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SUMMARY. To solve the problem of vehicle-bridge dynamic interaction in time domain, the 
Authors proposed an uncoupled formulation of the equations of motion, that retains a sufficient 
generality in modelling the subsystems, and includes the effects of the pavement roughness. Based 
on this formulation, two iterative procedures were developed and coded, differing in the iteration 
scheme. The first one analyses separately the two sub-systems over the whole time history (WTH) 
and relies on a general purpose FE code for the structure. The second one analyses the two sub-
systems at the same time and within the same code. Iteration is performed on each single time step 
(STS), according to a predictor-corrector scheme implemented in an ad-hoc code. Aim of this 
work is to investigate the stability properties of the iterative numerical methods, according to 
classical techniques: a general stability condition for procedure WTH is obtained, and then 
analysed more in detail for the case of a beam travelled by an oscillator. The analytical results 
obtained in the 2D case suggest the detection of an instability example for the 3D procedure, that 
is anyway outside of the range of interest of the model parameters. Preliminary studies show that 
the stability condition for procedure STS could present similar properties. 

1 INTRODUCTION 
The formulation of the equations of motion for the coupled system was derived in [1], under the 

following assumptions: (a) the bridge is modelled by a finite element model; (b) the vehicle moves 
at a constant horizontal velocity along a straight trajectory on the bridge; (c) the contact forces are 
vertical; (d) a bilateral point-wise contact is considered and (e) a constraint condition between the 
moving contact points and the nodes of the bridge mesh is imposed by making use of proper shape 
functions. The equations consider in a relatively simple way the pavement roughness and are not 
restricted to any particular modelling of both bridge and vehicle.  

An uncoupled formulation of these equations was also proposed therein and two iterative 
procedures, were developed [1,2], differing in the numerical integration scheme. The first one 
analyses separately the two sub-systems over the whole time history (WTH) and relies on a 
general purpose FE code for the structure. The second one, that could be extended more easily to 
the case of non-linear subsystems, analyses the bridge and the vehicle conjointly within the same 
ad-hoc developed code. At each single time step (STS) a predictor-corrector scheme moves from 
vehicle to bridge and back to vehicle. A direct comparison of their performance in a selected case-
study was presented in [2].  

In the following, the coupled formulation and its uncoupling are briefly recalled in Section 2; 
the two iterative procedures are presented in Section 3. Section 4 describes the stability condition 



for procedure WTH. Section 5 considers the case of an undamped beam travelled by an undamped 
oscillator and analyses its stability. Section 6 presents some numerical tests of the WTH procedure 
applied to a 3D model. A few conclusions are finally drawn.  

2 THE EQUATIONS OF MOTION AND THEIR DECOUPLING 
The coupled equations with reference to a FE discretisation were derived [1] for a vehicle 

travelling at constant speed c along a straight trajectory parallel to the bridge longitudinal axis, 
under the above mentioned assumptions. Since perfect contact is assumed between the vehicle and 
the bridge, the displacement and velocity of each contact point in the vehicle are written as a 
function of displacement, velocity and roughness at the corresponding point of the bridge. To this 
aim, the vector of the displacements and rotations of the bridge FE model is partitioned as [qb

T qc
T], 

to separate the DOFs qc of the nodes that will be directly loaded by the travelling vehicle from the 
remaining ones qb. At the generic instant t, the contact points are not on a node of the bridge mesh 
and their displacements qcb are determined as a function of qc, making use of a proper shape 
function matrix N. A similar partitioning can be performed on the vehicle DOFs [qcv

T qv
T] to 

separate the vertical displacements of the vehicle contact points qcv, from the remaining DOFs qv. 
At instant t the vehicle contact points occupy the positions x(t) on the bridge, where the roughness 
profile has values r(x(t)). The constraint condition between vehicle and bridge, in terms of 
displacements, is thus written as:  

 
 qcv= r(x(t))+ qcb = r(x(t))+N(x(t)) qc(t) (1) 

 
Deriving (1) with respect to time, denoting with a dot the total time derivative and with a prime the 
spatial derivative, the vertical velocity of the vehicle contact points is:  

 
 cccv qNqNrq &&&& ++=  with 'NN c=&  and 'rr c=&  (2) 

 
The Lagrange equations were adopted to derive the equations of motion [1]. To analyze the effect 
of the bridge static deflection on the interaction problem, the coordinates q of the coupled system 
are decomposed in the sum of two terms. The first one contains only the bridge static deflection q0; 
the second contains the contribution qd that includes the dynamic coupled response of  both 
systems: 
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Taking into account (3) the equations of motion can be written in terms of the coordinates qd. To 
this aim the static deflection is considered through a modified roughness profile rNqr 0 += c*  
and its time derivative rqNr 0 &&& += c* . The equations of motion are written in compact form as: 

 
 )()()()( ** ttt rrdcdd &&&& QQQqKKqCqM w −−=+++  (4) 

 
In (4) the matrices M, C and K of the coupled system are all symmetric, the mass matrix being 
time independent and the damping C and stiffness K matrices being time-dependent. The matrix K 
derives from the potential energy; Kc is an additional matrix, not symmetric and time dependent, 



deriving from the vehicle dissipation function. Kc vanishes and a symmetric formulation is 
obtained when the tyre damping in the vehicle model is neglected or the third term in (2), 
containing the time derivative of the shape functions, is disregarded. At the RHS of (4), Qw(t) is 
the load vector due to the vehicle weight, while )(* trQ and )(* tr&Q  are the load vectors 
encompassing the effects of the pavement roughness, deriving from the potential energy and the 
dissipation function, respectively. The influence of wheel damping and the roughness effect, that 
is relevant, were analysed in [1] with reference to a given case study and to a roughness profile 
respecting Eurocode prescriptions [3]. 

The uncoupling of the equations takes advantage of the null terms in M, due to the absence of 
coupling in the inertial terms. To consider separately the two subsystems, the terms responsible for 
the lack of symmetry and for the time dependency of the matrices in (4) are moved to the RHS, 
since they contribute to the forcing vectors; adopting the same partition and index notation of (3) 
for the matrices in (4), the equations of motion can be written as:   

 

 





















−
−





















−
−



















−
+

+



















−





















−−−−
−



















−





















+
−−−−

+
−

=



















−





















−−−−
+



















−





















−−−−
+



















−





















−−−−

*

*

*

*

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

,

,

,

,

0

,

,,

,,

,,,

,

,,

,,

,

,,

,,

,

,,

,,

rc

rcN
0

rk

rkN
0

W

0
0

q

q
q

0Nc0

cNNcN0
000

q

q
q

0NcNk0

kNNcNNkN0
000

q

q
q

k00

0kk
0kk

q

q
q

c00

0cc
0cc

q

q
q

m00

0mm
0mm

TT

TTTTT

&

&

&

&

&

&

&

&

&

&

&&

&&

&&

T
vcv

v
cvcv

T
vcv

v
cvcv

v

v

dc

db

T
vcv

vcv
v

cvcv

v

dc

db

T
vcv

T
vcv

vcv
v

cvcv
v

cvcv

v

dc

db

vv

cc
T

cb

cbbb

v

dc

db

vv

cc
T

cb

cbbb

v

dc

db

vv

cc
T

cb

cbbb

(5) 

3 THE ITERATIVE PROCEDURES WTH AND STS 
A block Gauss-Seidel type of iteration is adopted to solve iteratively (5). Iterations are 

performed on the whole time history, as first proposed by Hawk and Ghali [4], in the WTH 
procedure and within the single time step in the STS procedure. As a preliminary step, both 
procedures consider the vehicle approaching the bridge on a rigid pavement having the prescribed 
roughness profile, to simulate the real situation. In fact, it was found in previous studies that the 
numerical solution is sensitive to the vehicle transient due to the initial conditions of motion. 

For the WTH procedure each iteration is extended over the whole time history and is 
subdivided into four macro-steps, covering the determination of the forcing term and the 
numerical integration separately for the two systems. At the j-th iteration, at first the loading term 
for the vehicle is evaluated in (6a), considering the bridge displacements and velocities at the 
previous iteration; then the vehicle equations of motion are integrated in (6b); in (6c) the vehicle 
displacements and velocities determined in (6b) are used, together with the bridge displacements 
and velocities at the previous iteration, to determine the forces acting on the bridge and finally the 
bridge equations of motion are integrated in (6d): 
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At the first iteration the bridge is at rest, thus 0q =0

dc , 0q =0
dc& . It follows that the first 

approximation of vehicle motion in (6a,b) and contact forces in (6c) is obtained considering the 
vehicle travelling on a rigid uneven pavement having the prescribed roughness profile. Thus an 
estimate of the vehicle-bridge dynamic interaction is readily available by comparing the results at 
convergence with the ones obtained after the first iteration. Steps (6a) and (6c) are performed by 
interface programs. Step (6b) is performed by a specific vehicle module, adopting the trapezoidal 
rule for the direct integration; and step (6d) is performed by a multipurpose FE code.  

At the end of step (6c), when j>1, for each wheel i a vector 1−−= j
i

j
i

j
i ffR  is assembled, 

having dimension equal to the number Nt of time steps covering the duration of the passage of the 
wheel on the bridge. The root mean square of the vector j

iR  is assumed as a measure of the error 
on the i-th wheel. The iteration process ends when this quantity is smaller than a fraction λ, which 
is the tolerance specified in input, of the static load Wi acting on each wheel, that is: 

 

 
( )

λ≤=
∑
=

t

tN

l

j
li

i
i N

R

W
err 1

2
,1 ;    i=1,nwheels (7) 

 
If the criterion is not satisfied, the whole sequence (6a-d) is repeated.  

In the STS procedure [2], the interaction between bridge and vehicle is analysed at each time 
step within the numerical integration process. If no iterations are performed, a staggered solution 
is obtained. At the beginning of the time step, the vehicle is moved to its final position. The nodal 
forces Pk,1 at step k, iteration 1, are obtained by keeping unchanged the wheel forces f k-1 at the end 
of previous step and applying them in the new location by updating the shape functions matrix Nk: 

  

 ( ) 11, −= kTkk fNP  (8) 
 

With a proper modification of indices, the following steps can be deduced from (6a-d). The bridge 
response to these forces, computed as in (6d), is the prediction of the actual response. The vehicle 
forcing term is computed as in (6a); the vehicle equations are integrated as in (6b) and a corrected 
value of wheel forces f k,1 is determined as in (6c). For the staggered solution, f k,1 is the base for a 
new computation of (8) at the beginning of the following step, otherwise the unbalanced forces 

)( 11,1, −−=∆ kkk fff are determined and iterations are performed. At the following iterations the 



same steps are repeated adopting an incremental formulation. 
The convergence check is always performed in finite form; for each wheel, the variation of the 

contact force in two subsequent iterations is determined, its ratio with respect to the static wheel 
load is calculated and averaged over the contact points. Such average is compared with a given 
tolerance. 

4 A STABILITY CONDITION FOR PROCEDURE WTH 
A classical stability condition for procedure WTH is sought, under the following assumptions: 

a) the bridge and vehicle equations are integrated with direct step by step methods considering the 
same time step, b) two algorithms of the Newmark family are adopted for the bridge and vehicle, 
which, in principle, could be different, with parameters γv , βv and γp, βp respectively, where 0≤γ≤1 
and 0≤β≤0.5. The integration is performed in Nt time steps of duration ∆t. At iteration j, vector 

jX  collects the state vectors j,nx of the whole time history: 
 

 ( ) ( ) ( ) ( ) 



=

TjtNTjTjTj ,,2,1 . xxxX  (9) 

where, at each time instant tn=n∆t, the state vector j,nx , which is more precisely a permutation of 
the state vector, is given by: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 



=

Tjn
v

Tjn
v

Tjn
dc

Tjn
dc

Tjn
db

Tjn
db

Tjn ,,,,,,, qqqqqqx &&&  (10a) 

 

 ( ) ( ) ( ) 



= +

Tjn
v

Tjn
cb

Tjn ,,, xxx  (10b) 

 
In (10b), jn

v
,x is the state vector of the vehicle. The state vector of the bridge jn

p
,x  is given by a 

permutation of the vector jn
cb

,
+x : 
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To obtain the iteration system, the step sequence (6a-d) is expressed first in matrix form as a 
function of the vectors jn

v
,x and jn

cb
,
+x . Within steps (6b) and (6d) the Newmark integration 

scheme is applied to the vehicle and the bridge. Then the relationships between the state vectors 
are assembled in order to find a relationship between the vectors jX  and 1−jX . As usual for 
stability analyses, the vectors containing known constant terms are dropped; thus the dependence 
on roughness disappears. After lengthy calculations [5], it is found that the iteration system: 
 
 .1 constjj += −TXSX  (12) 
 
is characterized by lower block triangular (block bidiagonal) matrices S and T. With reference to 
partition (9), each subsystem of (12), relative to time  tn, can be written as: 

 



 ( ) ( ) 1,1,11,
1

,11
0

−−−−−− +=−+−− jnnjnnjnnjnn xGxFxHDxED  (13) 
 
where matrices E, H, F, G, are described in detail in [5]. Superscripts n and  n-1 denote that 
matrices are evaluated at times tn and tn-1 respectively. Time dependency is related to the presence 
of the shape functions matrix Nn=N(x(tn)) defined in (1). Matrices E and H are block upper 
triangular with null sub-matrices on the main diagonal, while matrices G and F are block lower 
triangular. Matrices D0 and D1 are block diagonal, with each block related to the Newmark 
integration scheme of the relevant subsystem, that is: 
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where the stability [6] of the two Newmark integration schemes adopted for the bridge and the 
vehicle depends on the properties of matrices D0p ,D1p  and D0v ,D1v , respectively: 
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pp BxDxD += − ,1

0
,

1 ;        v
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vv
jn

pv BxDxD += − ,1
0

,
1  (15a,b) 

 
In (15) vectors Bp and Bv are null in case of free oscillation. First of all, it is checked that the 
stability condition of the time integration schemes within iteration j, derived from (13), coincides 
with that obtained from (15a,b). According to (13), the time integration schemes within iteration j 
are stable if: 

 ( ) ( ) 1)( 1
0

1
1 <





 −−= −− nn EDHDA ρρ ; n=1,..Nt (16) 

 
where ρ denotes the spectral radius. Since matrix A is block upper triangular and contains on the 
main block the diagonal matrices (D1p P)-1 D0p P  and (D1v )-1 D0v respectively, its stability 
condition reduces to the usual ones obtainable from (15a,b), that do not depend on n. 

Then the stability of the block Gauss-Seidel scheme is investigated. The iteration matrix S-1 T 
(12) is block triangular, with diagonal blocks equal to (D1 -Hn )-1Gn, as it can be noticed using (13). 
Thus, the stability condition for the Gauss Seidel scheme, ρ(S-1 T)<1, is equivalent to the 
conditions: 

 ( ) 1
1

1 <




 −

− nn GHDρ ;   n=1,..Nt (17) 

 
If the wheel damping is not modelled or the third term in (2) is disregarded, the explicit 
dependence of the spectral radius on the vehicle velocity vanishes.  

Equation (17) is obtained also, for implicit Newmark methods, when velocities and 
accelerations are expressed as a function of displacements and an iteration matrix is determined 
that relates displacements at iteration j to displacements at iteration j-1, as in steps (6a-d). In this 
case the stability conditions (16) are disregarded. 

5 APPLICATION OF THE STABILITY CONDITION TO A BEAM 
As a first check of the stability condition obtained in the previous Section, a simple case is 

analysed. An undamped beam, describing the bridge and discretised by beam finite elements, is 



travelled by an undamped SDOF oscillator. In the 2D problem only transversal motion needs to be 
considered. The shape functions of the finite elements that are directly loaded are used. A 
consistent mass approach is adopted.  In this case jn

c
jn

p
jn
cb

,,, xxx ==+ , since all the beam 

coordinates belong to the subset “c”. Assuming βp≠0 the stability conditions (17), one for each 
time step, simplify in (see [5] for details): 
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−= nTn

vv
n k NNηM αρρ ;   n=1,..Nt (18) 

 
In (18) kv  is the oscillator stiffness; its natural circular frequency ωv  contributes to the factor 

( )21/1 vvv ϑβα +=  through the parameter  θv=ωv∆t. Matrix ( ) ccpcc t kmη +∆=− 21 /~ β is a 

combination of matrices mcc and kcc, defined in (5), that in this simple case coincide with the beam 
mass and stiffness matrices, respectively. The stability of the Gauss-Seidel iteration does not 
depend on parameters γv and γp of the Newmark integration schemes. 

Taking into account that in the case at study matrix Nn reduces to a row vector (nn)T , it can be 
shown that matrix Mn has only one not null eigenvalue λ, which is real. Since matrices mcc and kcc 
are positive definite, λ= λ1 is negative and the stability conditions (18) simplify in (19a): 

 

 1)( 1 <=−= n
vv

n k ηαλρ M  ;  n=1,..Nt  with  ( ) ( )( ) nTnnTnn nnηnηn ~~ ρη ≤=  (19a,b) 
 

The scalar nη  can be interpreted as a “flexibility coefficient” at the oscillator contact point, where 
the stiffness is incremented by the inertia effect. Considering the Rayleigh quotient properties, 
inequality (19b) follows. 

The simplified stability analysis method recalled at the end of the previous Section, that 
assumes an implicit Newmark method and expresses velocities and accelerations as a function of 
displacements, was applied also to the STS procedure in finite form [5], and in this simple case the 
conditions (18) were again found, that are at least necessary. 

5.1 Beam discretised by Bernoulli beam elements: upper bound for the spectral radius 
The spectral radius of matrix Mn varies as the oscillator moves along the beam. If Bernoulli 

beam elements of length 6≤h  are considered, it can be shown that ( ) 1≤nTn nn . Considering 
(19 a,b) it follows that:  
 )~()( MM ρρ ≤n ;   n=1,..Nt     with ηM ~~

vvkα−=   (20a,b) 
Thus a sufficient condition for stability, that does not depend on n, is 1)~( ≤Mρ  . 

5.2 Simply supported beam: influence of stiffness parameters 
The simple case described in Section 5 is evaluated with respect to a simply supported beam, 

with linear density m, Young’s modulus E, second moment of area J, length l, discretised by 
Bernoulli beam elements of length h. 

The time integration step must be chosen small enough to integrate accurately both the 
oscillator motion and the beam motion and to model correctly the travelling load effect. To this 
purpose we can define: Tv  the oscillator natural period; Ti  the i-th beam natural period, and iT  the 
forcing period acting on the i-th vibration mode due to the travelling force effect, as: 



 
v

vT
ω
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= ;   
EJ
m

i
lTi π2

22
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ic
lTi

2
=  (21 a,b,c) 

 
It is reasonable to assume, in case of a smooth pavement, the following limitations: 
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min iiv TTTt  (22) 

 
In the case of a SDOF oscillator representing a quarter car model travelling along a beam 
modelling a bridge, the mass and stiffness properties of the two subsystems and the vehicle speed 
c are such that ii TT > . Having satisfied (22), it follows that ( ) 11/1835.0 2 ≤+=≤ vvv ϑβα , where 
the lower limit rises up to 0.910 if the trapezoidal rule is adopted for the numerical integration of 
the vehicle motion. The factor vα  has thus little influence on the value of the spectral radius (19). 
Finally, the beam mass and stiffness matrices can be rewritten as: 

 

 cccc
hm mm
420

= ; cccc h
EJ kk 3=  (23) 

 
where, in the matrices ccm and cck , the elements that relate translational accelerations and 
displacements respectively to forces are dimensionless. 

If ∆t=Ti/10 is adopted, assuming βp=0.25 and taking into account (21b) and (23), a relation is 
obtained that, when included in (19), proves that the spectral radius is directly proportional to the 
ratio kv/EJ: 
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p h

EJ
l
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l
hi

t
kmkm 33

2
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2 21
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+=+
∆

π
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 (24) 

 

5.3 Simply supported beam: numerical results 
The stability condition of the WTH procedure is analysed adopting the trapezoidal rule for both 

the oscillator and the beam. Since an unconditionally stable method is chosen for the time 
integration of both subsystems, only the stability condition of the iterative method is relevant. A 
simply supported beam with span l=30.3 m, linear density m=22.615 t m-1, Young’s modulus 
E=2.94x107 kPa, second moment of area J=2.068 m4 is considered. A discretisation with 30 
Bernoulli beam elements corresponds to the 2-D model of the bridge adopted in [1] for procedure 
STS. The SDOF oscillator stiffness kv=1.8x104 kN m-1, and mass mv=40 t, are respectively equal 
to the sum of the suspensions stiffness and to the total mass of the 3D vehicle adopted in [2].  

First of all, assuming h=1.01 m and considering a time step ∆t=0.001 s, the spectral radius (19) 
is evaluated when the oscillator position coincides with a node of the FE model. The spectral 
radius is almost constant along the beam, increases less than 5% towards the beam ends and then 
decreases close to the supports. Further tests showed that the peak position slightly changes when 
the discretisation is varied. 

For this reason in the following analyses the oscillator was placed at the node corresponding to 



the centre of the span (position 1). A second position was chosen, that corresponds to the centre of 
the elements that are the closest ones to the midspan (position 2). The spectral radius (19) was 
compared with its upper bound (20). In Figure 1a, for a time step  ∆t=0.001 s the discretisation 
varies, adopting an even number of beam elements. In Figure 1b the ratio h2/∆t is constant, 
consistently with the Bernoulli beam wave propagation velocity for each bending mode; the space 
and time intervals are equal to h=λk/8 and ∆t=Tk/10 respectively, being λk and Tk  the wavelength 
and natural period of the k-th bending mode. With a constant time increment, the spectral radius at 
positions 1 and 2 tends to a constant value as h diminishes, as expected; the upper bound (20), that 
in this test holds also for 6>h , cannot catch such trend (Fig. 1a). If both ∆t and h diminish 
consistently, the spectral radius decreases proportionally to ∆tα, with α≈1.5. 

 
Figure 1: Spectral radius: a) vs h: upper bound, dotted; position 1, solid: position 2, 
dashed; b) vs ∆t: upper bound, dotted; position 1, solid. 

 
The time integration and discretisation parameters assumed in the analyses performed in [1] and 
[2] lead to a stable procedure in the 2D case. If a time increment  ∆t=0.0003 s is adopted, keeping 
the other parameters unchanged, to reach the stability limit the oscillator stiffness should be 
multiplied by a factor whose order of magnitude is 104. 

6 NUMERICAL TESTS ON THE STABILITY CONDITION OF THE 3D MODEL 
Numerical tests were performed on the 3D FE model of the same bridge, described in [1], in 

order to detect the stability limit of procedure WTH in this application. The upper slab is 
discretised by shell elements, and isoparametric shape functions are adopted to interpolate bridge 
displacements at the contact points and to determine the nodal equivalent forces. Masses are 
discretised by a lumped approach. The bridge motion (6d) is integrated by modal 
superposition.The vehicle is modelled by a 3D, 7-DOF lumped parameter model described in [2]; 
the rigid body modelling the sprung mass is connected to the four wheels of mass mr,i through a 
spring-damper system (of constants ks,i, cs,i) simulating the mechanical properties of the 
suspensions. The wheel masses are connected to the ground through another spring-damper system, 
reproducing the mechanical properties of the tyres (of constants kr,i, cr,i).  

In the tests, kr,i = ks,i =k is assumed, the roughness is present as a triggering factor and a vehicle 
speed equal to 30 ms-1 is considered. In order to perform a comparison with the 2D results, both 
bridge and vehicle damping are disregarded. A time increment ∆t=0.0003 s is adopted for the 
bridge; the vehicle integration time step is equal to 060003.0=∆t .  

Fig. 2 shows the error parameter erri, defined in (7), for the front right wheel as a function of 

a b



the iteration number, for different values of k. A slow  convergence is detected when k is equal to 
5x105 kN m-1; instability is detected when k=5x106 kN m-1. This result is one order of magnitude 
lower with respect to the 2D analytical case, but the agreement can be considered good, seen the 
differences in the two models. When an instability of the iterative procedure is detected, a stable 
case is obtained by decreasing the time increment, with the other parameters constant, as expected.  
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 Figure 2: err at front right wheel vs iteration number 

7 CONCLUSIONS 
A general stability condition for procedure WTH is obtained, and then analysed more in detail 

for the case of a beam travelled by a SDOF oscillator. The analytical results obtained in the 2D 
case are in good agreement with numerical tests performed ad hoc on the 3D FE model. The 
stability condition for procedure STS could be investigated adopting the same method; a 
preliminary result is obtained.  Both the analytical 2D and numerical 3D tests confirm that the 
range of interest of the model parameters is not prone to instability.  
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