 
to the occurrence of the planar Couette instability.  

The analysis developed in [1] represents a precursor to the problem of the annular shear 
between two concentric cylinders, which is the subject of the present paper. Here, we draw on the 
classical Taylor-Couette axially periodic cellular instability pattern observed in the laminar 
shearing flow of a viscous fluid confined between two concentric cylinders, each rotating with 
different angular velocity (cf. [3]).  

To model the analogous for solids of this instability, we consider an isotropic compressible 
elastic tube whose strain energy is defined by a function of the second and the third principal 
invariants of the left Cauchy-Green strain tensor. We prescribe a relative annular shear at the inner 
and outer boundaries of the tube, and assume that the axisymmetric annular shear deformation is 
the fundamental equilibrium solution. Then, in order to analyze the possibility of bifurcating 
solutions from a pure annular shear to an axially periodic toroidal twist-like deformation, we 
restrict the study of the linearized equilibrium equations to the class of axisymmetric incremental 
periodic displacements defined by three unknown functions of the radial coordinate and with a 
periodic dependence on the axial coordinate.  

The differential problem coming out from this bifurcation analysis is studied by employing 
some results from the ordinary differential equations theory (cf. [4]). In particular, we obtain a 
bifurcation condition which allows us to determine the critical value of the loading parameter 
during an annular shear loading process. Finally, we briefly describe a procedure to perform the 
bifurcation analysis, and apply this procedure in a numerical example. 

 
Remark: We inform the reader that the present study on the compressible elastic tube is 
preliminary to case of the incompressible elastic tube, which we mentioned in the AIMETA 2009 
extended summary. 



2 THE PURE ANNULAR SHEAR EQUILIBRIUM SOLUTION 
Let C  denote the natural reference configuration of a homogeneous, isotropic, compressible, 

hyperelastic tube in a cylindrical coordinate system with orthonormal basis {ER, EΘ, EZ}:  
 
 ( ){ }1 2  R, , Z   R   R  R ,   0    2 ,   0  Z  H≡ Θ < < ≤ Θ < π < <C ; (1) 

 
the boundary of C  is divided into two disjoint parts: 
 

 
( ){ }

( ){ }
1 1 2

2

  R, , Z     R = R  or R ,

  R, , Z     Z = 0 or H .

∂ ≡ Θ ∈

∂ ≡ Θ ∈

C C

C C
 (2) 

 
The deformation 
 
 ( ) ( ):      =   f X x f X f∈ ∈C C  (3) 
 
is assumed to be a smooth function which satisfies the standard requirement of being a 
homeomorphism and the orientation-preserving condition ( )det  > 0,F X  where ( ) ( ):F X f X= ∇  
is the deformation gradient. We consider the following class C2 strain energy function: 
 
 ( ) ( ) ( )1 2W  := 2 II + 1  + III ,B BF α ψ  (4) 
 
where  
 

 ( )( )2T 21:  , II  :  tr tr , III  :  det ,
2B BB F F B B B= = − =  (5) 

 
0α ≠ is a material parameter and ψ is a smooth scalar function. The motivation of the choice (4) 

for the stored energy function will be justified in the following. For the constitutive class (4), the 
Piola-Kirchhoff stress tensor takes the form 
 
 ( ) ( ) ( ) ( ) ( ) ( )1 2 -T: DW = 2 II + 1 I   + 2 ' III  det  ,B B BS F F F BF B F−= α − ψ  (6) 
 
where I  : tr B B= and ψ ' is the first derivative ψ; the Cauchy stress tensor T(F) is consequently 
given by 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2T 2= det  = 2 II + 1 det I   + 2 ' III  det  ,B B BT F B S F B B B B I− − −α − ψ  (7) 

 
where I is the second order identity tensor. Because C  is a natural reference configuration, the 
condition ( )T I O=  yields 
 
 ( )' 1 .ψ = −α  (8) 



Furthermore, in view of (4)-(8), the elasticity tensor at the origin may be written as 
 
 ( ) ( ) ( ) ( ) = 2  + 4 '' 1 3  ,I I I I I⎡ ⎤α ψ − α ⊗⎣ ⎦C 
  (9) 

 
where the symbols 
  and ⊗  denote, respectively, the tensor products ( ) T = A L C ACL
  and 
( ) ( ) = ,A L C C L A⊗ ⋅ defined for each ,  ,  Lin.A L C∈ (9) allows to write the classical 
requirements of positive definiteness and strong ellipticity for ( )IC  as follows: 
 

 ( ) 7
12

'' 1   ,     0,ψ > α α >  (10) 

 ( ) 1
4

'' 1   ,     0.ψ > α α >  (11) 

 
Notice that the material parameter α corresponds to the shear modulus at the origin. 

We assume that the inner cylinder is kept fixed, whereas the outer is subject to a rotating 
displacement; on the bases of C  only tangential displacements are admitted by applying normal 
tractions. This leads to the following mixed boundary-value problem: 

 
 ( )Div  = in ,S F 0 C  (12) 

 
( )( )

( )( ) ( )( )

1

1

12

2

0          at R = R
 = 

0    at R = R on ,
 =  = 0  at R = R ,  R

Θ

⎧
− ⋅ ⎨λ >⎩

− ⋅

∂

− ⋅R Z

f X X E

f X X E f X X E
C  (13) 

 ( )( ) ( )( ) 2= 0,   = on .f X X E S F E E 0Ζ Ζ Ζ× ∂− ⋅ C  (14) 

 
A major aim of the present paper is that of exploring the possibility of adjacent bifurcating 

fields superposed upon a primary equilibrium pure annular shear ( )x f X=  deformation, which 
maps the material point (R, Θ, Z) to  

 
 ( )r R,        R ,      z Z= θ = Θ + ω = , (15) 
 
where ω is a C1 function satisfying  
 
 ( ) ( )1 1 2 2R r 0,      R r .ω = = ω = = λ  (16) 

 
We easily check that the displacement boundary conditions (13) and (14)1 are satisfied. By (15), 
the deformation gradient F  is found to be  
 
 r R R zr  F e E e E e E e Eθ θ Θ Ζ′= ⊗ + ω ⊗ + ⊗ + ⊗ , (17) 
 
where ′ω  is the derivative of ω with respect to r and {er, eθ, ez} is the cylindrical orthonormal 
basis in the current configuration. In particular, (17) shows that (15) is a isochoric deformation, i.e., 
 



 ( )1 2
det det 1F B= = ; (18) 

 
thus, by (6), (17) and (5), the traction boundary condition (14)2 is trivially satisfied too.  

It remains to study the equilibrium field equation (12). By following a result obtained in [5], it 
is possible to show that for the choice (4) of the strain energy function, the pure annular shear (15) 
is a universal deformation. In particular, by (6), (17), (5) and (18), the three ordinary differential 
equations for ω coming out from (12) reduce to one, which yields 

 

 ( ) 4
1 2r ArcCot 4 C r 1  + C⎛ ⎞ω = − −⎜ ⎟

⎝ ⎠
; (19) 

 
then, by (16) we get 
 

 ( )
( )4 4 4 2 2 2 21 2 1 2 2 1

2 4 4 2
1 2 2

r r r 2 r  r  cos r  cos rr ArcCot 1  + ArcCot
sin  r  r sin   r

⎛ ⎞+ − λ ⎛ ⎞⎜ ⎟ λ −
ω = − − ⎜ ⎟⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠⎜ ⎟

⎝ ⎠

, (20) 

 
where, according to the boundary condition (16)2, the loading parameter λ > 0 cannot be chosen 
arbitrarily, but it must be bounded above: 
 

 4 4
2 10,  ArcCot r  r 1

2
−π⎤ ⎤⎛ ⎞λ ∈ − −⎜ ⎟⎥ ⎥⎝ ⎠⎦ ⎦

. (21) 

 
In the following we assume that f  given by (15), (20) and (21) is the “fundamental” 

equilibrium field; in the next Section, we analyze the possibility of bifurcations from f which 
satisfy the adjacent equilibrium equations based upon (12)-(14). 

3 THE INCREMENTAL BOUNDARY-VALUE PROBLEM 
We are now interested in additional non-zero solutions of (12)-(14), which bifurcate from f as 

the loading parameter λ increases. Such incremental solutions must satisfy the adjacent 
equilibrium equations and the incremental boundary conditions, here obtained by linearizing (12)-
(14) around the fundamental deformation ( )x f X= , which is conveniently assumed as the 
independent variable: 
 
 ( )( )[ ]( )div grad   in ,r, uF 0=λA C  (22) 

 1  on ,u 0 ∂= C  (23) 

 ( )( )[ ] 2= 0, grad  = on r, .Ζ Ζ Ζ⋅ ×λ ∂u e u e 0F eA C  (24) 

 
In (22)-(24) ( ) 3:u x →C  represents an incremental displacement field, “div” and “grad” are the 
divergence and gradient operators with respect to x, respectively, and A  is the fourth-order 
instantaneous elasticity tensor (see (18)): 
 



 ( )( )[ ] ( )( ) ( ) ( )2 Tr, r, :  D W   r ,          L, r, i  n.H H F F HF F ⎡ ⎤= ∀λ λ ∈λ λ⎣ ⎦A  (25) 

 
Notice that (22)-(24) are written in C , 1∂ C and 2∂ C  because the pure annular shear f maps C , 

1∂ C and 2∂ C  into themselves.  
For the constitutive class (4), it follows from (25), (17), (5) and (18) that 
 

 

( )( )[ ] ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( )

1 22

T 2

3 22 T2 2

grad   2 4 r 2 grad grad  

               grad grad  grad 

              2 4 r grad grad 

  

r, 

            2 1

 u B u B B I u B

B u B u B B u B

B I B u B u B I

F

B B

−

−

⎡′= α + ω ⋅ + ⋅⎣

⎤− − − ⎥⎦

⎡ ⎤ ⎡ ⎤′− α + ω ⋅ ⋅ − ⋅ ⋅ −⎣ ⎦⎢ ⎥⎣ ⎦

′+ ψ

λA

( )( ) ( ) ( ) ( )( )T2 grad grad 4 1 grad ,I u I u I u I⎡ ⎤ ⎡ ⎤′′⋅ − + ψ ⋅⎣ ⎦⎢ ⎥⎣ ⎦

 (26) 

 
where  

 

 ( ) ( )( )2
r r r r z zr  1+ r  B e e e e e e + e e e eθ θ θ θ′ ′= ⊗ + ω ⊗ + ⊗ ω ⊗ + ⊗ . (27) 

 

4 TAYLOR-LIKE BIFURCATIONS 
Consider now a class of adjacent displacement fields which are reminiscent of certain 

instability patterns that are observed in the classical Taylor-Couette shear flow of viscous fluids. In 
particular, we focus our attention on the class A  of  periodic displacements u defined by 

 

 
( ) ( ) ( )

( ) ( )

3
1 2 3

1 2

r z:  u v r cos  z,   u v r cos  z,   u v r sin  z,
 : ,

n ,   n 0,  1,  2,..,     r r       
H

u

u u 0

θ⎧ ⎫→ = κ = κ = κ
⎪ ⎪= ⎨ ⎬π

κ = = = =⎪ ⎪⎩ ⎭

A
C

�  (28) 

 
where ru , uθ  and zu  are the components of u in the coordinate system (r, θ, z), and 1v , 2v  and 

3v  are smooth functions from [ ]1 2r ,  r  to . Notice that (28) models the occurrence of an axially 
periodic cellular pattern in the gap between the inner and outer cylinders (n represents the number 
of possibly forming cells in the axial direction); in particular, inside each of the n possible forming 
cells, (28) describes a twist-like displacement perpendicular to the eθ - direction of primary 
annular shear, so that the vector lines of the incremental displacement u are similar to the 
streamlines of the twisting Taylor-like effects for fluids. Moreover, the choice (28) allows to 
reduce the set of partial differential adjacent equilibrium equations to three ordinary differential 
equations for the functions v1 (r), v2 (r) and v3 (r). In the following, we will drop the dependence of 
v1 (r), v2 (r) and v3 (r) on r. 

The displacement boundary conditions (23) and (24)1 and the traction boundary condition (24)2  



(whose checking has been omitted for the sake of brevity) are trivially satisfied by each u ∈A . 
For what concerns the determination of the left hand side of (22), we now outline the main steps 
and give only the final result.  

By (28), we may decompose grad u as follows: 
 

 ( ) ( )grad cos  z  sin  r z r ,= κ + κu L J  (29) 
 

where  
 

 
( )

( )

-1 -1
1 r r 2 r 2 r 1 3 z z

1 r z 2 z 3 z r

r v v  r v  v  r   v ,

r  v  v v ,

θ θ θ θ

θ

′ ′= ⊗ − ⊗ + ⊗ ⊗ + κ ⊗

′= −κ ⊗ − κ ⊗ + ⊗

L e e e e e e + e e  e e

J e e e e  e e
 (30) 

 
(in (30), and henceforth, a prime denotes the derivative with respect to r; moreover, in order to 
lighten the notation, we do not explicitly indicate the dependence on the parameter κ introduced in 
(28)). Thus, we have 
 

 
( )( )[ ]( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
z

z

div grad  cos  z div  

                                            sin 

r, r, r r, r

r, z div  ,r r, r

⎡ ⎤= κ + κ ⎣ ⎦

⎡ ⎤+ κ

⎡ ⎤λ λ λ⎣ ⎦

⎡ ⎤λ λ⎣ ⎦ − κ ⎣ ⎦

F F F

F F

u L J e

J L e

A A A

A A
 (31) 

 
so that, after some calculation, equations (22), (23) lead to the following boundary value problem: 
 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

T
1 2

1 2

r, r, r, r, r, r, , r r r

r r ,

P v P R R v R Q v 0      

v v 0

⎧ ′′ ′ ′ ′λ + λ + λ − λ + λ + λ = < <⎪
⎨
⎪ = =⎩

 (32) 

 
where 

 
 ( )1 2 3v ,  v: ,,  vv =  (33) 

 
and ( )r, P λ , ( )r, R λ  and ( )r, Q λ are matrices determined by the components the fourth-order 
tensor A  calculated in the coordinate system (r, θ, z): 
 

 ( )
rrrr rr r

rrr r r

zrzr

r A r A 0

r, r A r A 0 ,

0 0 r A

P

θ

θ θ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (34) 



 ( )
rr rrr rrzz

r rr rzz

zrrz zr z

A A  r A

r, A A  r A ,

 r A  r A 0

R

θθ θ

θ θθ θ θ θ

θ

− κ⎛ ⎞
⎜ ⎟
⎜ ⎟λ = − κ
⎜ ⎟
⎜ ⎟−κ −κ⎝ ⎠

 (35) 

 ( )

2 2
rzrz r rz z zz

2 2
r zrz r r z z r zz

2
zz zzr zzzz

1 1 A r A  A r A  A
r r

1 1r,  A r A  A r A  A
r r

 A  A r A

Q

θθθθ θθ θ θ θθ

θθθ θ θ θ θ θ θ

θθ θ

⎛ ⎞− − κ − κ −κ⎜ ⎟
⎜ ⎟
⎜ ⎟

λ = − κ − − κ κ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−κ κ −κ⎜ ⎟
⎝ ⎠

. (36) 

 
Here, we do not report the explicit expression of the components of A , which may be obtained 

by (26), (27) and (20). We only observe that ( )r, P λ  and ( )r, Q λ  are symmetric, since A  is 
symmetric; moreover, it is easy to check that ( )r, P λ  is always invertible.  

This property of ( )r, P λ  plays a crucial role in the analysis of the solutions of the three 
homogeneous linear second order ordinary differential equation (32)1. Indeed, a common practice 
to examine the existence of solutions of problems of the form (32) is that of transforming the set of 
three linear second order ordinary differential equations into a system of six linear first order 
ordinary differential equations, for which well known existence theorems and procedures for 
constructing the solutions are available in the literature.  

Following this approach, we first rewrite (32) as below: 
 

 
( ) ( )

1 2

1 2

, r r r

r r ,

′′ ′= − − < <⎧⎪
⎨

= =⎪⎩

v Tv Kv       

v v 0
 (37) 

 
where the 3 x 3 matrices 
 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

1 T

: r, r, r, 

: r, r, r, r, 

−

−

⎧ ′= λ λ + λ
⎪
⎨
⎪ ′= λ λ + λ − λ
⎩

T P R Q

K P P R R
 (38) 

 
depend continuously on r, λ and κ.  

We consider now λ and κ fixed. By introducing 
 

 ( )
( ) ( )

: ,          r : ,
r r

⎛ ⎞⎧ ⎫⎪ ⎪ ⎜ ⎟= =⎨ ⎬ ⎜ ⎟− −′⎪ ⎪⎩ ⎭ ⎝ ⎠

O Iv
y A

T Kv
 (39) 

 
where O is the second order null tensor, we immediately check that (37)1 is equivalent to the 
following set of six linear ordinary differential equations: 
 



 ( ) 1 2r , for r r r .′ = < <y A y       (40) 
 
For what concerns the boundary conditions, we introduce the following 6 x 6 matrices: 

 : ,          : ,
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

I O O O
M N

O O I O
 (41) 

 
so that the six boundary conditions (37)2 are equivalent to 

 
 ( ) ( )1 2r r .− =My Ny 0  (42) 
 
Finally, we may rewrite (37) as follows: 

 

 
( )

( ) ( )
1 2

1 2

r , for r r r

r r .

′⎧ = < <⎪
⎨

− =⎪⎩

y A y      

My Ny 0
 (43) 

 
Let 

 

 ( )
( ) ( )
( ) ( )

1 2

1 2

r r
r

r r

⎛ ⎞
⎜ ⎟=
⎜ ⎟′ ′⎝ ⎠

U U
Y

U U
 (44) 

 
be the transition matrix for (43), i.e. a fundamental matrix for (43)1 such that 

 

 ( ) ( ) ( ) ( )1 1r r r ,       r .
⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

I O
y Y y Y

O I
 (45) 

 
Recall that a fundamental matrix satisfies 

 
 ( ) ( ) 1 2det r 0, r , r r r .′≠ = < <Y Y A Y  (46) 
 

Now, by using a result of ODE theory (see [4, §12, Lemma 1.1]), we infer that, in the current 
case, necessary and sufficient condition for (43) to have nontrivial solutions is that 

 
 ( ) ( )1 2det r r 0,⎡ ⎤− =⎣ ⎦MY NY  (47) 

 
which, by (41), (44) and (45), is equivalent to 

 
 ( )2 2det r 0.=U  (48) 
 
Notice that the determination of the matrix ( )2 rU  also allows for explicit representation of 



nontrivial solutions; indeed, in view of (45)1, (39)1, (44) and (37)2, we obtain 
 

 ( ) ( ) ( )2 1r r r .′=v U v  (49) 
 
In order to determine ( )2 rU , we may solve the Cauchy problem 
 

 

( ) ( ) ( )

( )

1 2

1

r r r , for r r r

,
r

′⎧ = < <
⎪⎪
⎨ ⎛ ⎞

⎜ ⎟=⎪
⎜ ⎟⎪ ⎝ ⎠⎩

Y A Y       

I O
Y

O I

 (50) 

 
whose unique solution is 

 
 ( ) ( ) ( )1r r r ,=Y D Y  (51) 
 
where  

 

 ( )
( ) ( )
( ) ( )

( )
1

r1 2

r3 4

r r
r exp  d .

r r

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= = ρ ρ

⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

∫
D D

D A
D D

 (52) 

 
Thus, in view of (44), (50)2 and (51), we finally have 

 
 ( ) ( )2 2r r .=U D  (53) 

 

5 A NUMERICAL EXAMPLE 
We now have enough tools for investigating on the possibility of twist-like bifurcating 

solutions of the form (28), which may occur during an annular shear loading process for an elastic 
tube belonging to the constitutive class (4). 

To this aim, given the geometry of the tube (i.e., the inner an outer radii R1, R2 and the height 
H) and the material parameters α and ( ) ,'' 1ψ we found efficient the numerical procedure 
described below: 

- fix the number n of possibly forming cells in the axial direction, which is equivalent to 
fixing κ (see (28)); 

- fix the value of the loading parameter λ; 
- compute the matrices (34), (35) and (36); 
- determine the 6 x 6 matrix A(r) defined by (39)2; 
- determine the 6 x 6 matrix D(r) defined by (52); 
- determine the 3 x 3 matrix U2(r) given by (53); 
- compute the determinant of U2(r2), i.e. the left hand side term of (48).  

For fixed n, this procedure should be repeated by increasing at each step the loading parameter λ 
starting from 0, until the condition (48) is satisfied for the first time: we define critical value λcr of 



the shearing strain the first value of λ which satisfies the condition (48). Observe that λcr, if exists, 
must be compatible to condition (21). 

We now show explicit calculations by assigning the material parameter α = ( )'' 1ψ  = 1 MPa, 
and by considering a tube of dimensions H = R1 = 1 m; in particular, we seek bifurcating solutions 
with n = 2 cells in the axial direction, and varying the ratio R2/R1 in the range [1.1, 2.0]. In figure 1 
we report the critical shearing strain λcr vs. the ratio R2/R1. 

 

  
 Figure 1: λcr vs. R2/R1, for α = ( )'' 1ψ  = 1 MPa, H = R1 = 1 m and n = 2. 
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