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SUMMARY. An elastic continuum model with long-ranfmrces is addressed in this study. The
model stems from a physically-based approach to-lowal mechanics where non-adjacent

volume elements exchange mutual central forcesdiyaend on the relative displacement and on
the product between the interacting volume elemdutther, they are taken as proportional to a
material dependent and distance-decaying funct®mooth-decay functions lead to integro-

differential equations while hypersingular, frac@b-decay functions lead to a fractional

differential equation of Marchaud type. In both emshe governing equations are solved by the
Galerkin method with different sets of basis fumes, among which also discrete wavelets are
used. Numerical applications confirm the accuraicthe Galerkin solution as compared to finite

difference solutions.

1 INTRODUCTION

In the last decades experimental results that damm@xplained by classical local continuum
mechanics have forced scientists and engineeiwmaufate alternative theories which may better
fit to observed phenomena. These include shear shamdensile specimens, acoustic wave
dispersion in granular materials, softening phenmmand smoothing effects of concentrated
stress at crack tips.

It is generally believed that most of these phenmarmmay be given an exhaustive explanation
at a micro-structural level and then, since the @hthe fifties, a first approach to this probleash
been framed in the context of atomic theory andickatmechanics. However, the strong
computational effort involved by the use of suckadties have soon motivated an increasing
interest towards continuum formulations where nstmactural effects are accounted for by
properly modified constitutive relations, includimgn-local terms as weighted integrals [1,2] or
gradients [3,4]. These approaches enjoy the bezudyconstitutive relation that does not involve
additional state variables of the elastic probl@n. the other hand, approaches involving non-
local weighted integrals lead to non-convex posdngnergy functions, while approaches
involving non-local gradients may experience inhérdifficulties in deriving the boundary
conditions. As an alternative to modified constiteitrelations, microstructural effects have been
accounted for in the equilibrium equation (i) bgliding non-local forces in an integral form
[5,6]; (i) by the so-called continualization, wieea continuum model is built based on higher-



order differential operators ensuring that the tantm behavior approximates the behavior of the
discrete lattice [7-9].

Recently, a non-local continuum model has beenqwep for a 1D bar using a physically-
based approach [10,11]. The 1D bar has been mddaliethe continuum limit of a discrete
ensemble of distinct volume elements. Adjacent elem exert mutual classical contact forces
while non-adjacent elements exert mutual, central distance-decaying forces. The latter are
taken to be proportional to the interacting voluraed to their relative displacement. As the size
of the volume elements reduces to zero, the ragultbD continuum is found to be governed by an
integro-differential equation for long-range forcesth a smooth decay or by a fractional
differential equation for long-range forces witlfractional decay. In both cases either mechanical
or kinematic boundary conditions may be consisyeatiforced. It may be also shown that the
physically-based approach enjoys all the featufeékeoelasticity theory since the pertinent elastic
potential energy is convex and positive definite.

The solution to the integro-differential equatioashbeen built based on a standard finite
difference (FD) method, suggested by the underlpihgsical model of distinct volume elements
itself [11]. Similarly, a fractional finite differece (FFD) method [12] has been adopted to solve
the fractional differential equation [10]. Howevdn both cases all the advantages of the
continuum representation are lost since, dependinthe problem at hand, a relevant number of
volume elements may be required to attain convemyeand at the expense, obviously, of an
increasing computational effort. This may be typjcéhe case not only of statics but also of
dynamics applications where, for instance, consitigcthe eigensolution of large size matrices
does involve significant computational costs.

In this study the authors aim to show that the tamhufor the non-local bar proposed in ref.
[10,11], when long-range forces feature either aatmor a fractional decay, may be constructed
by a well-known approximate method of classicabttity theory such as the Galerkin method,
formulated based on principle of virtual displacetse The results prove that accurate solutions to
the non-local bar may be built in a continuum settiwithout resorting to a back-discretization of
the governing equations.

The mechanics of the non-local bar is describeSdation 2. The formulation of the Galerkin
method is given in section 3. Numerical results @nesented in Section 4, where the FD and the
FFD solutions are used as benchmark solutions.

2 THE MODEL

Let us introduce a discrete model of the bar céingi®fn small finite volumes/=AAx, where
A'is the cross sectional aré=L/n andL is the length. Any volumy; is in equilibrium under the
external body forc§ AAx, wheref;=f(x)), beingx =(2j-1)Ax/2 ( = 1,2,...,n), Nj-1 andN; are the
axial contact forces exerted by the adjacent voiivhe andVj,,, respectively. Further, within the
theoretical framework of continuum mechanics witimd-range forces, it may be consistently
assumed that any volumé is acted upon by the resulta@ of long-range forces due to
surrounding, non-adjacent volume elements. SpetlficQ; is taken as the resultant of long-range
central forces applied to the centroid of the vadustements (see Fig. 1), given by:

Q = Zn: Q(hvj) +§Q(h,j) 1)
h=1

h=j+1



where Q" = g™\, ="MV, , being g

o™ =[u(xh)—U(xj )]g(xh,xj), for g(xh,x,-)=g(|xh —xi|)- )

Specifically,g(xn,%) is an appropriate material-dependent and distdecaying positive function,
taken to be monotonically decreasing.
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Figure 1: Equilibrium of the volume elemevjtin the discretized non-local bar.

The static equilibrium equation of the volume elemég in Fig. 1 is then written as

n . j-1 .
AN, +Q + f,AM=AN, + 3 g™ (Aax) + 3 g (AMx)” + 1, AAx =0 (3)

h=j+1 h=1

whereAN;=N;—N;_,. Dividing Eqg.(3) byAAx and lettingAx—0 yields the equilibrium equation of
the 1D non-local bar in the form

da; (x)
dx

+AlTa(x€)dE=-F(x),  fora(xé)=n(x&)g(x¢) @

wheren(x,&=u(é)-u(x); a(xX)=N(x)/A is the local stress due to the contact forces the Cauchy
stress) and the integral terms in Eq.(4) are theltants (per unit volume) of the long-range forces
due, respectively, to the volume elements to tletrand to the left of the location Based on the
resultant non-local stregs (x), given as

o, (x)=AJ_[" a(é.¢)déde (5)

it may be proved that Eq.(4) reverts to

do(x) _do (x) , 4o, (x)

dx dx dx = (X) ©



wherea(xX)=ai(X)+a,(X) is the overall axial stress. It has to be reméikat the resultant non-local
stress in Eq.(5) is obtained by cutting the bao im0 parts and evaluating the resultant of the
long-range forces exchanged by the volume elenterite right and to the left of the location

The solution for the non-local bar is sought bagedhe equilibrium equation (6) along with
pertinent compatibility and constitutive equatiohbey summarize as follows:

TR
dl;E(X) =&(x); n(x&)=u(é)-u(x) e

a(¥)=0,(x)+0, () =E(Q)e(x)+A]_ [~ 9(¢.6)[u(¢)-u(c)]dede

Note that in Eqg.(7c) the constitutive equationtfog local stresgi(x) in terms of the straia(x) is
taken aso; (x) = E¢(x), for E= BE, beingp; a positive dimensionless constant introduced, as
in the integral model of non-local elasticity [13, weigh the amount of local stress. The latter
Eq.(7d) represents the constitutive equation raathe local and non-local contribution to the
overall stress. Also it is to be observed thatdbetribution provided by long-range forces at the
locationx is in integral form and, for this, interactionstween all volume elements of the solid
are accounted for (to the left and to the righthaf locationx). This consideration is necessary
since it is to be used to specify the static bomndanditions associated to the elastic problem,

u(0)=to; u(L)=y, (8a,b)
o(0)A=0,(0)A=-F,; o(L)A=g (L)A=F (9a,b)
whereF, andF, are the end forces &t0 andx=L, respectively. Further recognize that, in Eqs.(9),

a(0)= g,(L)=0 as it may be derived from Eq.(7c).
Based on Egs.(7), the governing equation may béttewin terms of displacement as

£S04 A [u(e) -u(a((x- &) e =1 (4 )

For completeness it is noted that, based on thee saasoning followed above, Eq.(10)
generalizes for an infinite bar in the form

E%“AIZ[u(f)—u(x)]g(lx—fl)df =-1(x) (12)

Now it is worth pointing out that Eq.(10) and Ed.(Involve an integral term analogous to the
integral term accounting for long-range forces ipaidynamic bar [6]. However Eq.(10) and
Eq.(11) are integro-differential equations and, tu¢he differential term, they yield continuous
displacement fields under concentrated forces. iEhist the case in the peridynamic solution [6].



Next some further comments are made about the fepéaenctional class to adopt for the
distance-decaying functiog (|x—£|) . It may be chosen as a smooth function withougdarities
(like Gaussian-type or continuous with an isoladestontinuity like the exponential decay) so that
Eq.(10) is an integro-differential equation. On tiber hand an attractive choice for the distance
decaying function is related to the fractional po¥esv decay

ﬁzEa c,
x=4)= (12)

that may prove appropriate for materials involvingg-range interactions at a molecular level
such as electrostatic, long-range elastic bondseixt to the nearest next (NNN) lattices or
magnetic forces as Lorentz forces. More detailsuabach a power-law decay of the long-range
interactions may be found in very recent literatiiré]. Specifically, in Eq.(12) (¢) is the Euler-
Gamma functionyg is a real, material-dependent parameter rulingdisgay of the interactions,
being &o<1; ¢, is a dimensional coefficient of fractional ordfr,]=L" also depending on the
material;5,=1-£, is a positive dimensionless constant introducedn ahe integral model of non-
local elasticity [13], to weigh the amount of nawdl stress. This kind of distance-decaying
function, if replaced forg (|x—{|) into Eq.(11), yields an hypersingular kernel tbaihcides with
the sum of Marchaud left and right fractional datives, leading to the second-order fractional
differential equation [10]

Ed?x(zx) ~c, (Do) (x)+(Dzu)(x)] =~ (¥ (19)

whereC, = ,BZECH/AZ . In Eq.(13), the left and right Marchaud fractibdarivatives are defined
as the convolution integrals (for details abouttignal calculus see ref. [15])

o) =g s (or) 9= 2 e

r(1-a)’= (x-¢&)" 1-a)” (£-x)"

For a finite domain such a correspondence betwegrerkingular kernels and fractional
operators does not hold and the governing equafidhe axial displacement is obtained in terms
of the truncated Marchaud operators in the form

gdulx) -, (Bgu) () + (B 1) ()] =1 () (15)

dx?

where the truncated Marchaud operator represeatinthgral terms in the Marchaud fractional
derivative on a finite domain, defined as



)k (g g e I gy
] _a tu(x)-u(é) u(x) _(a. u(x)
(D+u)(x)_r(1—a)L ({—xw dar(ll—a)(L—x)” —(DLU)(X)+|_(11_C,)(L_X)H

(16a,b)

3 APPROXIMATE SOLUTIONS FOR THE NON-LOCAL CONTINUUM

To the authors’ best knowledge, no exact, closeaifeolution can be found for the axial
displacement fieldu(x) of the elastic problem formulated in Section Bjyosome approximate
solutions based on the FFD method [10] and the EEhad [11] have been proposed. However
such numerical solutions required, for accuracgeoaaa very fine discretization grid thus leading
to the need of developing alternative analyticgdrapches to the problem, as it will be pursued in
the following Section.

3.1 The Galerkin solution

The Galerkin method to solve the elastic problett\ang-range forces may be formulated by
resorting to the principle of virtual displacemefusthe continuum with long-range forces, which
may be written as

jOLau(x)H_‘XH f (X)}Adx+[FO +: (0) A]ou(0) +[ F. - o, (L) Alou(L) =
=IOL5u(x)[Eg—:(l;+ A.[OL[U({)—u(x)]g(|x—£|)d£+ f (x)} Adx + (17)

+[F, +0,(0) A]ou(0)+[F.-g (L)A]du(L)=0

where du(x) is an arbitrary, but kinematically admissiblerigtion of the displacement field. Let
us assume that the displacement field along thenagrbe represented as

u(x) Og(x)c (i=12,..m) (18)
where g(x) are trial, real-valued functions satisfying thedmatic boundary conditions aedare

real, unknown coefficients; also, the Einstein swatiom convention has been used for shortness.
Replacing Eq.(18) fou(x) in Eq.(17) yields

L _ d? L
jo 5u(x)[EcI dx? +Ac IO [@(&)-a(x)]g(|x-¢)dé+f (x)} Adx + .

+[F, +0;(0) AJou(0)+[ R - (L) A]du(L) = 0

The approximate form in Eq.(18) adopted fgk) does not allow to satisfy Eq.(17) for every
choice of the variatiomu(x) so that the coefficients in Eq.(18) may be evaluated by requiring



that the functional class of the variations of displacement field coincides with the trial functjo
i.e. au(X)= g (=1,2,...m). Eq.(19) may be further simplified by integratiby parts of the first
integral, which yields the following set of algebraic equations in tme unknown coefficients;

[ee o atlat)-aWleolea)wsia=
=g (L)F. - (0)F, +J'OL f(x)g (x)dx
The algebraic system of equations in Eq.(20) isicathe matrix for
KOc=(KV+k &M )c=F (21)

whereK ©) is the stiffness matrix evaluated via the Galerkpproximation and the coefficient
vectorc'=[c,,C,,...,Cr]. The elements of the load vector, of the lociifretss matrixK ™) and of
the long-range interactions stiffness matkiC ™) are, respectively,
L
F, =¢J.(L)FL—(aJ(O)FO+J'0 f (x) @ (x)dx (22a)

L — d LpeL
46 = [ B o e = [ g (00 (6) -0 (] a((x-) e 220.)

The global stiffness matrixX © is symmetric (it is readily seen in this case sidu(x)=¢(x)
(i=1,2,...m) ) and positive definite. Then it may be invertedderive the coefficient vectar,
based on which the solution (18) may be computed.

4 NUMERICAL RESULTS

Consider a clamped bar acted upon by two self-&gated point forces applied at distance
from the bar ends. As a first case, the smooth mempital decay

g(|x-¢]) = Cexp(-|x-&]/); (23)

is assumed for the long-range forces, wheis the internal length, that is the influence aliste
beyond which the non-local effects may be negle¢i®d, C is a coefficient weighing the non-
local effects. The solution to the integro-diffeiahequation (11) is built by the Galerkin method
devised in Section 3. For comparison, differens sétbasis functions are used: (i) the harmonic
functions

@ (x)=b¥2sin(dmx/L), for b= .[fi/zzsinz (2mmx/L)dx (24)

(ii) the Meyer scaling functions, defined in theduency domain by the following relations [17]



O(w)=2m"? if |af<2m/3

P (w) :Zn"/zco{gv[z—?;rw— 1)) if 27/ 3| < 47 ¢ (25)
®(w)=0 it |o>4m/3

for v(y)=y*(35-84y+70y°—20y°).
(i) the db3 Daubechies scaling functions [17].

Note that a few wavelet-Galerkin solutions for eiffntial and integro-differential equations
already exist in the literature [18].
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Figure 2: Displacement solution of a symmetricadigel bar.

The Galerkin solutions are compared to the FD mmutonstructed by discretizing the
integro-differential equation (11) onrapoint grid. The Galerkin method and the FD methog
all Matlab-coded and run on a Intel(R) Core(TM)20D2110 GHz, where 0.001 sec is the CPU
time resolution. Here results are presented for filkowing geometrical and mechanical
parametersA=1 cnf, E=2.1x10° daNcm?, L=100 cm,F=10° daN andd=25 cm. Also3,=/3=0.5;
A=10 cm in Eq.(23). Note that the numerical valueslie above parameters are theoretical values
chosen to enhance non-local effects in the respaase in which it appears more meaningful to



assess the matching between the solution stratpgigmsed in the paper. In general, however,
they may be set based on experimental evidence.

Fig. 2 and Fig. 3 show the axial displacement arairsfor g(|x—£|) given as EQ.(23), when
m=10 harmonic basis functions (24) are considereduitd the Galerkin solution (i), the scale
m=6 is selected for both the Meyer and Daubechiegelga solutions, andh=4000 volume
elementsv, are taken for the FD solution. In terms of disptaent, it is seen that the Galerkin (i)-
(ii)-(iii) and the FD solutions are in a good agremt. In terms of strain, the wavelet-Galerkin
solution (ii)-(iii) prove slightly more accurateah the harmonic-Galerkin solution (i). Such result
is expected due to the well-known localization gndiges of the wavelet functions, which appear
particularly suitable when discontinuous fieldgtees strain field in Fig. 3 are involved. In general
it is worth remarking that the Galerkin solution @rove more efficient than the FD solution
since the required CPU times are equal to 7.1 gethe Galerkin solution (i), 6.3 sec for the
Galerkin solution (ii) 6.8 sec for the Galerkingidn (iii), and to 53.83 sec for the FD solution.
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Figure 3: Strain solution of a symmetrically-loaat b

5 CONCLUSIONS

It has been shown that a classical method of limdasticity theory, such as the Galerkin
method, can be applied to solve a 1D non-localinootn bar recently proposed in the literature.
In this manner accurate approximate solutions teen obtained, with a significant reduction of
computational effort as compared to the numericdlitons previously built [10,11]. Among
different sets of basis functions, wavelet-basetei®m solutions have been found particularly
suitable for capturing both displacement and stfiaids.

It is worth remarking that the non-local elasticibypdel, here formulated and solved for a 1D



bar, lends itself to a straightforward general@matio 3D continua, based on the same concepts. A
detailed formulation and pertinent numerical resulill be presented in future self-contained
studies.
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