Influence of wrinkling in the structural response of light membranes
Derivation of the incremental equilibrium operator
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SUMMARY. The formulation of the equilibrium equations for Koiter thin shells is revised, both in
weak and strong form, in order to rationally obtain a linearized incremental formulation useful for
stability analysis both in membrane and bending dominated conditions. The incremental equilibrium
operator is obtained considering an arbitrary perturbation process.

1 INTRODUCTION

Wrinkling is a phenomenon that occurs in membrane dominated shells. Therefore it can be
predicted performing a non linear geometric analysis or a perturbation analysis. In both cases, it is
needed the complete tangent equilibrium operator of the shell, including its bending behavior, that
depends strongly on the local curvature.

Linearized stability analysis is often performed employing Von Karman equations. They, how-
ever, have been obtained considering for the geometric perturbation an approximated form, that
neglects membrane deformations and drilling rotations, [1]. Further expressions of the incremental
(tangent) equilibrium equations including drilling rotations have been proposed by Simo [2, 3, 4]. In
the literature are also available several kinds of approximations for the behavior of the shell, accord-
ing to its curvature, sometimes defined shallow or quasi shallow approximations, (see Bazant [5] for
a nice discussion). The operator proposed by Timoshenko [6] for linearized stability analysis falls
within these categories.

In the present work we derive the equilibrium equations of the shell (under Kirchhoff Love
hypotheses) and the complete form of the linearized incremental equilibrium equations without re-
strictions on the form of the perturbation. While the results for the spatial form of the equilibrium
equations are well known, [7, 8], the exact form of the incremental operator was previously proposed
by Pietrazkiewicz in 1983 [9], who however, introduced some approximations on the Boundary Con-
ditions. We employ in the derivation a rational procedure that has allowed also to obtain the shallow
and quasi-shallow approximations for the same operator. The equation so obtained can be effectively
used in incremental non linear analysis of the shell, and in the stability analysis.

2 KINEMATICS
2.1 Lagrangian configuration of the shell
Let9 € M C R? be the domain of definition for the reference collocation of the shell and let
92 € [—h, +h] be the quota of the generic layer. The Lagrangian configuration of the shell is defined
as
P(9,9%) = P(9*) + 9>N(9%), a=1,2. 1)

whereP(9?) : M — S, C R3 is the position of the reference surfad¥y®) : M — R3 is the
field of the unit normals to the reference surface.



2.2 Lagrangian Metrics

Introducing the base vecto@; = 0y, PME,, of the tangent spack:S, of the reference surface
we will denote the projection of the metr@& on the tangent space to the reference surfacg as

L(TpS,, TS, ), With G| = GG ® GP. The completion of the metriG in the spacédpB3, is

G=G|+N&N=GuG" ©G" +NaN. )

The push-forward operator along the normNak given by the gradient
Z = grad(P) = Gy + N® N + #*grad(N) @ G 3)
SinceN - G, = 0 differentiating one had(N) - G* = —N - 9,4R, that isgrad;(N) = —B the
curvature tensor, witlB,s = —N - 95G,,. Using (3), the pull-back of the metric of th&-lamina

on the reference surface is

$4(G) = 272 = G + 0*(BT + B) + (¢v°)?B7B. @)
For thin shells the last term can be disregarded.
2.3 Current configuration of the shell
The position of the shell at the generic titnis represented by
P9, 9°) = P(I*) + u(9*) + 9 (N(9) + w(¥)) ®)

whereu : S; — TpB, is the displacement field of the reference surface that yields its position in
the current configuration gs= P + u, andw is the displacement of the tip of the normal vedtbr
assumed to rotate during deformation. The base vectors on the reference surface transform as

Co=Ga + U, Co=Cot®n, n=n (6)

In the work, since we analyze thin membranes, it is used Kirchhoff-Love hypothesisn — N,

— C1XCo
wheren = e SO that (5) becomes

p(I,93) = P(9*) + u(9®) + 93n(9%). @)
2.4 Current metric and measure of deformation
The pull-back of the current metric of the spalqu’)’t on the spacé@pB, is indicated b)E and is
defined byé =FTF = Op( B)Tap( f)), wheredp( fi) :TpB, — TﬁBt. With reference to fig. 1itis
possible to represent the gradient of deformatioR as 9p(p) = (C, + #n,) ®G* +n@N =

zF, = FZ, wherez = ¢, ® ¢ + n @ n is the push-forward operator along The pull-back of the
metric of the generic lamina in the deformed configuration is then

¢*(C) = [ca - Cs+9*(Na - s+ N - o) + (9%)2N), - n3lG° @ G* + N@ N. (8)

In equation (8) the linear term ifi® is the pull-back of2sym[b] on TpB,. Disregarding the
quadratic term, the Cauchy-Green deformation tensor for a Kirchhoff-Love shell is

2E ~ (¢"(&)) — G)) — ¥*2sym((¢" (b) — (B)). ©)
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Figure 1: Diagram of the tangent spaces and push-forward operators.

2.5 Up-dated Lagrangian form of the tangent kinematic operators
The velocity field isv = v+ 93n wherev is the velocity of the reference current surface arisl

the velocity of rotation of the normal vector. The spatial velocity gradlentrﬁBt — TﬁBt is

* % * *

| = 0.V=Co®C*+Nn@n=(V+n),@c* +A®n, (10)
The velocity of deformation is the symmetric part of the puII-bacH*aﬁn T,B; given byl =z I*z

d = sym|[(c,, - C)c® ® ¢°] (11)

From (11) it is clear that the only non zero terms of the velocity of deformation gradient are in the
tangent direction. Linearizing equation (11) in thidirection, for thin shells it is obtained

{d}fmor =d, +9°x. (12)

In (12) have been defined two tangent kinematic operators, the membrane velocity of deformation
and the velocity of curvature respectively

d, := symgrad (]! = sym[(vgja — vsbsa)e” ® €. (13)
and

X = —sym|n - gradHQ(v)] = —sym[n - (Vg|o + VI(Cma)”) ®c® ®c? 14
= —sym[((v3) | ga + Va0 + Vp|ad’s + v,,bpﬁua — vgb,,abpﬁ)cﬁ ® c?].

The formulas presented do not carry along any restrictive hypothesis other then those related
to the first Kirchhoff-Love approximation. However, simplified formulations have been proposed
and are commonly used in the literature, commonly referred to as shallow shplbsfshallow
shell approximations. It is a remarkable result that they can be derived directly from the general
theory outlined above, simply modifying the definition of the velocity of curvature with appropriate
assumptions, leaving unaltered the deformation tensor and the membrane part of the velocity of
deformation.

For the so called theory afuasishallow shells [5, 6] in the expression (14) it is retained the
second geometric term, while the first term containing the second derivative of the velocity is ap-
proximated a® - vig|, ~ (N -V|q)|s (the normal component of the second gradient is substituted by



the derivative of the normal component). That is, it is disregarded thestarrf(n,,, - vm)cﬁ ® cv],

that represents the influence of the membrane stretching on the velocity of curvature:
)’(QSS = syIn[gradH(h)]H = fsym[(vBW)HaC’B ® ¢ (15)
= —sym[((v3)ga + Vplab’s + 0,05,)¢" © €.

The shallow shell assumption is formally equivalent to approximate also the normal component
of the first derivative of the tangent velocity. In addition to the term containing the membrane
stretching, then, itis also disregarded the t¢ny,, - v)c? ® c®. Therefore one has

Xsgg = —sym[gmdf(n V)] = —sym[(vg)ugacﬁ ® c*). (16)

3 EQUILIBRIUM EQUATIONS
3.1 Spatial form of the equilibrium equations

Denoting witho the Cauchy stress tensor, the internal virtual work for KL-shells is

Prnt = / dBy(& : d) = / iBi(o - d) a7
¢+(B) ¢+ (B)

where the stress tenser is the pull-back of the Cauchy stress onto the spBg8, defined by

o =z 'z~ T. For thin shells it is possible to identify ande. Splitting the integral and indicating
with 7(93) the jacobian of the transformation along the thickness one has

* * * +h
Pint :/ dB;(o : d) :/ dS; (/ m(9*)o : (d, + 9°x) d193> :/ dS;(n: do+m: x).
&+(B) St —h St
(18)
wheren = ff: d¥3m(9?) (o) andm = ff: d93m(9)(93a), both stress tensors are symmetric.

Let the vector traction on the boundary bgh = 0§"c,, + o3"n. The linearized component of
theKirchhoff-Lovevelocity field along the}3-direction is

C{V - Co }9% ugn = @ {(V+930) (Co + 97N |4) }1790% 4 v3n = v — 02 (v3 0% + 2V - b). (19)

Then the external power is

Pea:t = / dst(q” . VH + q3’Ug>+
St

+h
+ / ds? / 0% ([(va — 93 (3.0 + 20A0%))C* + v3n] - (o))
85, ; h

- / aS,(al VI + gug) + 3 (vg)iRict
S ;

+ / ds? (v” ) = 20l (mod)] + vs f3 — vs AmA™ + Ug(mgﬁ),g) — [m§Pvs], (Ly).
08y, -
(20)
where withg I and¢® we intend the external surface forces, with= (ny#)!l = ﬁfj’ dd3[n -

oo-n)+ §ff: d¥3[3 - o5 - 1] the membrane boundary traction and with= ff: d93n-og-nj
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the boundary shear force; the boundary normal bending momerf’is= ff: d3[93n - op - 7

and the boundary twisting momentris;® = ffhh d93[933 - o5 - 7; R; = (R, - n) are the normal
component of the point-force applied to vertex of the non-regular boundary.
Equating internal and external power the strong equilibrium equatioSsane derived

—div)(n —bm) + bdiv (m) = ¢
- (21)
—di’UH (diUH (m)) —(n—bm): b= q3

where the operatafiv)(...) : L(TxS;, TpS:) — T,S; is the restriction of the divergence operator
to the current reference surfasg, b is the curvature tensor of this surfage;= 9,:p € 1,S; and
5 := 052p € TS; are, respectively, the boundary’s normal and tangent vectors of the line-boundary
08, 1.e.n = n x §, andi the number of verticesg;, of edges thd.;.
The BC'’s on the edgesS; ; and verticep; are

(n—2bm)f = f) — 20l (mpA) or vl=0

n

—m™ = —m2" or 9i(vz) =0
d5(m*™) + divy(m) - v = f5 + 0s(my") or wv3=0

[mI e (mIE] = —((mEE — (mE)E]+ R or (v3); =0.

In the case of QSS must be neglected the double underlined term, while in the case of SS all
underlined terms must be neglected.

4 INCREMENTAL FORMULATION OF THE EQUILIBRIUM EQUATIONS

In this section it is derived the incremental form of the equilibrium equations, that includes the
Foppl-Von Karman formulation for thin shells. Starting from a deformed configuration of the shell
whose geometry and differential structure is known, let's consider an increment of the displacement
field Au = u, —@. Norestriction is introduced on the form afu. An updated Lagrangian approach
is used, that is the static and kinematic quantities will be projected onto the known configuration by
a pull-back operation.

4.1 Time rate of incremental deformation in up-dated formulation

We start defining the tangent incremental kinematic operators. As can be observed from formulas
(13) and (14) the membrane velocity gradient is a linear function of the velocity field only, while
the rate of curvature tensor depends non linearly from the displacement field through the curvature
tensor.

The incremental time rate membrane deformation tensor is given by a sum of two addend, the first
linear in the velocity fieldv = u), the second linear in the velocity and incremental displacement
fields

{d}iyae = d(v) + Ad(u,v) (23)

where
d(v) = sym((v|, - €5)” ® €] (24)



and
Ad(u,v) = sym[(V}, - Uj5)&” ® &]. (25)

By definition of curvature tensor we have
X = sym[(N, - Cg 4+ Njo - V|3)C3 @ Cy] (26)

wheren(u) is a non-rational function ofi, while cs(u) andvg(u) are linear functions ofi. In
order to linearize the expression (26) with respect to the displacement field we first give the exact
u-dependency o, (u) andn, (u).

From the definition oh we have the relation

N,/¢| = Ci X Cy (27)

deriving (27) respect td« yields
Nay/@ + 1 (VA = (€1 X C2)ja (28)
the product of the first and second members of equation (27) bgforcing KL hypothesis gives
( C\I)\a = (C1 X C3)jq - . (29)

Analogously deriving equation (27) with respect to time we obtain the time rate

T”:clkcg-n. (30)

The incremental form of the kinematic operators is obtained linearizing the relevant expressions
in a neighborhood of the configurationtainstant for a vanishing increment of the displacement.

Linearizingn(u) in a neighborhood of the configurationtahstant, defined b, gives{n(@)};, o, =
n(a) + du(n(u))|; - u, that in the up-dated representation can be shown to reduce to:

{n(a)}§+At =n- ug\pép (31)
Whereu3|p = 7 - U),. The definition of the time rate of the norma(u), using equation (30), is

C; X Cy <

W -
_Gax& (&X 02)~n(u)n(u)

“ Sl

Linearizing the expression (32) in a neighborhood of the configuration atittetant we obtain
{n(@)}; A, =n(@) + 8u(h(u))\a - u whose expression in the up-dated representation is

n(@)}a = (—1}3|p + ugmv“‘p + vgmu“‘p)é‘) - Ug‘/\é)‘“uigwﬁ (33)

From the definition oh(u) and equation (29) we have the expression of the variation along the
¥*-direction of the normal vector

@xone V)

Nja(U) = G e (34)
_ (c1 x C2)‘a B (¢ x CQ)‘Q (¢ x C2)(C1 X Cy).
a Vel



Linearizing the expression (34) in a neighborhood of the configuration &ittstant we obtain the
up-dated expression fqn, (@)}, A, = Njo (@) + 8u(n‘a(u))]ﬁ - u, that can be evaluated as

(Mo (@)} ar = (=Bpa + bratr’), = v),0)8 = Du’ 7 (35)

wherec” andn are the tangent vector ainstant,b is the curvature tensor of surface at tHastant,
uA‘p = ¢* - uj, whereuy, is the variation ofu alongc,, a”d“3|pa = 7 - U, Whereu,, is the
second surface covariant derivativelof

Differentiating the definition (34) aofi, (u) we obtain, using equation (30) and the KL hypothe-
sis, the definition of the time rate of the spacial rate afidicated byn, (u)

(¢ X-CQ)|Q (c1 v C) (e xcy) (G ><.C2)|a - (1 x C)

Ao (U) = = = - " (€1 x C2)+
B (Cl X C2)|o¢ m B (Cl X C2)\a . (C1 X Cg)% (36)
civer (o) iver (o xe)t
n 3[(C1 X C2) . (C1 X Cilg]\gci”l X C2>\o¢ : (Cl X C2)] (Cl % Cg).

Linearizing the expression (36) in a neighborhood of the configuration &itisant we obtain the
expression fo{n, (U)}i, o, = Nja(@) + 8u(h|a(u))|ﬁ - u, that in up-dated representation is

Nt _ 3 3 A 3 A A3 A L3
{n|a(u)}t+At - [_U |pa +u |)\av \p—’_u |)\U |pa +u |po¢U A tu |pv \)\a—i_
7 A7 i A7 A 1
+ braV o buatt PGP buat PR
7.3 Zp\, 3 X .3 .3 A .3 .3 1=
+ bpau”|, CH07  + b Ul vy + b ut 7l e+

_ (37)
+ [—b)\aé)\#l)glﬂ - EA'MUB'W@’UBM — EAH'U,BIH'Ugl)\a—F

+ b,\a(u3wé‘“’v’\|p + u’\mé’“’v?’m) + bpaép’\u?’l#v“l/\ + bpaép’\u“‘)\v?’w—i—

+ bpaEP)\(Ulll + ”2I2)qu + bmépA(ulll + u2|2)vi3/\} n.
From equation (26), (35) and (37) the up-dated incremental time rate curvature tensor is given by a
sum of two addends, the first linear in the velocity field, the second linear in the velocity and in the
incremental displacement fields

{XHear = x(V) + Ax(u,v) (38)
where
x(V) = sym[—7 - Vo3 ® & ® &”] (39)
and
Ax(u,v) = sym[(7 - U, )e" (7 - V) )bape® © &+
+ (V) (€ - Ujp)E® @ &P+ (40)
+ (A Upp)(E° - Vip)E® @ 7).



In the case of QSS the up-dated representation of this tensor reduces to
Xqss(V) = X(V) +sym[b,0"| & ® &) = —sym|(A - Vjo ® &)j5 ® & (41)
and

(us|u) s
) : —~—T Y, - o (42)
AXQS’S(U’V) = Ax(u,v) + Sym{[(u?’\ﬂﬁ - bpﬁupw)vl\a + bpﬁu3\Pv3|a]ca ® Cﬂ}

4.2 Up-dated Lagrangian incremental equilibrium equations

The incremental equilibrium equations are obtained via principle of virtual displacements. Let
St+at be the middle surface of the shell in an equilibrium state in a neighborhood of the configu-
ration mapped by the surfac®, subjected to the conservative surface faggce,, per unit area of
surfaceS;, and to the conservative boundary fofgé“* and the conservative boundary moment

mé2%, both per unit of length 0S;. The principle of virtual displacements is

/ (N : do +M: X)dSt+At = / (thrAt 'V)d8t+At+
Sttt Stat (43)
+/ (f$+At . V{) + mg+At . ha)d(@SH_At).
OStiat

We represent this equation on the configuration at-ihetant via a pull-back operation and consider

an infinitesimal incremental change of configuration fr8to S, A:. The internal forces become
thenN = Ng + AN(u), M = Mgy + AM(u), where the increments contain only the linear terms

in the incremental displacement. The velocities of deformation are calculated using (23) and (38).
Retaining only the terms linear inequation (43) becomes

/ (AN(U) : dy(V)+AMU) : (V) + N : Ad,(U,V) + Mo : Ax (U, V))dS; — / (AQ-V)dS,+
S: S,
- / (Af, - Vo + Amy - {Ng}1™)d(dS;) = 0
S
(44)

Equation (44) splits the internal increment of virtual work in two parts, the incremental con-
stitutive part and the incremental geometric part. Applying Green’s formula to the incremental
geometrical work, from equation (25) the incremental geometric internal membrane work is

/s No : Ad,(u,Vv)dS; = /as up‘aNéwﬁgvpdSQ +/$ [Bpﬁ(uglaNgﬁ) — (u”laNg‘B)”ﬁ]vpdSt—&-

+ / |, NoPigvsds? — / (N )bys + (u® NG lusdS;.
oS St
(45)

From equation (40) the incremental geometric internal bending work splits in a sum of three addends

/S(MO:AX(U,V))dSt: i Mg‘f’(Baﬂu?’lnE%S‘p+v3‘pupla[,+u3‘pvp|aﬁ)dst. (46)



Applying Green’s formula to the equation (46) the first addend reduces to

M(?ﬂl_)aﬁu?’ménpvs‘pd& :/s l_)p/\gaﬁMgﬂugME"/\vpdSt 7/5 (BQBMSBUBME"”)”pvgdSt

S: t
+ BagMgﬁuglnE"AﬁAv3d52.
88t
(47)
The second integral of equation (46) reduces to
MPuf 03 dS, = | bt MIPu,dS, — [ (u” M) ,vsdS
So\aﬁ\PtSﬂ\aﬁoptslal30l\u3t
t t t (48)
+/ u“‘aﬂMgﬁszvgdSQ.
BSt
The third integral of equation (46) reduces to
/ M€6u3lpvp\a6d8t :/ (MgBUS\n)I\aﬁénpvpdst_ Mgﬁuiﬂui’ﬂagpﬁvpdst
St St St
+ o M((Jlﬁu?)lﬂvp\ﬁﬁadsg - /as (M€Bu3‘n)|‘aﬁﬁénpvpd52
- ' (49)

+ -/S [(MOQBUB\po@)Ha + (M(())éﬁUB\pEpa)Hﬁ - M(‘))éﬁUB\pEpaHg]USdSt

+ MG g ,bP  iguads?
ISy
where(MPus ) ijag = M ugy + M7 (ug) 15 + M7 (usgin)ja + MEP (us)y) jag, With
0 U3ln)|ap 0 |lapg"3In 0 la\U3In/IIB o |g\¥3In/ e 0 3in/llaBs
(usja) s = (ualy) s—ta L), ANA(ua)p) s = (ual,) ap—(alnTfa) 5= (uale) oL pgtusinLEa g~
((ugjn),p — “3I>\F;\zp)rgﬂ' . . . . "
In the case of QSS the internal geometric bending work contains some additional terms:

/S M(?'B(u3m)|wv“|ad8t = Mﬁﬁ(u3lﬂ)‘|5c”pﬁavpds2 — / [M[?ﬁ(u?’m)ﬂg]Haé“”vpdSt

Sy S
— | Mg (P, s vsdS,
) (50)
and
/s,, Mgﬁgpﬁu?"pv?"adst = /as,, Mgﬁgpﬁu:‘"pﬁavgdsQ — /St(Mg‘Bbpﬁu?’p)mvgdSt o1

+ 8 Mélﬁl;“ﬁu3|ugpavpd8t.

Remembering thatn = —n - grad (u), the local incremental equilibrium equation Spare then



— div|[AN — bAM + (grad) (u))'No]+
+ b (dZUH (AM) — AnNg — An(B : Mo) + gmd”?(u) : Mo + AHBM()) + (52)
- d’i’UH (di’UH(Mo) & Al’l) - (gde(An))“divH(Mo) - g?“adHQ(An) M= Aq”,

— divy[div) (AM) + AnNg + Anb : Mo] — div [gradHQ(u) : Mgl+
— divj(AnbMy) — Andiv (bMo) — bM : (grad) (An))! — An(grad; (b))l : Mg+ (53)
— B[AN — bAM + (grad)(u))INo] = Ag®.

The boundary conditions anS,are

(AN + (grad)(u))IN, — 2bAM)# + An div| (Mo#) + (grad; (An))IMos+

_ . (54)

+ b(gradu(u))”Moﬁ = Afg — 2bAmyn  or Vég =0
9:{5 - [AM + (grad)(u))Mq] - &} + div| (AM) - & — An - (Ng — bMy) - 72+ (55)

— (b: Mo)An - @i + 7 - grad(u) : Mg = Af + 0s(Amy)*™, or v} =0
—i1 - [AM + (grad) (u))Mq] - 2 = —(Amp)™,  or 0:(v*) =0 (56)

and on verticey,
— 5 [(Mg)Ei=t — (Mg)%i] -7

[(Mo)y, (Mo)/] 57)

-5 {[(gradH(u))”Mo]ﬁj‘l — [(gmdu(u))HMo}ﬁj} - =AR', or v3(p;) = 0.
The underlined terms must be disregarded in the case of the QSS.

5 CONCLUSIONS

The exact non linear kinematic of a thin shell has been developed and has been employed for
deriving the weak and strong forms of the spatial equilibrium equations and of the incremental
equilibrium operator. It has been shown that the approximated forms of the equilibrium equations
commonly denoted as shallow and quasi-shallow approximations are obtained disregarding some
terms in the rate of curvature tensor.

The incremental equilibrium equations have been derived considering an arbitrary form of the
increment of displacement, contrary to what is usually done in the literature, where a restricted
perturbation is considered, neglecting the part responsible for membrane stretching. The bound-
ary conditions have also been rationally derived. Also the quasi shallow approximations has been
discussed.

The latter equations have been used by the authors for closed form stability analysis of thin shells
with membrane dominated behavior, undergoing wrinkling, and the influence of the curvature, as
well as the limit of application of different types of approximations have been analyzed. These
results are reported in separated papers.
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