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SUMMARY. The paper addresses the exact formulation of a deformable catenary element permitting
the numerical simulation of cable net systems. The formulation proposed, stemming as a modifi-
cation of the conventional equations for inextensible cables, ensures exact equilibrium after defor-
mation of cable and includes the case of follower loads. The use of analytical expression for both
the geometrical description of the element and the corresponding linearized problem provides high
numerical stability in the calculation procedure. The accuracy and efficiency of this approach are
assessed by comparison with simple results obtained in literature using alternative analytical and
numeric approaches.

1 INTRODUCTION
Object of the present study are structures made by cables. Many engineering structures make

use of this typology, among them, suspension and cable stayed bridges, tenso-structures, light roof
systems [1]. The latter are often built with double-curvature membranes, which however, are in
some case modelled as cable nets.

Cables are intrinsically non linear elements, with constitutive non linearity due to the no-compres-
sion behavior, and geometrical non linearities. The first property has long been recognized and has
sometimes been used also for modelling masonry structures such as arches and columns. Recently
Andreu [2] et alt. have proposed a numerical model for cables in order to analyze the equilibrium
configurations of historical buildings.

The classical solution of the catenary for a single cable due to J. Bernoulli has been extended to
account for several other effects. Irvine [3] used the equation of deformable catenary for studying
plane cable nets. He obtaines an expression for the tangent stiffness matrix of an elastic cable, that,
however, was not symmetric. Following his work, a number of authors have developed numerical
procedures for the analysis of complex type of cable-structures. Ahmadi-Kashani and Bell [4] with
the aim of studying cable trusses, extended Irvine’s model to account for follower loads, like these
due to snow and wind, following the original work of Peyrot [5], who introduced the so called
associated catenary element. They also presented a numerical strategy of solution with the aim of
obtaining an exact expression for the equivalent nodal forces. Further contributes toward a general
finite element cable are due to Tibert [6]. Lacarbonara and Pacitti [7] who extended the formulation
to the case of cables with non negligible bending stiffness.

Most of the available solutions, however, show numerical instability and poor efficiency, or are
available only for particular structural typologies.

Aim of the authors is to develop an exact formulation of a cable element, that includes also
the case of follower loads, like those due to fluid interactions (the later are relevant in sub-marine
cables). Particular attention will be devoted to the efficiency of the numerical procedure, in order
to develop a non linear finite element cable that can be used also in conjunction with much stiffer
standard elements, as occurs in many structures.
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2 EQUILIBRIUM EQUATIONS
2.1 Variational principle of a cable-element

Let p = p(s) be the parametric configuration of the cable at a generic instant, withs the arc-
length. The tangent spaceTpBt at pointp is generated by the unitary triad constituted by the tangent
vector t̂ := ∂sp, the unit normal̂n := ∂sp

‖∂sp‖ and the unit bi-nomal vector̂b := t̂ × n̂. We denote

with τ the normal resultant stress vector defined byτ := τ t̂, whereτ = ‖τ‖. For any virtual
displacementv the principle of virtual work is given by

∫ L

0

τ · ∂s(v) ds =
∫ L

0

q · v ds + F0 · v0 + FL · vL (1)

integrating the first term of (1) we have

[τ · v]L0 −
∫ L

0

∂s(τ ) · v ds =
∫ L

0

q · v ds + F0 · v0 + FL · vL. (2)

The field equations in[0, L], are
−∂s(τ ) = q (3)

and the boundary conditions are

τ (0) = −F0 or v(0) = v0

τ (L) = FL or v(L) = vL.
(4)

From the last condition the boundary forces must be tangent to the the boundary configuration of the
cable.

2.2 Intrinsic representation of plane equilibrium equations
Let v ∈ TpBt be a generic tangent vector,v = (v · t̂)t̂ + (v · n̂)n̂ + (v · b̂)b̂. The intrinsic line

gradient ofv is indicated bygrad‖(v) and is defined by

grad‖(v) = ∂s(v)⊗ t̂

= (∂sv · t̂)t̂⊗ t̂ + (∂sv · n̂)n̂⊗ t̂ + (∂sv · b̂)b̂⊗ t̂.
(5)

Projecting the equilibrium equation (3) in the intrinsic tangent space we have

−∂sτ · t̂ = q · t̂ = qt̂, −∂sτ · n̂ = q · n̂ = qn̂, −∂sτ · b̂ = q · b̂ = qb̂. (6)

Using Frenet’s formula and considering thatτ = τ t̂ the component ofgrad‖(τ ) are

∂sτ · t̂ = ∂sτ, ∂sτ · n̂ = τ χ, ∂sτ · b̂ = 0, (7)

whereχ = ‖∂sτ‖ is the curvature of the funicular curve.
Finally the intrinsic representation of the equilibrium equations (3) are

−∂sτ(s) = qt̂(s)
−τ(s)χ(s) = qn̂(s)

qb̂(s) = 0,

(8)

with the boundary conditions

τ(0) = −τ (0) · t̂ v(0) = v0

τ(L) = τ (L) · t̂ v(L) = vL.
(9)
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2.3 Cartesian representation of the equilibrium equations
Projecting the equations (3) on the Euclidean spatial frame we obtain, (noting that∂sτ · ei =

∂s(τ · ei) ∀i = 1, 2, 3.)

−∂s(τ t̂ · ex) = q · ex, −∂s(τ t̂ · ey) = q · ey, −∂s(τ t̂ · ez) = q · ez, (10)

and remembering the definition oft̂ = ∂sxex + ∂syey + ∂szez we obtain

− ∂

∂s

(
τ(s)

∂x

∂s

)
= qx(s), − ∂

∂s

(
τ(s)

∂y

∂s

)
= qy(s), − ∂

∂s

(
τ(s)

∂z

∂s

)
= qz(s). (11)

The projection of the internal traction stress resultantτ along the cartesian directions are usually
called thrust and shear

H(s) = τ · ex = τ(s)
∂x

∂s
(s), K(s) = τ · ey = τ(s)

∂y

∂s
(s), V(s) = τ · ez = τ(s)

∂z

∂s
(s). (12)

The cartesian equilibrium equations assume the compact form

−∂sH(s) = qx(s), −∂sK(s) = qy(s), −∂sV(s) = qz(s). (13)

By a first integration alongs we have

H(s) = H(0)−
∫ s

0

qx(s)ds, K(s) = K(0)−
∫ s

0

qy(s)ds, V(s) = V(0)−
∫ s

0

qz(s)ds.

(14)

A new integration alongs yelds the parametric representation of the funicular configuration

x(s) =
∫ s

0

H(0)− ∫ s

0
qx(s)ds

τ(s)
ds− x(0), y(s) =

∫ s

0

K(0)− ∫ s

0
qy(s)ds

τ(s)
ds− y(0),

z(s) =
∫ s

0

V(0)− ∫ s

0
qz(s)ds

τ(s)
ds− z(0),

(15)

where the resultant stress traction is defined by

τ(s) =

√(
H(0)−

∫ s

0

qxds

)2

+
(
K(0)−

∫ s

0

qyds

)2

+
(
V(0)−

∫ s

0

qzds

)2

(16)

3 FORMULATION OF AN ELASTIC CATENARY ELEMENT
In this section it is shown the particularization of the equilibrium equation to the case of an elastic

catenary obeying Hooke’s law, suspended at its ends and subjected only to its own weight.
A discussion on a wide variety of elastic catenaries can be found in [6], [3] and [4].

3.1 Assumptions
The limitations of the present formulation are:
1. Small deformation only are considered (but large displacements).
2. Linear-elastic constitutive behavior is only considered (τ = EA0 ε).
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3. Only self-weight acts on the cable, and it is assumed conservation of mass of the cable element
during the deformation process, i.e. the value of the weight per unit-length varies in agreement with
the mass conservation.

4. Bending stiffness is neglected.
5. Plane funicular geometries, only are considered for simplicity (b̂ defines the plane of the

funicular curve).

3.2 Equations of the elastic cable element
A total Lagrangian approach is used. As reference configuration we adopt the inextensible cate-

nary configuration of the cable and denote withs0 ∈ [0, L0] the arc-length coordinate, withL0 the
length of the non-deformed cable.

Since we consider that the only external action is the self weight along the z-direction we have
from equations (14)

H(s) = H(0), −∂sV(s) = qz(s). (17)

Equation (13) reduces to

τ(s)
∂x

∂s
= H(0), − ∂

∂s

(
τ(s)

∂z

∂s

)
= qz(s), (18)

with

τ(s0) =

√
H2

0 +
(
V0 −

∫ s0

0

qz
∂s

∂s0
ds0

)2

=

√
H2

0 +
(
V0 − W

L0
s0

)2

(19)

where mass conservationqz,0ds0 = qzds, have been used, andW denotes the total weight of the
cable. Integrating the preceding equations on the Lagrangean configuration we have

x(s0)− x0 =
∫ s0

0

H0

τ(s)
∂s

∂s0

∣∣∣∣
s(s0)

ds0

z(s0)− z0 =
∫ s0

0

V0 − W
L0

s0

τ(s)
∂s

∂s0

∣∣∣∣∣
s(s0)

ds0.

(20)

Considering thatε = ( ds
ds0

− 1) and assuming a linear constitutive relationτ = A0E
(

ds
ds0

− 1
)

the

previous equations become

x(s0) =
∫ s0

0

( H0

EA0
+

H0

τ(s0)

)
ds0 + x0

z(s0) =
∫ s0

0

V0 − W
L0

s0

τ(s0)

(
τ(s0)
EA0

+ 1
)

ds0 + z0

(21)

and integrating we have

x(s0)− x0 =
H0s0

EA0
+
H0L0

W

(
Sinh−1

[ V0

H0

]
− Sinh−1

[
V0 − W

L0
s0

H0

])
(22)
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z(s0)− z0 =
Ws0

EA0

(V0

W
− s0

2L0

)
+

+
H0L0

W




√
1 +

( V0

H0

)2

−




√√√√1 +

(
V0 − W

L0
s0

H0

)2




 .

(23)

The kinematic of the elastic catenary element is described by equation (22) and (23), which are
resumed as

x(L0)− x0 = l(L0) = f(H0,V0, L0), z(L0)− z0 = h(L0) = g(H0,V0, L0). (24)

The functionf andg are non linear functions ofH0, V0 andL0. We note that for ai-th cable of
lengthL0,i and weightWi assigned, thei-th funicular configuration is defined by six parameter, four
geometricpi

0 = {xi
0, z

i
0} andpi(L0) = {xi(L0), zi(L0)}, and two staticτ i

0 = {Hi
0,Vi

0}. If a net
of catenary elements is cut at the connecting nodes, each isolated element will be in equilibrium via
non linear equations. The conditions of global equilibrium and kinematic compatibility are used to
derive the global equations of the entire net of cables. Overall equilibrium requires the balance of
all the forces appearing at the ends of catenary elements connected to a node with the external loads
applied on the node.

Enforcing the compatibility and equilibrium equations at each node the solution of the elastic ca-
ble net is determined. A Newtow-Raphson numerical scheme is adopted to solve equations (24). The
initialization of this procedure is made linearizing the set of equations using as initial trial configura-
tion the parabolic inextensible cable element. This strategy provides a method with large numerical
robustness permitting a very accurate treatment of the equilibrium in the final configuration of the
cable net, as will be show by the examples in the next section.
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4 NUMERICAL EXAMPLES
In this section first we show simple benchmarks and then analyze different more complex ty-

pologies of cable nets.

4.1 Example 1
The present example, taken from Tibert [6], is a benchmark already considered by other authors

to validate different methods for simulating cables,(O’Brien [8], and Jayaraman [9]). The initial

(a) (b)

Figure 1: 1(a) Geometry description and 1(b) data,(from A. Andreu, L. Gil, P. Roca.).

configuration is a suspended elastic catenary subjected only to self weight, and data can be found in
figure 1. Successively a non symmetric point force is applied.

In the figure 2 we show the initial inextensible configuration of the catenary subjected to self
weight (in blue), the initializing inextensible parabolic configuration (in purple) and the final elastic
catenary configuration.

CATENARIA
INELASTICA
SCARICA

CATENARIA
ELASTICA

SOLUZIONE PARABOLICA

A B

P

0.0 0.2 0.4 0.6 0.8 1.0
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-80

-60

-40

-20

0

XêLuce

Z

@ftD
CONFIGURAZIONE GEOMETRICA

Figure 2: Inextensible initial catenary configuration, initializing inextensible parabolic configuration
and elastic catenary configuration.

The horizontal and vertical displacements of the point of the application of the load agree with
those given by of O’Brien [8] and Roca [2].

4.2 Example 2
In this example we study the behavior of a self-weight cable subjected to an horizontal point

force applied on the centre-line. The distance between the ends isl = 5m, the length isL0 = 10m.
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and the self-weight for unity of inextensible length isq = 1N/m. In figure-3 the incremental
configurations are plotted. As the horizontal force increases, the thrust in the right segment of the
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Figure 3: 3(a) Incremental configurations, 3(b) reactions at the ends, 3(c) stress resultant traction
and 3(d) shear component.

cable tends to a constant value, corresponding to the reaction of the isolated segment subjected to
its self weight only (see figure 3(b)). If the cables are inextensible, this is a limiting configuration
no matter how large is the horizontal load whose increments are completely balanced by the left
segment (see figure 3(c)).

4.3 Example 3
In this example we study the behavior of a self-weight cable. The distance between the ends is

l = 5m, the length isL0 = 10m, and the self-weight for unity of inextensible length isq = 0.5N/m.
A point load is applied to the cable by a pulley. In the incremental load-process we the vertical

component of this force is kept constant and only the horizontal component increases.
From the figure-4 we note that the point of application of the load during the incremental process

describes an ellipse having as foci the suspension end-points. The centre of weight of the system
describes an ellipse rotated ofπ/2. In figure 5 are plotted the incremental horizontal and vertical
end-reactions.
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Figure 4: Incremental configuration and ellipse of application point and weight-centre.
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Figure 5: 5(a) Horizontal and 5(b) vertical end-reactions components.

4.4 Example 4
In this example we study the behavior of a self-weight cable net constituted by four cable sus-

pended at the ends and subjected to a point force applied to the junction of cables.
The distance between the ends isl = 2m, the initial length of cables isL1 = L2 = 2.4m, and

the self-weight for unity of inextensible length isq = 1N/m, EA = 103N .
The 0-state of the net is associated to a pretension given by a reduction of the initial lengths of

the cables.
The 1-state and 2-state are associated to the different direction of the load (simulating the wind

effects).
Form figure 6(c) and 6(d) it appears a different behavior of the net, in fact in the 1-state the upper

cable balance the load, while in the 2-state, after the upper cable has released the elastic deformation
energy associated to pretension, is the lower cable that balances the load.
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Figure 6: In figure 6(a) and 6(b) are plotted the geometry and loads, in figure 6(c) and 6(d) are
plotted the component of reactions and the traction stress at the ends and in figure 6(e) and 6(f) are
plotted the vertical coordinate of the loaded point.
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4.5 Example 5
In this example we analyze a follower load. We consider an inextensible cable initially subjected

to only self-weight, in a second step a further distribution of pressure directed along the normal of
the funicular curve is applied on the cable. We note that this load is follower only in the direction of
application and not in the module of load-pressure, because the cable is considered inextensible. As
showed in the figure the initially catenary tends to a circular funicular configuration and the traction
stress resultant becomes constant (see figure 7(d)).
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Figure 7: In figure 7(a) is plotted the change of configuration during the incremental load-process, in
figure 7(b) is plotted the horizontal component of traction stress, in figure 7(c) is plotted the vertical
component of traction stress and in figure 7(d) is plotted the traction stress.
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