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SUMMARY. The formulation of the equilibrium equations for Koiter thin shells is revised, both in
weak and strong form, in order to rationally obtain a linearized incremental formulation useful for
stability analysis both in membrane and bending dominated conditions. The incremental equilibrium
operator is obtained considering an arbitrary perturbation process.

1 INTRODUCTION
Wrinkling is a phenomenon that occurs in membrane dominated shells. Therefore it can be

predicted performing a non linear geometric analysis or a perturbation analysis. In both cases, it is
needed the complete tangent equilibrium operator of the shell, including its bending behavior, that
depends strongly on the local curvature.

Linearized stability analysis is often performed employing Von Karman equations. They, how-
ever, have been obtained considering for the geometric perturbation an approximated form, that
neglects membrane deformations and drilling rotations, [1]. Further expressions of the incremental
(tangent) equilibrium equations including drilling rotations have been proposed by Simo [2, 3, 4]. In
the literature are also available several kinds of approximations for the behavior of the shell, accord-
ing to its curvature, sometimes defined shallow or quasi shallow approximations, (see Bazant [5] for
a nice discussion). The operator proposed by Timoshenko [6] for linearized stability analysis falls
within these categories.

In the present work we derive the equilibrium equations of the shell (under Kirchhoff Love
hypotheses) and the complete form of the linearized incremental equilibrium equations without re-
strictions on the form of the perturbation. While the results for the spatial form of the equilibrium
equations are well known, [7, 8], the exact form of the incremental operator was previously proposed
by Pietrazkiewicz in 1983 [9], who however, introduced some approximations on the Boundary Con-
ditions. We employ in the derivation a rational procedure that has allowed also to obtain the shallow
and quasi-shallow approximations for the same operator. The equation so obtained can be effectively
used in incremental non linear analysis of the shell, and in the stability analysis.

2 KINEMATICS
2.1 Lagrangian configuration of the shell

Let ϑ ∈ M ⊂ R2 be the domain of definition for the reference collocation of the shell and let
ϑ3 ∈ [−h, +h] be the quota of the generic layer. The Lagrangian configuration of the shell is defined
as ∗

P(ϑα, ϑ3) = P(ϑα) + ϑ3N(ϑα), α = 1, 2. (1)

whereP(ϑα) : M → So ⊂ R3 is the position of the reference surface,N(ϑα) : M → R3 is the
field of the unit normals to the reference surface.
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2.2 Lagrangian Metrics
Introducing the base vectorsGj = ∂θj PMEM of the tangent spaceTPSo of the reference surface

we will denote the projection of the metricG on the tangent space to the reference surface asG‖ ∈
L(TPSo, TPSo), with G‖ = GαβGα ⊗Gβ . The completion of the metricG‖ in the spaceTPBo is

G = G‖ + N⊗ N = GαβGα ⊗Gβ + N⊗ N. (2)

The push-forward operator along the normalN is given by the gradient

Z = grad(
∗

P) = G‖ + N⊗ N + ϑ3grad‖(N)⊗Gα (3)

SinceN · Gα = 0 differentiating one has∂β(N) · Gα = −N · ∂αβR, that isgrad‖(N) = −B the
curvature tensor, withBαβ = −N · ∂βGα. Using (3), the pull-back of the metric of theϑ3-lamina
on the reference surface is

φ∗N(
∗

G) = ZTZ = G + ϑ3(BT + B) + (ϑ3)2BT B. (4)

For thin shells the last term can be disregarded.

2.3 Current configuration of the shell
The position of the shell at the generic timet is represented by

∗
p(ϑα, ϑ3) = P(ϑα) + u(ϑα) + ϑ3(N(ϑα) + ω(ϑα)) (5)

whereu : St → TPBo is the displacement field of the reference surface that yields its position in
the current configuration asp = P + u, andω is the displacement of the tip of the normal vectorN,
assumed to rotate during deformation. The base vectors on the reference surface transform as

cα = Gα + u|α,
∗

cα = cα + ϑ3n|α,
∗
n = n (6)

In the work, since we analyze thin membranes, it is used Kirchhoff-Love hypothesisω = n − N,
wheren = c1×c2√

c‖
, so that (5) becomes

∗
p(ϑα, ϑ3) = P(ϑα) + u(ϑα) + ϑ3n(ϑα). (7)

2.4 Current metric and measure of deformation

The pull-back of the current metric of the spaceT ∗
p
Bt on the spaceTPBo is indicated by

∗
c and is

defined by
∗
c := FT F = ∂P(

∗
p)T ∂P(

∗
p), where∂P(

∗
p) : TPBo → T ∗

p
Bt. With reference to fig. 1 it is

possible to represent the gradient of deformation asF := ∂P(
∗
p) = (cα + ϑ3n|α)⊗Gα + n⊗ N =

zFo =
∗

FZ, wherez =
∗

cα ⊗ cα + n⊗ n is the push-forward operator alongn. The pull-back of the
metric of the generic lamina in the deformed configuration is then

φ∗(
∗
c) = [cα · cβ + ϑ3(n|α · cβ + n|β · cα) + (ϑ3)2n|α · n|β ]Gβ ⊗Gα + N⊗ N. (8)

In equation (8) the linear term inϑ3 is the pull-back of2 sym[ b ] on TPBo. Disregarding the
quadratic term, the Cauchy-Green deformation tensor for a Kirchhoff-Love shell is

2
∗
E ≈ (φ∗(

∗
c‖)−G‖)− ϑ32sym((φ∗(b)− (B)). (9)
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Figure 1: Diagram of the tangent spaces and push-forward operators.

2.5 Up-dated Lagrangian form of the tangent kinematic operators

The velocity field is
∗
v = v+ ϑ3 .

n wherev is the velocity of the reference current surface and
.
n is

the velocity of rotation of the normal vector. The spatial velocity gradient
∗
l : T ∗

p
Bt → T ∗

p
Bt is

∗
l := ∂ ∗

p

∗
v =

.
∗

cα ⊗
∗

cα +
.
n⊗ n = (v + ϑ3 .

n)|α ⊗
∗

cα +
.
n⊗ n. (10)

The velocity of deformation is the symmetric part of the pull-back of
∗
l onTpBt given byl = zT

∗
l z

d = sym[(
.
∗

cα · ∗cβ)cβ ⊗ cα] (11)

From (11) it is clear that the only non zero terms of the velocity of deformation gradient are in the
tangent direction. Linearizing equation (11) in theϑ3-direction, for thin shells it is obtained

{d}linϑ3 = do + ϑ3 .
χ . (12)

In (12) have been defined two tangent kinematic operators, the membrane velocity of deformation
and the velocity of curvature respectively

do := sym[grad‖(v)]‖ = sym[(vβ‖α − v3bβα)cβ ⊗ cα]. (13)

and
.
χ := −sym[n · grad 2

‖ (v)] = −sym[n · (v|β|α + v|(cβ|α)‖)⊗ cβ ⊗ cα]

= −sym[((v3)‖βα + vρ‖βbρ
α + vρ‖αbρ

β + vρb
ρ
β‖α − v3bραbρ

β)cβ ⊗ cα].
(14)

The formulas presented do not carry along any restrictive hypothesis other then those related
to the first Kirchhoff-Love approximation. However, simplified formulations have been proposed
and are commonly used in the literature, commonly referred to as shallow shell orquasi-shallow
shell approximations. It is a remarkable result that they can be derived directly from the general
theory outlined above, simply modifying the definition of the velocity of curvature with appropriate
assumptions, leaving unaltered the deformation tensor and the membrane part of the velocity of
deformation.

For the so called theory ofquasi-shallow shells [5, 6] in the expression (14) it is retained the
second geometric term, while the first term containing the second derivative of the velocity is ap-
proximated asn · v|β|α ≈ (n · v|α)|β (the normal component of the second gradient is substituted by
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the derivative of the normal component). That is, it is disregarded the termsym[(n|α · v|β)cβ ⊗ cα],
that represents the influence of the membrane stretching on the velocity of curvature:

.
χQSS := sym[grad‖(

.
n)]‖ = −sym[(v3

|β)‖αcβ ⊗ cα]

= −sym[((v3)‖βα + vρ‖αbρ
β + vρb

ρ
β‖α)cβ ⊗ cα].

(15)

The shallow shell assumption is formally equivalent to approximate also the normal component
of the first derivative of the tangent velocity. In addition to the term containing the membrane
stretching, then, it is also disregarded the term(n|β|α · v)cβ ⊗ cα. Therefore one has

.
χSS := −sym[grad 2

‖ (n · v)] = −sym[(v3)‖βαcβ ⊗ cα]. (16)

3 EQUILIBRIUM EQUATIONS
3.1 Spatial form of the equilibrium equations

Denoting with
∗
σ the Cauchy stress tensor, the internal virtual work for KL-shells is

Pint =
∫

φt(B)

dBt(
∗
σ :

∗
d) =

∫

φt(B)

dBt(σ : d) (17)

where the stress tensorσ is the pull-back of the Cauchy stress onto the spaceTpBt defined by

σ = z−1 ∗σz−T. For thin shells it is possible to identifyσ and
∗
σ. Splitting the integral and indicating

with π(ϑ3) the jacobian of the transformation along the thickness one has

Pint =
∫

φt(B)

∗
dBt(

∗
σ :

∗
d) =

∫

St

dSt

(∫ +h

−h

π(ϑ3)σ :
(
do + ϑ3 .

χ
)
dϑ3

)
=

∫

St

dSt(n : do+m :
.
χ).

(18)
wheren =

∫ +h

−h
dϑ3π(ϑ3)(σ) andm =

∫ +h

−h
dϑ3π(ϑ3)(ϑ3σ), both stress tensors are symmetric.

Let the vector traction on the boundary beσ∂ ñ = σαn
∂ cα + σ3n

∂ n. The linearized component of
theKirchhoff-Lovevelocity field along theϑ3-direction is

cα{ ∗v · ∗cα}linϑ3 + v3n = cα{(v+ϑ3 .
n)(cα +ϑ3n|α)}linϑ3 + v3n = v−ϑ3(v3,αcα +2v · b). (19)

Then the external power is

Pext =
∫

St

dSt(q‖ · v‖ + q3v3)+

+
∫

∂St,i

ds2

∫ +h

−h

dϑ3
(
[(vα − ϑ3(v3,α + 2vλbλ

α))cα + v3n] · [σñ]
)

=
∫

St

dSt(q‖ · v‖ + q3v3) +
∑

i

(v3)iRi+

+
∫

∂St,i

ds2
(

v‖ · [f ‖∂ − 2b‖(m∂ñ)] + v3f
3
∂ − v3,ñmññ

∂ + v3(ms̃ñ
∂ ),s̃

)
− [

ms̃ñ
∂ v3

]1
0
(Li).

(20)

where withq ‖ andq3 we intend the external surface forces, withf ‖∂ = (n∂ñ)‖ = ñ
∫ +h

−h
dϑ3[ñ ·

σ∂ · ñ] + s̃
∫ +h

−h
dϑ3[s̃ ·σ∂ · ñ] the membrane boundary traction and withf3

∂ =
∫ +h

−h
dϑ3[n ·σ∂ · ñ]
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the boundary shear force; the boundary normal bending moment ismññ
∂ =

∫ +h

−h
dϑ3[ϑ3ñ · σ∂ · ñ]

and the boundary twisting moment isms̃ñ
∂ =

∫ +h

−h
dϑ3[ϑ3s̃ · σ∂ · ñ]; Ri = (Ri · n) are the normal

component of the point-force applied to vertex of the non-regular boundary.
Equating internal and external power the strong equilibrium equations inSt are derived

−div‖(n− bm) + bdiv‖(m) = q‖

−div‖(div‖(m))− (n− bm) : b = q3

(21)

where the operatordiv‖(...) : L(TpSt, TpSt) → TpSt is the restriction of the divergence operator
to the current reference surfaceSt, b is the curvature tensor of this surface,ñ := ∂s1p ∈ TpSt and
s̃ := ∂s2p ∈ TpSt are, respectively, the boundary’s normal and tangent vectors of the line-boundary
∂St, i.e. n = ñ× s̃, andi the number of verticespi, of edges theLi.

The BC’s on the edges∂St,i and verticespi are

(n− 2bm)ñ = f ‖∂ − 2b‖(m∂ñ) or v‖ = 0

−mññ = −mññ
∂ or ∂ñ(v3) = 0

∂s̃(ms̃ñ) + div‖(m) · ñ = f3
∂ + ∂s̃(ms̃ñ

∂ ) or v3 = 0

−[(ms̃ñ)Li−1
pi

− (ms̃ñ)Li
pi

] = −[(ms̃ñ
∂ )Li−1

pi
− (ms̃ñ

∂ )Li
pi

] + Ri or (v3)i = 0.

(22)

In the case of QSS must be neglected the double underlined term, while in the case of SS all
underlined terms must be neglected.

4 INCREMENTAL FORMULATION OF THE EQUILIBRIUM EQUATIONS
In this section it is derived the incremental form of the equilibrium equations, that includes the

Foppl-Von Ḱarmán formulation for thin shells. Starting from a deformed configuration of the shell
whose geometry and differential structure is known, let’s consider an increment of the displacement
field∆u = ut−ū. No restriction is introduced on the form of∆u. An updated Lagrangian approach
is used, that is the static and kinematic quantities will be projected onto the known configuration by
a pull-back operation.

4.1 Time rate of incremental deformation in up-dated formulation
We start defining the tangent incremental kinematic operators. As can be observed from formulas

(13) and (14) the membrane velocity gradient is a linear function of the velocity field only, while
the rate of curvature tensor depends non linearly from the displacement field through the curvature
tensor.

The incremental time rate membrane deformation tensor is given by a sum of two addend, the first
linear in the velocity field(v =

.
u), the second linear in the velocity and incremental displacement

fields
{d}t

t+∆t = d(v) + ∆d(u, v) (23)

where
d(v) = sym[(v|α · c̄β)c̄β ⊗ c̄α] (24)
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and
∆d(u, v) = sym[(v|α · u|β)c̄β ⊗ c̄α]. (25)

By definition of curvature tensor we have
.
χ = sym[(

.
n|α · cβ + n|α · v|β)cβ ⊗ cα] (26)

wheren(u) is a non-rational function ofu, while cβ(u) andv|β(u) are linear functions ofu. In
order to linearize the expression (26) with respect to the displacement field we first give the exact
u-dependency of

.
n|α(u) andn|α(u).

From the definition ofn we have the relation

n
√

c‖ = c1 × c2 (27)

deriving (27) respect toϑα yields

n|α
√

c‖ + n
(√

c‖
)
|α = (c1 × c2)|α (28)

the product of the first and second members of equation (27) byn, enforcing KL hypothesis gives
(√

c‖
)
|α = (c1 × c2)|α · n. (29)

Analogously deriving equation (27) with respect to time we obtain the time rate
.√
c‖ =

.

c1 × c2 · n. (30)

The incremental form of the kinematic operators is obtained linearizing the relevant expressions
in a neighborhood of the configuration att-instant for a vanishing increment of the displacement.

Linearizingn(u) in a neighborhood of the configuration att-instant, defined bȳu, gives{n(ū)}t
t+∆t =

n(ū) + ∂u(n(u))|ū · u, that in the up-dated representation can be shown to reduce to:

{n(ū)}t
t+∆t = n̄− u3

|ρc̄
ρ (31)

whereu3
|ρ = n̄ · u|ρ. The definition of the time rate of the normal

.
n(u), using equation (30), is

.
n(u) =

.

c1 × c2√
c‖

−
.√
c‖√
c‖

n(u)

=

.

c1 × c2√
c‖

−
.

(c1 × c2) · n(u)√
c‖

n(u)

(32)

Linearizing the expression (32) in a neighborhood of the configuration at thet-instant we obtain
{ .
n(ū)}t

t+∆t =
.
n(ū) + ∂u(

.
n(u))

∣∣
ū
· u whose expression in the up-dated representation is

{ .
n(ū)}t

t+∆t = (−v3
|ρ + u3

|µvµ
|ρ + v3

|µuµ
|ρ)c̄

ρ − v3
|λc̄λµu3

|µn̄ (33)

From the definition ofn(u) and equation (29) we have the expression of the variation along the
ϑα-direction of the normal vector

n|α(u) =
(c1 × c2)|α√

c‖
−

(√
c‖

)
|α√

c‖
n(u)

=
(c1 × c2)|α√

c‖
− (c1 × c2)|α · (c1 × c2)

c‖
√

c‖
(c1 × c2).

(34)
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Linearizing the expression (34) in a neighborhood of the configuration at thet-instant we obtain the
up-dated expression for{n|α(ū)}t

t+∆t = n|α(ū) + ∂u(n|α(u))
∣∣
ū
· u, that can be evaluated as

{n|α(ū)}t
t+∆t = (−b̄ρα + b̄λαuλ

|ρ − u3
|ρα)c̄ρ − b̄λ

αu3
|λn̄ (35)

wherec̄ρ andn̄ are the tangent vector att-instant,̄b is the curvature tensor of surface at thet-instant,
uλ
|ρ = c̄λ · u|ρ whereu|ρ is the variation ofu along c̄ρ, andu3

|ρα = n̄ · u|ρα whereu|ρα is the
second surface covariant derivative ofu.

Differentiating the definition (34) ofn|α(u) we obtain, using equation (30) and the KL hypothe-
sis, the definition of the time rate of the spacial rate ofn indicated by

.
n|α(u)

.
n|α(u) =

.

(c1 × c2)|α√
c‖

−
.

(c1 × c2) · (c1 × c2)
c‖
√

c‖
−

.

(c1 × c2)|α · (c1 × c2)

c‖
√

c‖
(c1 × c2)+

− (c1 × c2)|α ·
.

(c1 × c2)
c‖
√

c‖
(c1 × c2)−

(c1 × c2)|α · (c1 × c2)
c‖
√

c‖

.

(c1 × c2)+

+
3[

.

(c1 × c2) · (c1 × c2)][(c1 × c2)|α · (c1 × c2)]
c2
‖
√

c‖
(c1 × c2).

(36)

Linearizing the expression (36) in a neighborhood of the configuration at thet-instant we obtain the
expression for{ .

n|α(u)}t
t+∆t =

.
n|α(ū) + ∂u(

.
n|α(u))

∣∣
ū
· u, that in up-dated representation is

{ .
n|α(ū)}t

t+∆t = [−v3
|ρα + u3

|λαvλ
|ρ + u3

|λvλ
|ρα + uλ

|ραv3
|λ + uλ

|ρv
3
|λα+

+ b̄λαvλ
|ρ − b̄µαuµ

|λvλ
|ρ − b̄µαuλ

|ρv
µ
|λ

+ b̄ραu3
|µc̄µλv3

|λ + b̄λ
αu3

|ρv
3
|λ + b̄λ

αu3
|λv3

|ρ] c̄
ρ+

+ [−b̄λαc̄λµv3
|µ − c̄λµu3

|µαv3
|λ − c̄λµu3

|µv3
|λα+

+ b̄λα(u3
|µc̄µρvλ

|ρ + uλ
|µc̄µρv3

|ρ) + b̄ραc̄ ρλu3
|µvµ

|λ + b̄ραc̄ ρλuµ
|λv3

|µ+

+ b̄ραc̄ ρλ(v1
|1 + v2

|2)u
3
|λ + b̄ραc̄ ρλ(u1

|1 + u2
|2)v

3
|λ] n̄.

(37)

From equation (26), (35) and (37) the up-dated incremental time rate curvature tensor is given by a
sum of two addends, the first linear in the velocity field, the second linear in the velocity and in the
incremental displacement fields

{ .
χ}t

t+∆t =
.
χ(v) + ∆

.
χ(u, v) (38)

where
.
χ(v) = sym[−n̄ · v|αβ ⊗ c̄α ⊗ c̄β ] (39)

and

∆
.
χ(u, v) = sym[(n̄ · u|η)c̄ ηρ(n̄ · v|ρ)b̄αβ c̄α ⊗ c̄β+

+ (n̄ · v|ρ)(c̄ρ · u|αβ)c̄α ⊗ c̄β+

+ (n̄ · u|ρ)(c̄ρ · v|αβ)c̄α ⊗ c̄β ].

(40)
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In the case of QSS the up-dated representation of this tensor reduces to

.
χQSS(v) =

.
χ(v) + sym[ b̄µβvµ

|αc̄α ⊗ c̄β ] = −sym[(n̄ · v|α ⊗ c̄α)‖β ⊗ c̄β ] (41)

and

∆
.
χQSS(u, v) = ∆

.
χ(u, v) + sym{[

(u3|µ)‖β︷ ︸︸ ︷
(u3

|µβ − b̄ρβuρ
|µ)vµ

|α + b̄ρ
βu3

|ρv
3
|α]c̄α ⊗ c̄β} (42)

4.2 Up-dated Lagrangian incremental equilibrium equations
The incremental equilibrium equations are obtained via principle of virtual displacements. Let

St+∆t be the middle surface of the shell in an equilibrium state in a neighborhood of the configu-
ration mapped by the surfaceSt, subjected to the conservative surface forceqt+∆t per unit area of
surfaceSt, and to the conservative boundary forcef t+∆t

∂ and the conservative boundary moment
mt+∆t

∂ , both per unit of length of∂St. The principle of virtual displacements is

∫

St+∆t

(N : do + M :
.
χ)dSt+∆t =

∫

St+∆t

(qt+∆t · v)dSt+∆t+

+
∫

∂St+∆t

(f t+∆t
∂ · v∂ + mt+∆t

∂ · .
n∂)d(∂St+∆t).

(43)

We represent this equation on the configuration at thet-instant via a pull-back operation and consider
an infinitesimal incremental change of configuration fromSt to St+∆t. The internal forces become
thenN = N0 + ∆N(u), M = M0 + ∆M(u), where the increments contain only the linear terms
in the incremental displacement. The velocities of deformation are calculated using (23) and (38).
Retaining only the terms linear inu equation (43) becomes
∫

St

(∆N(u) : do(v)+∆M(u) :
.
χ(v) + N0 : ∆do(u, v) + M0 : ∆

.
χ(u, v))dSt −

∫

St

(∆q · v)dSt+

−
∫

∂St

(∆f∂ · v∂ + ∆m∂ · { .
n∂}lin)d(∂St) = 0

(44)

Equation (44) splits the internal increment of virtual work in two parts, the incremental con-
stitutive part and the incremental geometric part. Applying Green’s formula to the incremental
geometrical work, from equation (25) the incremental geometric internal membrane work is
∫

St

N0 : ∆do(u, v)dSt =
∫

∂St

uρ
|αNαβ

0 ñβvρds2 +
∫

St

[b̄ρ
β(u3

|αNαβ
0 )− (uρ

|αNαβ
0 )‖β ]vρdSt+

+
∫

∂St

u3
|αNαβ

0 ñβv3ds2 −
∫

St

[(uρ
|αNαβ

0 )b̄ρβ + (u3
|αNαβ

0 )‖β ]v3dSt.

(45)

From equation (40) the incremental geometric internal bending work splits in a sum of three addends
∫

St

(M0 : ∆
.
χ(u, v))dSt =

∫

St

Mαβ
0 (b̄αβu3

|η c̄ ηρv3
|ρ + v3

|ρu
ρ
|αβ + u3

|ρv
ρ
|αβ)dSt. (46)
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Applying Green’s formula to the equation (46) the first addend reduces to
∫

St

Mαβ
0 b̄αβu3

|η c̄ ηρv3
|ρdSt =

∫

St

b̄ρ
λb̄αβMαβ

0 u3
|η c̄ ηλvρdSt −

∫

St

(b̄αβMαβ
0 u3

|η c̄ ηρ)‖ρv3dSt

+
∫

∂St

b̄αβMαβ
0 u3

|η c̄ ηλñλv3ds2.

(47)

The second integral of equation (46) reduces to
∫

St

Mαβ
0 uρ

|αβv3
|ρdSt =

∫

St

b̄ρ
µuµ

|αβMαβ
0 vρdSt −

∫

St

(uµ
|αβMαβ

0 )‖µv3dSt

+
∫

∂St

uµ
|αβMαβ

0 ñµv3ds2.

(48)

The third integral of equation (46) reduces to
∫

St

Mαβ
0 u3|ρv

ρ
|αβdSt =

∫

St

(Mαβ
0 u3|η)‖αβ c̄ ηρvρdSt −

∫

St

Mαβ
0 u3|µb̄µ

αb̄ρ
βvρdSt

+
∫

∂St

Mαβ
0 u3|ρv

ρ
|βñαds2 −

∫

∂St

(Mαβ
0 u3|η)‖αñβ c̄ ηρvρds2

+
∫

St

[(Mαβ
0 u3|ρb̄

ρ
β)‖α + (Mαβ

0 u3|ρb̄ρ
α)‖β −Mαβ

0 u3|ρb̄
ρ
α‖β ]v3dSt

+
∫

∂St

Mαβ
0 u3|ρb̄ρ

αñβv3ds2

(49)

where(Mαβ
0 u3|η)‖αβ = Mαβ

0 ‖αβu3|η + Mαβ
0 ‖α(u3|η)‖β + Mαβ

0 ‖β(u3|η)‖α + Mαβ
0 (u3|η)‖αβ , with

(u3|η)‖β = (u3|η),β−u3|λΓ̄λ
ηβ , and(u3|ρ)‖αβ = (u3|ρ),αβ−(u3|ηΓ̄η

ρα),β−(u3|ξ),αΓ̄ξ
ρβ+u3|ηΓ̄η

ξαΓ̄ξ
ρβ−

((u3|η),ρ − u3|λΓ̄λ
ηρ)Γ̄

η
αβ .

In the case of QSS the internal geometric bending work contains some additional terms:
∫

St

Mαβ
0 (u3

|µ)‖βvµ
|αdSt =

∫

∂St

Mαβ
0 (u3

|µ)‖βcµρñαvρds2 −
∫

St

[Mαβ
0 (u3

|µ)‖β ]‖αc̄µρvρdSt

−
∫

St

Mαβ
0 (u3

|µ)‖β b̄µ
αv3dSt

(50)

and
∫

St

Mαβ
0 b̄ρ

βu3
|ρv

3
|αdSt =

∫

∂St

Mαβ
0 b̄ρ

βu3
|ρñαv3ds2 −

∫

St

(Mαβ
0 b̄ρ

βu3
|ρ)‖αv3dSt

+
∫

St

Mαβ
0 b̄µ

βu3
|µb̄ρ

αvρdSt.

(51)

Remembering that∆n = −n · grad‖(u), the local incremental equilibrium equation onSt are then
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− div‖[∆N− b̄∆M + (grad‖(u))‖N0]+

+ b̄
(
div‖(∆M)−∆nN0 −∆n(b̄ : M0) + grad 2

‖ (u) : M0 + ∆nb̄M0

)
+

− div‖
(
div‖(M0)⊗∆n

)− (grad‖(∆n))‖div‖(M0)− grad 2
‖ (∆n) : M = ∆q‖,

(52)

− div‖[div‖(∆M) + ∆n N0 + ∆n b̄ : M0]− div‖[grad 2
‖ (u) : M0]+

− div‖(∆n b̄M0)−∆n div‖(b̄M0)− b̄M0 : (grad‖(∆n))‖ −∆n(grad‖(b̄))‖ : M0+

− b̄[∆N− b̄∆M + (grad‖(u))‖N0] = ∆q3.

(53)

The boundary conditions on∂Stare

(∆N + (grad‖(u))‖No − 2b̄∆M)ñ + ∆n div‖(M0ñ) + (grad‖(∆n))‖M0ñ+

+ b̄(grad‖(u))‖M0ñ = ∆f ‖∂ − 2b̄∆m∂ñ or v‖∂ = 0
(54)

∂s̃{s̃ · [∆M + (grad‖(u))‖M0] · ñ}+ div‖(∆M) · ñ−∆n · (N0 − b̄M0) · ñ+

− (b̄ : M0)∆n · ñ + ñ · grad 2
‖ (u) : M0 = ∆f 3

∂ + ∂s̃(∆m∂)s̃ñ, or v3
∂ = 0

(55)

−ñ · [∆M + (grad‖(u))‖M0] · ñ = −(∆m∂)ññ, or ∂ñ(v3) = 0 (56)

and on verticespi

− s̃ · [(M0)Li−1
pi

− (M0)Li
pi

] · ñ
− s̃ · {[(grad‖(u))‖M0]Li−1

pi
− [(grad‖(u))‖M0]Li

pi
} · ñ = ∆Ri, or v3(pi) = 0.

(57)

The underlined terms must be disregarded in the case of the QSS.

5 CONCLUSIONS
The exact non linear kinematic of a thin shell has been developed and has been employed for

deriving the weak and strong forms of the spatial equilibrium equations and of the incremental
equilibrium operator. It has been shown that the approximated forms of the equilibrium equations
commonly denoted as shallow and quasi-shallow approximations are obtained disregarding some
terms in the rate of curvature tensor.

The incremental equilibrium equations have been derived considering an arbitrary form of the
increment of displacement, contrary to what is usually done in the literature, where a restricted
perturbation is considered, neglecting the part responsible for membrane stretching. The bound-
ary conditions have also been rationally derived. Also the quasi shallow approximations has been
discussed.

The latter equations have been used by the authors for closed form stability analysis of thin shells
with membrane dominated behavior, undergoing wrinkling, and the influence of the curvature, as
well as the limit of application of different types of approximations have been analyzed. These
results are reported in separated papers.
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